JPS62201352A - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPS62201352A
JPS62201352A JP61018656A JP1865686A JPS62201352A JP S62201352 A JPS62201352 A JP S62201352A JP 61018656 A JP61018656 A JP 61018656A JP 1865686 A JP1865686 A JP 1865686A JP S62201352 A JPS62201352 A JP S62201352A
Authority
JP
Japan
Prior art keywords
sensor
gas
electrode
oxygen concentration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61018656A
Other languages
Japanese (ja)
Other versions
JPH0746092B2 (en
Inventor
Toyohei Nakajima
中島 豊平
Yasushi Okada
岡田 泰仕
Toshiyuki Mieno
三重野 敏幸
Nobuyuki Ono
大野 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPS62201352A publication Critical patent/JPS62201352A/en
Publication of JPH0746092B2 publication Critical patent/JPH0746092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To easily detect the change in an output characteristic by providing two sets of a 1st electrode pairs on the inside and outside wall surfaces of a 1st gas stagnating chamber communicating with the inside of an exhaust pipe via a 1st gas diffusion limiting means. CONSTITUTION:A base body forms the 1st and 2nd gas stagnating chambers 2, 3 and is so formed that the stagnating chamber 2 communicates with the inside of the exhaust pipe via the 1st gas diffusion limiting means and that the stagnating chamber 3 communicates with the inside of the exhaust pipe via the 2nd gas diffusion limiting means. Two pairs of the 1st electrode pairs 11a, 11b and 12a, 12b forming the 1st sensor are provided on the inside and outside wall surfaces in the electrolyte wall part of the stagnating chamber 2 so as to face each other with the wall part in-between. Two pairs of the 2nd electrode pairs 13a, 13b and 14a, 14b forming the 2nd sensor are similarly provided on the inside and outside wall surfaces in the electrolyte wall part of the stagnating chamber 3. Electric current is supplied to either of between one electrode pair of two pairs of the 1st electrode pairs and between one electrode pair of two pairs of the 2nd electrode pairs and the detected values of the oxygen concn. of the 1st and 2nd sensors corresponding to the supply current values are outputted. The abnormality of the 1st or 2nd sensor is detected according to the respective detected values of the oxygen concn.

Description

【発明の詳細な説明】 技J辷叛野 本発明はエンジン排気ガス等の気体中の酸素濃度を検出
する酸素m度検出装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen degree detection device for detecting the oxygen concentration in gas such as engine exhaust gas.

1且且■ 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素m度を検出し、この検出結末に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制m装置がある。
1 and ■ For the purpose of purifying the exhaust gas of internal combustion engines and improving fuel efficiency, the degree of oxygen in the exhaust gas is detected, and the air-fuel ratio of the mixture supplied to the engine is fed back to the target air-fuel ratio according to the result of this detection. There is an air-fuel ratio control device that controls the air-fuel ratio.

この上うな空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の酸素濃度に比例した出力を発生
するものがある。例えば、2つの平板状の酸素イオン伝
導性固体電解質部材各々の両生面に電極対を設けて2つ
の固体電解質部材の一方の電極面金々が気体滞留室の一
部をなしてその気体滞留室が被測定気体と導入孔を介し
て連通し一方の固体電解質部材の他方の電極面が大気室
に面するようにした装置が特開昭59−192955号
に開示されている。この酸素濃度検出装置においては一
方の酸素イオン伝導性固体電解質部材と電極対とが酸素
濃度比検出電池素子として作用し他方の酸素イオン伝導
性固体電解質材と電極対とが酸素ポンプ素子として作用
するようになっている。酸素濃度比検出電池素子の電極
間の発生電圧が基Q=電圧以上のとき酸素ポンプ素子内
を酸素イオンが気体滞留室側電極に向って移動するよう
に電流を供給し、酸素濃度比検出電池素子の電極間の発
生電圧が基?$電圧以下のとき酸素ポンプ素子内を酸素
イオンが気体滞留室側とは反対側の電極に向って移動す
るように電流を供給することによりリーン及びリッチ領
域の空燃比において電流値が酸素濃度に比例する特性が
iffられるのである。
As an oxygen concentration detection device used in such an air-fuel ratio control device, there is one that generates an output proportional to the oxygen concentration in the gas to be measured. For example, an electrode pair may be provided on each of two flat oxygen ion conductive solid electrolyte members, and the metal electrode surface of one of the two solid electrolyte members may form a part of the gas retention chamber. JP-A-59-192955 discloses an apparatus in which the solid electrolyte member communicates with the gas to be measured through an inlet hole, and the other electrode surface of one solid electrolyte member faces an atmospheric chamber. In this oxygen concentration detection device, one oxygen ion conductive solid electrolyte member and electrode pair act as an oxygen concentration ratio detection battery element, and the other oxygen ion conductive solid electrolyte material and electrode pair act as an oxygen pump element. It looks like this. When the voltage generated between the electrodes of the oxygen concentration ratio detection battery element is equal to or higher than the voltage Q, a current is supplied so that oxygen ions move within the oxygen pump element toward the electrode on the gas retention chamber side, and the oxygen concentration ratio detection battery Is it based on the voltage generated between the electrodes of the element? By supplying current so that oxygen ions move within the oxygen pump element toward the electrode on the opposite side of the gas retention chamber when the voltage is below $, the current value changes to the oxygen concentration at air-fuel ratios in the lean and rich regions. The proportional characteristic is iffed.

かかる酸素濃度検出装置においては、内燃エンジンの排
気管内に設けて排気ガス中の酸素濃度を検出使用する場
合には長年の使用にJ:り排気ガス中の酸化物等が導入
孔にイ」看して出力特性に悪影響を及ぼし所望の出力特
性が徐々に1!7られなくなってしまうことが分った。
When such an oxygen concentration detection device is installed in the exhaust pipe of an internal combustion engine to detect the oxygen concentration in the exhaust gas, it is difficult to detect oxides in the exhaust gas from entering the inlet hole after many years of use. It has been found that the output characteristics are adversely affected and the desired output characteristics gradually become impossible to achieve.

しかしながら、所望の出力特性が得られないという異常
が生じても従来、酸素濃度検出装置を内燃1ンジン等に
取り付けた後に出力特性が変化したか否かを検出するこ
とは困flであった。
However, even if an abnormality occurs in which desired output characteristics cannot be obtained, it has conventionally been difficult to detect whether or not the output characteristics have changed after attaching an oxygen concentration detection device to an internal combustion engine or the like.

l訓辺I」 そこで、本発明の目的は出力特性の変化を容易に検出す
ることができる酸素濃度検出装置を提供することである
。。
Therefore, an object of the present invention is to provide an oxygen concentration detection device that can easily detect changes in output characteristics. .

