JPS60177258A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS60177258A
JPS60177258A JP59032545A JP3254584A JPS60177258A JP S60177258 A JPS60177258 A JP S60177258A JP 59032545 A JP59032545 A JP 59032545A JP 3254584 A JP3254584 A JP 3254584A JP S60177258 A JPS60177258 A JP S60177258A
Authority
JP
Japan
Prior art keywords
oxygen
space
electrode
pump
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59032545A
Other languages
Japanese (ja)
Other versions
JPH0634004B2 (en
Inventor
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59032545A priority Critical patent/JPH0634004B2/en
Publication of JPS60177258A publication Critical patent/JPS60177258A/en
Publication of JPH0634004B2 publication Critical patent/JPH0634004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To detect oxygen concn. with high accuracy by uniting the reference space sides of the 1st pump element and the 2nd pump element to one body via a means for controlling oxygen diffusion and preventing said lumiting means from contacting with the gas to be measured. CONSTITUTION:The 1st reference space 17 isolated from the gas to be measured is formed of the 1st solid electrolyte 12 and partition plates 13, 14 and the 2nd reference space 18 isolated from the gas to be measured is formed of the partition plates 14, 15 and the 2nd solid electrolyte 16. A small hole 19 which limits diffusion of oxygen between the 1st space 17 and the 2nd space