本発明の酸素濃度検出装置は各々が酸素イオン伝導性固
体電解質壁部を有する第1及び第2気体滞留室を形成し
第1気体滞留室が第1気体拡散制限手段を介して内燃エ
ンジンの排気管内に連通しかつ第2気体滞留室が第2気
体拡散制限手段を介して排気管内に連通ずるようにされ
た基体と、第1気体8;)留室の電解質壁部の内外壁面
上にこれを挟んで対向するが如く設けられて第11?ン
リを形成する2つの第1電極対と、第2気体滞留室の電
解質壁部の内外壁面上にこれを挟んで対向するが如く設
Gノられて第2センサを形成する2つの第2電極対と、
2つの第1電極対の−hの電極対間及び前記2つの第2
電極対の一方の電極対間に電流を供給しその供給電流値
に応じた第1及び第2センサ゛の酸素濃度検出値を出力
する電流供給手段と、第1セン号の酸素濃度検出値と第
2酸素濃度検出値とに応じて第1又は第2センサの異常
を検出する検出手段とを含むことを特徴としている。
The oxygen concentration detection device of the present invention forms first and second gas retention chambers each having an oxygen ion conductive solid electrolyte wall, and the first gas retention chamber is connected to the exhaust gas of the internal combustion engine via the first gas diffusion restriction means. a base body which communicates with the inside of the pipe and whose second gas retention chamber communicates with the inside of the exhaust pipe via the second gas diffusion restriction means; The 11th ? two first electrode pairs forming a sensor, and two second electrodes disposed on the inner and outer wall surfaces of the electrolyte wall of the second gas retention chamber so as to face each other with the electrodes sandwiched therebetween, and forming a second sensor. vs.
-h between the two first electrode pairs and between the two second electrode pairs.
Current supply means for supplying a current between one electrode pair of the electrode pair and outputting the detected oxygen concentration values of the first and second sensors according to the supplied current value; 2 detection means for detecting an abnormality in the first or second sensor according to the detected value of the oxygen concentration.

L−蓋一囲 以下、本発明の実施例を図面を参照しつつ説明する。L - Encircle the lid Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明による酸素濃度検出装置を用
いた空燃比制御装置を示している。本装貿においては、
はぼ立方体状の酸素イオン伝導性固体電解質部材1が設
けられている。酸素イオン伝導性固体電解質部材1内に
は第1及び第2気体滞留室2.3が形成されている。第
1気体滞留室2は固体電解質部材1外部から被測定気体
の排気ガスを導入する導入孔4に連通し、第2気体81
)留室3は固体電解質部材1外部から被測定気体の排気
ガスを導入する導入孔5に連通している。導入孔4は導
入孔5より小ざり、3/?入孔4,5は内燃エンジンの
排気管(図示せず)内にd3いてす1気ガスが第1及び
第2気体滞留室2,3内に流入し易いJ:うに位置され
る。また酸素イオン伝導性固体電解質部材1には外気等
を導入する参照気体室6が第1及び第2気体滞留室2,
3と壁を隔てるように形成されている。第1及び第2気
体滞留室2゜3の参照気体室6とは反対側の壁部内には
電極像lL7が形成されている。第1気体滞留室2と電
極保護孔7との間の壁部及び第1気体滞留室2と参照気
1小室6との間の壁部にGi電極対11a、11b、1
2a、12bが各々形成され、また第2気体滞留室3と
電極保護孔7との間の壁部及び第2気体滞留室3と参照
気体室6との間の壁部には電極対13a、13b、14
a、14bが各々形成されでいる。固体電解質部材1及
び電極対11a、11bが第1酸木ポンプ素子15とし
て、固体電解′?1部材1及び電極対12a、12bが
第1電池素子16として各々作用する。また固体電解質
部材1及び電極対13a、13bが第2Pa素ポンプ素
子17として、固体電解質部材1及び電極スJi/la
、14bが第2電池素子18として各々作用する。また
固体電解質部材1の電極保護孔7の外壁面及び参照気体
室6の外壁面にヒータ素子19.20が各々設()られ
ている。ヒータ素r19.20は電気的に互いに並列に
接続されており、第1及び第2酸素ポンプ晃子15.1
7並びに第1及び第2電池素子を均等に加熱すると共に
固体電解質部材1内の保温性の向上を図っている。なお
、酸素イオン1云導性固体電解質部材1は複数の断片か
ら一体に形成される。また第1及び第2気体滞留室の壁
部を全て酸素イオン伝導性固体電解質から形成する必要
はなく、少なくとも電極対を設ける部分だけがその固体
電解質からなれば良い。
1 and 2 show an air-fuel ratio control device using an oxygen concentration detection device according to the present invention. In this trade,
An oxygen ion conductive solid electrolyte member 1 having a substantially cubic shape is provided. Inside the oxygen ion conductive solid electrolyte member 1, first and second gas retention chambers 2.3 are formed. The first gas retention chamber 2 communicates with an introduction hole 4 through which exhaust gas of the gas to be measured is introduced from outside the solid electrolyte member 1, and a second gas 81
) The retention chamber 3 communicates with an introduction hole 5 through which the exhaust gas of the gas to be measured is introduced from the outside of the solid electrolyte member 1. Introduction hole 4 is smaller than introduction hole 5, 3/? The inlet holes 4 and 5 are located in the exhaust pipe (not shown) of the internal combustion engine so that gas can easily flow into the first and second gas retention chambers 2 and 3. Further, the oxygen ion conductive solid electrolyte member 1 includes a reference gas chamber 6 into which outside air or the like is introduced, a first and a second gas retention chamber 2,
It is formed to separate 3 and a wall. An electrode image LL7 is formed within the wall of the first and second gas retention chambers 2.3 on the side opposite to the reference gas chamber 6. Gi electrode pairs 11a, 11b, 1 are provided on the wall between the first gas retention chamber 2 and the electrode protection hole 7 and between the first gas retention chamber 2 and the reference gas 1 small chamber 6.
2a and 12b are respectively formed, and on the wall between the second gas retention chamber 3 and the electrode protection hole 7 and between the second gas retention chamber 3 and the reference gas chamber 6, electrode pairs 13a, 13b, 14
a and 14b are each formed. The solid electrolyte member 1 and the electrode pair 11a, 11b serve as the first acid wood pump element 15, and the solid electrolyte '? 1 member 1 and the electrode pair 12a, 12b each act as a first battery element 16. In addition, the solid electrolyte member 1 and the electrode pair 13a, 13b serve as the second Pa elementary pump element 17, and the solid electrolyte member 1 and the electrode pair Ji/la
, 14b each act as the second battery element 18. Furthermore, heater elements 19 and 20 are provided on the outer wall surface of the electrode protection hole 7 of the solid electrolyte member 1 and the outer wall surface of the reference gas chamber 6, respectively. The heater elements r19.20 are electrically connected in parallel with each other, and the first and second oxygen pumps 15.1
7 and the first and second battery elements are heated evenly, and the heat retention within the solid electrolyte member 1 is improved. Note that the oxygen ion 1 conductive solid electrolyte member 1 is integrally formed from a plurality of pieces. Furthermore, it is not necessary that all the walls of the first and second gas retention chambers be made of the oxygen ion conductive solid electrolyte, and it is sufficient that at least only the portion where the electrode pair is provided is made of the solid electrolyte.

酸素イオン伝導ゼ!固体電解質部材1としては、ZrO
2(二酸化ジルコニウム)が用いられ、電極11aない
し14bとしてはPt(白金)が用いられる。
Oxygen ion conduction! As the solid electrolyte member 1, ZrO
2 (zirconium dioxide) is used, and Pt (platinum) is used as the electrodes 11a to 14b.

第1及び第2酸素ポンプ素?15.17並びに第1及び
第2電池り子16.18には電流供給回路21が接続さ
れている。第2図に示すように電流供給回路21は差動
増幅回路22,23.電流検出抵抗24.25.基準電
圧源26.27及び切替回路28.29からなる。第1
1’!!2素ポンプ素子15の外側電極11aはI、7
I替回路28のスイッチ28a、電流検出抵抗24を介
して差動増幅回路22の出力端に接続され、内側電極1
1bは切替回路29のスイッチ29aを介してアースさ
れるようになっている。第1電池素子16の外側電極1
2aは差動増幅回路22の反転入力端に接続され、内側
電極12bは切替回路29のスイッチ29bを介してア
ースされるようになっている。
1st and 2nd oxygen pump elements? A current supply circuit 21 is connected to 15.17 and the first and second battery gates 16.18. As shown in FIG. 2, the current supply circuit 21 includes differential amplifier circuits 22, 23 . Current detection resistor 24.25. It consists of a reference voltage source 26.27 and a switching circuit 28.29. 1st
1'! ! The outer electrode 11a of the two-element pump element 15 is I,7
The switch 28a of the I switching circuit 28 is connected to the output terminal of the differential amplifier circuit 22 via the current detection resistor 24, and the inner electrode 1
1b is grounded via a switch 29a of the switching circuit 29. Outer electrode 1 of first battery element 16
2a is connected to the inverting input terminal of the differential amplifier circuit 22, and the inner electrode 12b is grounded via the switch 29b of the switching circuit 29.

同様に第2 M素ポンプ素子17の外側電極13aは切
替回路28のスイッチ28b、電流検出抵抗25を介し
て差動増幅回路23の出力端に接続され、内側電ff1
13bは切替回路29のスイッチ29aを介してアース
されるようになっている。第2電池素子18の外側型K
A14aは差動増幅回路23の反転入力13ンに接続さ
れ、内側電極14bは切替回路29のスイッチ29bを
介してアースされるJ:うになっている。差動増幅回路
22の非反転入力端には基準電圧源26が接続され、差
動増幅回路23の非反転入力端には基準電圧源27が接
続されている。基準電1王源26.27の出力電圧は理
論空燃比に相当する電圧(例えば、0.4V)である。
Similarly, the outer electrode 13a of the second M-element pump element 17 is connected to the output terminal of the differential amplifier circuit 23 via the switch 28b of the switching circuit 28 and the current detection resistor 25, and the inner electrode 13a
13b is grounded via a switch 29a of the switching circuit 29. Outer mold K of second battery element 18
A14a is connected to the inverting input 13 of the differential amplifier circuit 23, and the inner electrode 14b is grounded via the switch 29b of the switching circuit 29. A reference voltage source 26 is connected to a non-inverting input terminal of the differential amplifier circuit 22, and a reference voltage source 27 is connected to a non-inverting input terminal of the differential amplifier circuit 23. The output voltage of the reference voltage source 26.27 is a voltage (for example, 0.4V) corresponding to the stoichiometric air-fuel ratio.

電流検出抵抗24の両端間が第1t?ンサの出力をなし
、電流検出抵抗25の両端間が第2センシの出力をなし
ている。電流検出抵抗24.25の両端電圧は差動入力
のA/D変換器31を介して空燃比制御回路32に供給
され、電流検出抵抗24.25を流れるポンプ雷流値1
p(1)、1p(2)が空燃比制御回路32に読み込ま
れる。空燃比制御回路32はマイクロコンピュータから
なる。空燃比制御回路32にはエンジン回転数、吸気管
内絶対圧、冷却水温等を検出する複数の運転パラメータ
検出センサ(図示Uず)が接続されると共に、また駆動
回路33を介して電磁弁34が接続されている。電1a
jf344よエンジン気化器絞り弁下流の吸気マニホー
ルド内に連通ずる吸気2次空気供給通路(図示せず)に
設けられている。よた空燃比制御回路32は切替回路2
8゜2つのスイッチ9昌動作を制御し、空燃比制御目路
32からの指令に応じて駆動回路30が切替回路28.
29を駆動する。なお、差動増幅回路22.23には正
0の電源電圧が供給される。
The distance between both ends of the current detection resistor 24 is the first t? The current detecting resistor 25 serves as the output of the second sensor. The voltage across the current detection resistor 24.25 is supplied to the air-fuel ratio control circuit 32 via the differential input A/D converter 31, and the pump lightning current value 1 flowing through the current detection resistor 24.25 is
p(1) and 1p(2) are read into the air-fuel ratio control circuit 32. The air-fuel ratio control circuit 32 consists of a microcomputer. The air-fuel ratio control circuit 32 is connected to a plurality of operating parameter detection sensors (U shown in the figure) that detect engine speed, intake pipe absolute pressure, cooling water temperature, etc. It is connected. Electric 1a
jf344 is provided in a secondary intake air supply passage (not shown) that communicates with the intake manifold downstream of the engine carburetor throttle valve. The air-fuel ratio control circuit 32 is the switching circuit 2
8. Controls the operation of two switches 9, and the drive circuit 30 switches between the switching circuits 28 and 9 in response to commands from the air-fuel ratio control circuit 32.
Drive 29. Note that a positive 0 power supply voltage is supplied to the differential amplifier circuits 22 and 23.

一方、ヒータ素子19.20には電流がヒータ電流供給
回路35から供給されてヒータ素子19゜20が発熱し
て酸素ポンプ素子15.17及び電池素子16.18を
排気ガスより高い適温に加熱する。
On the other hand, current is supplied to the heater elements 19, 20 from the heater current supply circuit 35, and the heater elements 19, 20 generate heat to heat the oxygen pump elements 15, 17 and the battery elements 16, 18 to an appropriate temperature higher than the exhaust gas. .

かかる構成においては、排気管内の排気ガスが導入孔4
から第1気体滞留室2内に流入して拡散し、また導入孔
5から第2気体n密室3内に流入して拡散する。
In such a configuration, the exhaust gas in the exhaust pipe passes through the introduction hole 4.
The gas flows into the first gas retention chamber 2 and diffuses therein, and also flows into the second gas n closed chamber 3 through the introduction hole 5 and diffuses therein.

切替回路28.29において、第2図の如くスイッチ2
8aが電極11aを電流検出抵抗24に接続し、スイッ
チ28bが電極13aの接続ラインを開放し、スイッチ
29aが電極11bをアースしかつ電極13bの接続ラ
インを開放し、またスイッチ29bが電ff112bを
アースしかつ電極14[)の接続ラインを開放づる選択
位置にされると、第1センサの選択状態になる。
In the switching circuits 28 and 29, switch 2 is connected as shown in FIG.
8a connects the electrode 11a to the current detection resistor 24, the switch 28b opens the connection line of the electrode 13a, the switch 29a grounds the electrode 11b and opens the connection line of the electrode 13b, and the switch 29b connects the voltage ff112b. When the selected position is set such that the electrode 14 is grounded and the connection line of the electrode 14 is opened, the first sensor becomes selected.

この第1センサの選択状態には、先ず、エンジン供給混
合気の空燃比がリーン領域のときには差動増幅回路22
の出力レベルが正レベルになり、この正レベル電圧が抵
抗24及び第1酸素ポンプ素子15の直列回路に供給さ
れる。よって、第1酸素ポンプ素子15の電極11a、
11b間にポンプ電流が流れる。このポンプ電流は電極
11aから電極11bに向って流れるので第1気体滞留
室2内の酸素が電極11bにてイオン化して第1酸素ポ
ンプ素子15内を移動して電極11aから酸素ガスとし
て放出され、第1気体B留室2内の酸素が汲み出される
In the selection state of the first sensor, first, when the air-fuel ratio of the air-fuel mixture supplied to the engine is in the lean region, the differential amplifier circuit 22
The output level becomes a positive level, and this positive level voltage is supplied to the series circuit of the resistor 24 and the first oxygen pump element 15. Therefore, the electrode 11a of the first oxygen pump element 15,
A pump current flows between 11b and 11b. Since this pump current flows from the electrode 11a to the electrode 11b, oxygen in the first gas retention chamber 2 is ionized at the electrode 11b, moves within the first oxygen pump element 15, and is released from the electrode 11a as oxygen gas. , oxygen in the first gas B distillation chamber 2 is pumped out.

第1気体滞留室2内の酸素の汲み出しにより第1気体滞
留室2内の排気ガスと参照気体室6内の気体の間にlS
1県濃度差が生ずる。この酸素濃度差によって電池素子
16の電極12a、12b間に電圧Vsが発生する。こ
の電J)、Vslま差動増幅回路22の反転入力端に供
給される。差動増幅回路22の出力電圧は電圧Vsと基
準電圧源26の出力電圧Vr+との差電圧に比例した電
圧となるのでポンプ電流値は排気ガス中の酸素濃度に比
例する。
By pumping out the oxygen in the first gas retention chamber 2, there is a gap between the exhaust gas in the first gas retention chamber 2 and the gas in the reference gas chamber 6.
One prefecture concentration difference occurs. This oxygen concentration difference generates a voltage Vs between the electrodes 12a and 12b of the battery element 16. This voltage J) and Vsl are supplied to the inverting input terminal of the differential amplifier circuit 22. Since the output voltage of the differential amplifier circuit 22 is proportional to the difference voltage between the voltage Vs and the output voltage Vr+ of the reference voltage source 26, the pump current value is proportional to the oxygen concentration in the exhaust gas.

リッチ領域の空燃比のときには電圧Vsが基準電圧源2
6の出力電圧Vr+を越える。よって、差動増幅回路2
2の出力レベルが正レベルから負レベルに反転する。こ
の負レベルにより第1酸素ポンプ素子15の電極11a
、11b間に流れるポンプ電流が減少し、電流り向が反
転する。すなわち、ポンプ電流は電極11bから電極1
1a方向に流れるので外部の酸素が電極11’aにてイ
オン化して第1酸素ポンプ素子15内を移動して電極1
1bから酸素ガスとして第1気体滞留室2内に放出され
、酸素が第1気体滞留室2内に汲み込まれる。従って、
第1気体8:1留室2内の酸素1度が常に一定になるよ
うにポンプ電流を供給り゛ることにより酸素を汲み込ん
だり、汲み出したりするのでポンプ電流値1p及びX動
増幅回路22の出力型B−はリーン及びリッチ領域にて
排気ガス中の酸素濃度に各々比例するのである。第3図
の破線すはそのポンプ電流値1ρを示している。
When the air-fuel ratio is in the rich region, the voltage Vs is the reference voltage source 2.
6 output voltage Vr+. Therefore, differential amplifier circuit 2
The output level of No. 2 is inverted from a positive level to a negative level. Due to this negative level, the electrode 11a of the first oxygen pump element 15
, 11b decreases, and the current direction is reversed. That is, the pump current flows from electrode 11b to electrode 1.
Since it flows in the direction 1a, external oxygen is ionized at the electrode 11'a and moves inside the first oxygen pump element 15 to the electrode 1.
1b is released into the first gas retention chamber 2 as oxygen gas, and the oxygen is pumped into the first gas retention chamber 2. Therefore,
Oxygen is pumped in and out by supplying a pump current so that the oxygen 1 degree in the first gas 8:1 retention chamber 2 is always constant, so the pump current value 1p and the X dynamic amplifier circuit 22 The output type B- is proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively. The broken line in FIG. 3 indicates the pump current value 1ρ.

ポンプ電流値IPは電荷をe、導入孔4による排気ガス
に対する拡散係数をσ0、排気ガス中の酸素濃度をp□
exh、第1気体滞留室2内の酸素濃度をPoVとする
と、次式の如くで表わすことができる。
In the pump current value IP, the electric charge is e, the diffusion coefficient for the exhaust gas by the introduction hole 4 is σ0, and the oxygen concentration in the exhaust gas is p□
exh, and if the oxygen concentration in the first gas retention chamber 2 is PoV, it can be expressed as in the following equation.

Ip =4ecyo (Poexh−Pov ) −(
1)ここで、拡散係数σ0は導入孔4の面積をA、ボル
ツマン定数をk、絶対温度をT、1入孔4の長さを9、
拡散定数をDとすると、次式の如く表わすことができる
Ip = 4ecyo (Poexh-Pov) −(
1) Here, for the diffusion coefficient σ0, the area of the introduction hole 4 is A, the Boltzmann constant is k, the absolute temperature is T, the length of one entrance hole 4 is 9,
Letting the diffusion constant be D, it can be expressed as in the following equation.

σ o  =D  −A/kT  ’J    ・・・
・・・ く 2 )次に、スイッチ28aが電極11a
の接続ラインを開放し、スイッチ28bが電極13aを
電流検出抵抗25に接続し、スイッチ29aが電極13
bをアースしかつ電極11bの接続ラインを開放し、ま
たスイッチ29bが電極14bをアースしかつ電極12
bの接続ラインを開放する選択(存置にされると、第2
.センυの選択状態となる。
σ o =D −A/kT 'J...
2) Next, switch 28a connects electrode 11a.
The switch 28b connects the electrode 13a to the current detection resistor 25, and the switch 29a connects the electrode 13a to the current detection resistor 25.
switch 29b grounds electrode 14b and opens the connection line of electrode 11b, and switch 29b grounds electrode 14b and opens the connection line of electrode 11b.
Selection to open connection line b (if left open, second
.. Sen υ becomes selected state.

この第2センサの選択状態には上記した第1センサの選
択状態と同様の動作により第2気体滞留室3内の酸素濃
度が常に一定になるようにポンプ電流が第2酸素ポンプ
素子17の電fU13a、13b間に供給されて酸素が
汲み込まれたり、汲み出されたりするのでポンプ電流1
1tiI p及び差動増幅回路23の出力電圧はリーン
及びリッチ領域にて排気ガス中の酸素濃度に各々比例す
るのである。
In the selected state of the second sensor, the pump current is applied to the second oxygen pump element 17 so that the oxygen concentration in the second gas retention chamber 3 is always constant by the same operation as in the selected state of the first sensor described above. Since oxygen is supplied between fU13a and 13b and pumped out, the pump current is 1.
1tiIp and the output voltage of the differential amplifier circuit 23 are proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively.

この第2センサ選択状態のポンプ電流値1pは上記した
式(1)において拡散係数σ0を導入孔5によるものと
し、またPoVを第2気体滞留室3内の酸基濃度とする
ことにより表わされる。ポンプ電流値1pの大きさは第
4図に示すように空燃比のリーン及びリッチ領域におい
て拡散係数σ0の大きさに反比例する拡散抵抗が大きく
なるほど小さくなることが明らかになっている。よって
、第2ヒン+1選択状態には第1センサ選択状態よりも
拡散抵抗が小となるので第3図の実線aの如くポンプ電
流値1pの大きさはリーン及びリッチ領域にJ5いて大
きくなり、導入孔5の大きさ及び長さを調整することに
より第3図に示すように第1センサ選択状態におけるリ
ッチ領域のポンプ電流値特性が第2センサ選択状態にお
けるリーン領域のポンプ電流[i特性にIp=Oにて直
線的に連続するのである。また差動増幅回路22.23
の出力電圧特性ち0〔V〕にて直線的に連続したちのに
なる。
The pump current value 1p in the second sensor selection state is expressed by assuming that the diffusion coefficient σ0 is due to the introduction hole 5 in the above equation (1), and PoV is the acid group concentration in the second gas retention chamber 3. . As shown in FIG. 4, it is clear that the magnitude of the pump current value 1p decreases as the diffusion resistance, which is inversely proportional to the magnitude of the diffusion coefficient σ0, increases in the lean and rich air-fuel ratio regions. Therefore, in the second Hin+1 selection state, the diffusion resistance is smaller than in the first sensor selection state, so as shown by the solid line a in FIG. 3, the magnitude of the pump current value 1p becomes large in the lean and rich regions. By adjusting the size and length of the introduction hole 5, as shown in FIG. It continues linearly at Ip=O. Also, differential amplifier circuit 22.23
The output voltage characteristic becomes linearly continuous at 0 [V].

次に、本発明に係わる空燃比制御回路32の勤伯につい
て説明する。空燃比制御回路32はクロックパルスに応
じて第5図に示した空燃比検出補正ルーチン及び第6図
に示した空燃比制御ルーチン順次実行する。空燃比検出
補正ルーチンにおいて、空燃比制御回路321ま先ず、
エンジンが所定運転状態であるか否かを複数の運転パラ
メータ検出センサのF1素815F検出値に応じて判別
する(ステップ61)。所定運転状態はアイドル運転状
態。
Next, operation of the air-fuel ratio control circuit 32 according to the present invention will be explained. The air-fuel ratio control circuit 32 sequentially executes the air-fuel ratio detection and correction routine shown in FIG. 5 and the air-fuel ratio control routine shown in FIG. 6 in response to clock pulses. In the air-fuel ratio detection correction routine, the air-fuel ratio control circuit 321 first
It is determined whether the engine is in a predetermined operating state according to the F1 element 815F detection values of the plurality of operating parameter detection sensors (step 61). The predetermined operating state is an idle operating state.

定常運転状態等の安定した運転状態である。所定運転状
態と判別したときには空燃比が目標空燃比に制御されて
空燃比が安定したか否かを判別する(ステップ62)。
It is a stable operating state such as a steady operating state. When it is determined that the operating state is the predetermined operating state, it is determined whether the air-fuel ratio is controlled to the target air-fuel ratio and the air-fuel ratio is stabilized (step 62).

空燃比が目標空燃比に制御され空燃比が安定すると第1
センサ又は第2センサの酸素濃度検出値の変動が小さく
なり所定幅内になるので選択中のセンサの酸素濃度検出
値変動幅が所定値以下になってから所定時間経過したと
き空燃比が安定したと見なされる。空燃比の安定時には
第1又は第2センサの酸素濃度検出値に応じた空燃比フ
ィードバック(F/B)制御を停止しく空燃比制御ルー
チンの実行を停止する)空燃比を一定にするために電磁
弁34を所定周期毎に所定デユーティ比で開弁させるよ
うに開弁駆動指令及び開弁駆動停止指令を発生しくステ
ップ63)、第1及び第2センサの選択状態を表わすフ
ラグFSが111 IIであるか否かを判別する(ステ
ップ64)。Fs−0の場合、第1センサ選択状態にあ
るのでA/D変換器31から出力される第1センサのポ
ンプ電流値1p(1)を読み込んで内部メモリ(図示せ
ず)の記憶位置△1に記憶する(ステップ65)。そし
て第2センサ選択指令を駆動回路30に対して発生して
第21?ンリー選択状態にして(ステップ66)、A/
D変換器31から出力される第2センザのポンプ電流]
ゴj I p (2)を読み込んで内部メモリの記憶位
iHi A 2に記憶する(ステップ67)。その後、
再び第1uンサ選択状態にするために第1センサ選択指
令を駆動回路30に対して発生しくステップ68)、A
/D変換器31から出力される第1センサのポンプ電流
値IP(1)を読み込/νで内部メモリの記憶位置A3
に記憶する(ステップ69)。一方、Fs=1の場合、
第2センサ選択状態にあるのでA/D変換器31から出
力される第2センサのポンプ電流値IP(2)を読み込
んで内部メモリの記憶位置A1に記憶する(ステップ7
0)。そして第it7ンサ選択指令を駆動回路30に対
して発生して第1セン+J−m択状態にして(ステップ
71)、A/D変換:志31から出力される第1センサ
のポンプ電流値Ip(1)を読み込んで内部メモリの記
憶位置へ2に記憶する(ステップ72)。その後、再び
第2センサ選択状態にするために第2セン!す選択指令
を駆動回路30に対して発生しくステップ73)、A/
D変換器31から出力される第2センサ゛のポンプ電流
値1p(2)を読み込んで内部メモリの記憶位置A3に
記憶するくステップ74)。次いで、酸素濃度検出値の
変動が小さいか否かを山度判別するために内部メモリの
記憶位置A+ 、△3からポンプ電流値IP(1)又は
I p (2)読み出してポンプ電流値1p(1)又は
IP(2)の差の絶対値Δlpをn出しくステップ75
)、絶対値ΔIpが所定値Δ[pr以下であるか否かを
判別する(ステップ76)。ΔIP≦ΔIprならば、
後述する補正係@Kc o R+を以)の算出式によっ
て計()シ(ステップ77)、ΔIp>ΔI p r 
’Zらば、選択中の廿ンリの酸sn度検出値に応じた空
燃比制御(空燃比制御ルーチンの実行〉を再開する(ス
テップ78)。
When the air-fuel ratio is controlled to the target air-fuel ratio and the air-fuel ratio is stabilized, the first
Since the fluctuation in the oxygen concentration detection value of the sensor or the second sensor becomes smaller and falls within a predetermined range, the air-fuel ratio is stabilized when a predetermined period of time has elapsed since the oxygen concentration detection value fluctuation range of the selected sensor became less than or equal to the predetermined value. considered to be. When the air-fuel ratio is stable, the air-fuel ratio feedback (F/B) control according to the oxygen concentration detection value of the first or second sensor is stopped, and the execution of the air-fuel ratio control routine is stopped). A valve opening drive command and a valve opening drive stop command are generated to open the valve 34 at a predetermined duty ratio every predetermined period (step 63), and the flag FS representing the selection state of the first and second sensors is set to 111 II. It is determined whether there is one (step 64). In the case of Fs-0, the first sensor is selected, so the pump current value 1p(1) of the first sensor output from the A/D converter 31 is read and stored at the storage location Δ1 in the internal memory (not shown). (step 65). Then, a second sensor selection command is issued to the drive circuit 30, and the 21st sensor selection command is issued to the drive circuit 30. to the green selection state (step 66), and
Pump current of second sensor output from D converter 31]
Go j I p (2) is read and stored in storage location iHi A 2 of the internal memory (step 67). after that,
In step 68), a first sensor selection command is issued to the drive circuit 30 in order to bring the first sensor into the selected state again.
/Read the pump current value IP(1) of the first sensor output from the D converter 31 /v to the storage location A3 of the internal memory
(step 69). On the other hand, when Fs=1,
Since the second sensor is selected, the pump current value IP(2) of the second sensor output from the A/D converter 31 is read and stored in the storage location A1 of the internal memory (step 7
0). Then, a command to select the 7th sensor is issued to the drive circuit 30 to set the 1st sensor + J-m selection state (step 71), and the A/D conversion: pump current value Ip of the 1st sensor output from the 7th sensor 31 is output. (1) is read and stored at storage location 2 in the internal memory (step 72). After that, the second sensor is selected in order to enter the second sensor selection state again! A selection command is issued to the drive circuit 30 (step 73),
Step 74) reads the pump current value 1p(2) of the second sensor outputted from the D converter 31 and stores it in the storage location A3 of the internal memory. Next, in order to determine whether the fluctuation in the detected oxygen concentration value is small or not, the pump current value IP(1) or Ip(2) is read from the storage location A+, Δ3 in the internal memory and the pump current value 1p( Step 75 to calculate n absolute value Δlp of the difference between IP(1) and IP(2)
), it is determined whether the absolute value ΔIp is less than or equal to a predetermined value Δ[pr (step 76). If ΔIP≦ΔIpr,
The calculation formula of the correction coefficient @Kc o R+ (described later) is used to calculate the total () (step 77), ΔIp>ΔI p r
If 'Z, then the air-fuel ratio control (execution of the air-fuel ratio control routine) according to the detected value of the selected air-fuel ratio is restarted (step 78).

第ルンリの酸素濃度検出値LO2(1)を補正する補正
係数KcoR+は次式から算出される。
A correction coefficient KcoR+ for correcting the first detected oxygen concentration value LO2(1) is calculated from the following equation.

Kc on + −(1/C) ・lp (2) / 
Ip (1)・・・・・・(3) ここで、CはR1/R2でR+ 、R2は導入孔4゜5
各々ににる出力特性変化fiFiの拡散抵抗である。
Kc on + -(1/C) ・lp (2) /
Ip (1)...(3) Here, C is R1/R2 and R+, R2 is the introduction hole 4°5
This is the diffusion resistance of each output characteristic change fiFi.

なお、導入孔5は導入孔4にり径が大きいために主に導
入孔5に排気ガス中の酸化物が付着し易いので第1ゼン
リの出力特性の変化のみを補正し第2センサの出力特性
の補1は行なわない。
Note that since the diameter of the introduction hole 5 is larger than that of the introduction hole 4, oxides in the exhaust gas tend to adhere to the introduction hole 5. Therefore, only the change in the output characteristics of the first sensor is corrected and the output of the second sensor is adjusted. Complement 1 of characteristics is not performed.

そして、算出した補正係数KCORIが所定値に1以上
で所定値に2以下か否かを判別しくステップ79)、K
+≦KcoR+ ≦に2ならば選択中のセン(Jの酸素
C1す検出値に応じた空燃比制御を再開しくステップ7
8) 、Kc ORl <K+ 、KCORI>K2な
らば出力特性の変化程度が大きく補正しても良好な空燃
比フィードバック制御が期待できないのでランプ等の点
灯によって運転者に対して警報を発生する(ステップ8
0)。
Then, it is determined whether the calculated correction coefficient KCORI is greater than or equal to the predetermined value and less than or equal to the predetermined value (step 79), K
If +≦KcoR+≦2, restart the air-fuel ratio control according to the detected value of oxygen C1 of the selected sensor (J).Step 7
8) If , Kc ORl <K+, KCORI>K2, good air-fuel ratio feedback control cannot be expected even if the degree of change in output characteristics is greatly corrected, so a warning is issued to the driver by lighting a lamp, etc. (step 8
0).

また空燃比制御回路32は第6図に示すように空燃比イ
制御ルーチンにおいて先ず、第1及び第2センサのいず
れを選択するか否かを判別する(ステップ81)。これ
はエンジンの運転状態或い(よ空燃比の制御領域に応じ
て判別する。第1セン1)を選択すべきであると判別し
たときには第1ヒンサ選択指令を駆動回路30に対して
発住しくステップ82)、第1センサが選択されたこと
を表わすために7ラグFsにO″がセットされる(ステ
ップ83)。一方、第2センサを選択すべぎであると判
別したときには第2センサ選択指令を駆動回路30に対
して発生しくステップ84)、第2センサが選択された
ことを表わすためにフラグFsに′1′°がセン1〜さ
れる(ステップ85)。
Furthermore, as shown in FIG. 6, in the air-fuel ratio control routine, the air-fuel ratio control circuit 32 first determines which of the first and second sensors is to be selected (step 81). This is determined depending on the engine operating state or the air-fuel ratio control region.When it is determined that the first sensor 1 should be selected, a first sensor selection command is issued to the drive circuit 30. In step 82), O'' is set in the 7 lag Fs to indicate that the first sensor has been selected (step 83).On the other hand, when it is determined that the second sensor should be selected, the second sensor is selected. A selection command is issued to the drive circuit 30 (step 84), and '1'° is set to the flag Fs to indicate that the second sensor has been selected (step 85).

駆動回路30は第ルン1ノ選択指令に応じてスイッチ2
8a、28’b、29a、29bを上記した第1t?ン
4ノ選択位置に駆動し、その駆動状態は第2セン+1選
択指令が空燃比制御回路32から供給されるまでIll
¥1される。また第2センザ選択指令に応じてスイッチ
28a、28b、29a、29bを上記した第2−1?
ンサ選択位首に駆動し、その駆動状態は第1セン1ノ選
択指令が空燃比制御回路32から供給されるまで維持さ
れる。
The drive circuit 30 switches the switch 2 in response to the selection command for the first run.
1t?8a, 28'b, 29a, 29b mentioned above? The drive state is Ill until the second sensor+1 selection command is supplied from the air-fuel ratio control circuit 32.
You will be charged ¥1. Further, in response to the second sensor selection command, the switches 28a, 28b, 29a, and 29b are activated as described above.
This driving state is maintained until the first sensor selection command is supplied from the air-fuel ratio control circuit 32.

次いで、A/D変換器31から出力されるポンプ電流f
ffi I p (11又はIp(2)を読み込み(ス
テップ86)、フラグFsが0″であるか否かを判別す
る(ステップ87)。l:s=oの場合、第1センυ選
択状態であるので読み込んだポンプ電流値1p(11に
補正係数KcoR1を乗亦しくステップ88)、対応す
る酸素濃度検出(1αしo2を求める(ステップ89)
。Fs =1の場合、第2レンサ選択状態であり直ちに
対応する酸素濃度検出値LO2を求める(ステップ89
)。その後、酸素濃度検出値LO2が目標空燃比に対応
する目標値1 rerより人であるか否かを判別する〈
ステップ90)。LO2≦1rcfならば、供給混合気
の空燃比がリッチであるので駆動回路33に対して電磁
弁34の開弁駆動指令を発生しくステップ91)、LO
2>Lrerならば、供給a 合気(7) 空燃比がリ
ーンであるので駆動回路33に対して電磁弁34の11
■か駆動停止指令を発生する(ステップ92)。駆動回
路33は開弁駆動指令に応じて電磁弁34を量弁駆動し
て2次空気をエンジン吸気マニホールド内に供給するこ
とにより空燃比をリーン化させ、開弁駆動停止指令に応
じて電磁弁34の開弁駆動を停止して空燃比をリッチ化
させる。かかる動作を所定周期毎に繰り返し実行するこ
とにより供給混合気の空燃比を目標空燃比にib制御す
るのである。
Next, the pump current f output from the A/D converter 31
ffi I p (11 or Ip (2) is read (step 86), and it is determined whether the flag Fs is 0" (step 87). If l:s=o, in the first sensor υ selection state Therefore, read the pump current value 1p (11 multiplied by the correction coefficient KcoR1 in step 88), and calculate the corresponding oxygen concentration detection (1α and o2 (step 89))
. If Fs = 1, the second sensor is selected, and the corresponding detected oxygen concentration value LO2 is immediately obtained (step 89).
). Thereafter, it is determined whether the detected oxygen concentration value LO2 is a person based on the target value 1rer corresponding to the target air-fuel ratio.
Step 90). If LO2≦1rcf, the air-fuel ratio of the supplied air-fuel mixture is rich, so a command to open the solenoid valve 34 is issued to the drive circuit 33 (Step 91), LO
If 2>Lrer, supply a Aiki (7) Since the air-fuel ratio is lean, 11 of the solenoid valve 34 for the drive circuit 33
(2) A drive stop command is generated (step 92). The drive circuit 33 drives the solenoid valve 34 according to the valve opening drive command to supply secondary air into the engine intake manifold to make the air-fuel ratio lean, and operates the solenoid valve 34 in response to the valve opening drive stop command. 34 is stopped to enrich the air-fuel ratio. By repeating this operation at predetermined intervals, the air-fuel ratio of the supplied air-fuel mixture is ib controlled to the target air-fuel ratio.

上記した本発明の実施例においては、第1及び第2気体
拡散制限手段として導入孔4,5が用いられているが、
これに限らず、第1気体滞留室2内の2つの第1電極対
聞及び第2気体滞留室3内の2つの第2電極対間にギト
ツブを各々形成しそのギャップ幅を異ならすことにより
拡散抵抗を各々得てら良く、また第7図に丞すようにア
ルミナ(AQ203)等の多孔質体38.39を導入孔
4.5に充填し多孔質拡散層を形成しても良いのである
In the embodiment of the present invention described above, the introduction holes 4 and 5 are used as the first and second gas diffusion restricting means.
The present invention is not limited to this, but by forming gaps between the two first electrode pairs in the first gas retention chamber 2 and the two second electrode pairs in the second gas retention chamber 3 and making the gap widths different. It is sufficient to obtain a diffusion resistance for each, or a porous material 38, 39 such as alumina (AQ203) may be filled into the introduction hole 4.5 to form a porous diffusion layer as shown in Fig. 7. .

また上記した本発明の実施例においては、第1又は第2
 tンリの出力に応じて2次空気を供給することにJ:
り供給混合気の空燃比を目標空燃比に制御しているが、
これに限らず、第1又は第2センサの出力に応じて燃料
供給mを調整することにより空燃比を制御しても良い。
Further, in the embodiments of the present invention described above, the first or second
J: To supply secondary air according to the output of t:
The air-fuel ratio of the supplied mixture is controlled to the target air-fuel ratio.
The present invention is not limited to this, and the air-fuel ratio may be controlled by adjusting the fuel supply m according to the output of the first or second sensor.

l匪夏皇」 以上の如く、本発明の酸素濃度検出装置においては、排
気管内に導入孔秀の第1気体拡散制限手段を介して連通
する第1気体滞留室の電解質壁部の内外壁面上にこれを
挟んで対向するが如く第1電極対を2つ設けた第1L?
ン勺と、また第1センサと同様に排気管内に導入孔等の
第2気体拡散制限手段を介して連通ずる第2気体滞留室
の電解質壁部の内外壁面上にこれを挟んで対向するが如
く第2電極対を2つ設けた第2t?ンリとが形成され、
気体拡散制限手段によってセンサ毎に拡散抵抗が異なる
ために酸化物が付着しても第1及び第2センサの出力特
性の変化程度に差が生ずるので第1セン4Jの酸素濃度
検出値と第2センサの酸素濃度検出値を比較することに
より第1又は第2センサの異常を容易に検出することが
できるのである。
As described above, in the oxygen concentration detection device of the present invention, on the inner and outer wall surfaces of the electrolyte wall of the first gas retention chamber that communicates with the exhaust pipe through the first gas diffusion restriction means of the inlet hole. The first L? is provided with two pairs of first electrodes so as to face each other with this in between.
Similarly to the first sensor, the sensor faces the inner and outer walls of the electrolyte wall of the second gas retention chamber, which communicates with the exhaust pipe through a second gas diffusion restriction means such as an introduction hole. 2nd t?, which has two second electrode pairs. and is formed,
Due to the gas diffusion restriction means, each sensor has a different diffusion resistance, so even if oxides adhere, there will be a difference in the degree of change in the output characteristics of the first and second sensors. By comparing the oxygen concentration detection values of the sensors, it is possible to easily detect an abnormality in the first or second sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による酸素濃度検出装置の実施例
を示す平面図、第1図(b)は第1図(a)のIb−I
b部分の断面図、第2図は空燃比制御装置を含む電流供
給回路を示す回路図、第3図は第1図の装置の出力特性
を示す図、第4図は拡散抵抗とポンプ電流値との関係を
示す特性図、第5図及び第6図(ユ空燃比制御回路の動
肖を足すフロー図、第7図(a>は本発明の他の実施例
を示す平面図、第7図(b)は第7図(a)の■b−■
b部分の断面図である。 主要部分の符号の説明 1・・・・・・酸素イオン伝導性固体電解質部材2.3
・・・・・・気体滞留室 4.5・・・・・・導入孔 6・・・・・・気体参照室 15.17・・・・・・酸系ポンプ素子16.18・・
・・・・電池素子 19.20・・・・・・ヒータ素子 21・・・・・・電流供給回路
FIG. 1(a) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention, and FIG. 1(b) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention.
A cross-sectional view of part b, Figure 2 is a circuit diagram showing the current supply circuit including the air-fuel ratio control device, Figure 3 is a diagram showing the output characteristics of the device in Figure 1, and Figure 4 is the diffusion resistance and pump current value. FIGS. 5 and 6 are flowcharts showing the dynamics of the air-fuel ratio control circuit, and FIG. 7 is a plan view showing another embodiment of the present invention. Figure (b) shows ■b-■ in Figure 7(a).
It is a sectional view of part b. Explanation of symbols of main parts 1...Oxygen ion conductive solid electrolyte member 2.3
......Gas retention chamber 4.5...Introduction hole 6...Gas reference chamber 15.17...Acid pump element 16.18...
...Battery element 19.20...Heater element 21...Current supply circuit

Claims (3)

【特許請求の範囲】[Claims] (1) 各々が酸素イオン伝導性固体電解質壁部を有す
る第1及び第2気体滞留室を形成し前記第1気体滞留室
が第1気体拡散制限手段を介して内燃エンジンの排気管
内に連通しかつ前記第2気体滞留室が第2気体拡散制限
手段を介して前記排気管内に連通するようにされた基体
と、前記第1気体滞留室の電解質壁部の内外壁面上にこ
れを挟んで対向するが如く設けられて第1センサを形成
する2つの第1電極対と、前記第2気体滞留室の電解質
壁部の内外壁面上にこれを挟んで対向するが如く設けら
れて第2センサを形成する2つの第2電極対と、前記2
つの第1電極対の一方の電極対間及び前記2つの第2電
極対の一方の電極対間に電流を供給しその供給電流値に
応じた第1及び第2センサの酸素濃度検出値を出力する
電流供給手段と、前記第1センサの酸素濃度検出値と前
記第2酸素濃度検出値とに応じて前記第1又は第2セン
サの異常を検出する検出手段とを含むことを特徴とする
酸素濃度検出装置。
(1) forming first and second gas retention chambers each having an oxygen ion conductive solid electrolyte wall, the first gas retention chamber communicating with the exhaust pipe of the internal combustion engine via a first gas diffusion restriction means; and the second gas retention chamber is opposed to the base body, which communicates with the inside of the exhaust pipe via a second gas diffusion restriction means, on the inner and outer wall surfaces of the electrolyte wall portion of the first gas retention chamber, with the base body interposed therebetween. two first electrode pairs disposed as above to form a first sensor, and a second sensor disposed oppositely on the inner and outer wall surfaces of the electrolyte wall portion of the second gas retention chamber with the electrodes interposed therebetween. two second electrode pairs to be formed;
A current is supplied between one of the two first electrode pairs and between one of the two second electrode pairs, and the oxygen concentration detection values of the first and second sensors are output in accordance with the supplied current value. and a detection means for detecting an abnormality in the first or second sensor according to the oxygen concentration detection value of the first sensor and the second oxygen concentration detection value. Concentration detection device.
(2) 前記電流供給手段は前記一方の第1電極対間に
電流を供給するとき前記2つの第1電極対の他方の電極
対間に発生した電圧と第1基準電圧との差電圧に応じた
値の電流を前記一方の第1電極対間に供給し前記一方の
第2電極対間に電流を供給するとき前記2つの第2電極
対の他方の電極対間に発生した電圧と第2基準電圧との
差電圧に応じた値の電流を前記一方の第2電極対間に供
給することを特徴とする特許請求の範囲第1項記載の酸
素濃度検出装置。
(2) When the current supply means supplies current between the one pair of first electrodes, the current supply means responds to the difference voltage between the voltage generated between the other pair of the two first electrode pairs and the first reference voltage. When a current with a value of 2. The oxygen concentration detection device according to claim 1, wherein a current having a value corresponding to a voltage difference from a reference voltage is supplied between said one second electrode pair.
(3) 前記第1気体拡散制限手段は第1導入孔からな
り、前記第2気体拡散制限手段は前記第1導入孔と大き
さが異なる第2導入孔からなることを特徴とする特許請
求の範囲第1項記載の酸素濃度検出装置。
(3) The first gas diffusion limiting means includes a first introduction hole, and the second gas diffusion limiting means includes a second introduction hole having a different size from the first introduction hole. The oxygen concentration detection device according to scope 1.
JP61018656A 1985-11-25 1986-01-30 Oxygen concentration detector Expired - Fee Related JPH0746092B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-265353 1985-11-25
JP26535385 1985-11-25

Publications (2)

Publication Number Publication Date
JPS62201352A true JPS62201352A (en) 1987-09-05
JPH0746092B2 JPH0746092B2 (en) 1995-05-17

Family

ID=17415995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018656A Expired - Fee Related JPH0746092B2 (en) 1985-11-25 1986-01-30 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPH0746092B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118653A (en) * 1984-06-29 1986-01-27 Hitachi Ltd Paper feeding apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118653A (en) * 1984-06-29 1986-01-27 Hitachi Ltd Paper feeding apparatus

Also Published As

Publication number Publication date
JPH0746092B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US4905652A (en) Device for measuring a component of a gaseous mixture
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPS6027851A (en) Air-fuel ratio detector
US4719895A (en) Method for controlling an oxygen concentration sensor
JPH0260142B2 (en)
US4723521A (en) Air/fuel ratio control system for an internal combustion engine
JPS62182454A (en) Air-fuel ratio control for internal combustion engine
JPS62129751A (en) Regulation of oxygen concentration detector
JPS62201352A (en) Oxygen concentration detector
JPS6276446A (en) Method for controlling oxygen concentration sensor
JPS61241652A (en) Method for discriminating activation of oxygen concentration sensor
JPS6293649A (en) Apparatus for detecting oxygen concentration
JPH0746091B2 (en) Oxygen concentration detector
JPS62106361A (en) Apparatus for detecting concentration of oxygen
JPH0713617B2 (en) Oxygen concentration detector
JPS6293648A (en) Apparatus for detecting oxygen concentration
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPS62201354A (en) Oxygen concentration detector
JPS62106362A (en) Apparatus for detecting concentration of oxygen
JPS62201353A (en) Oxygen concentration detector
JPS62201350A (en) Oxygen concentration detector
JPS62201351A (en) Oxygen concentration detector
JPS62201347A (en) Oxygen concentration detector
JPH0436341B2 (en)
JPS60177258A (en) Oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees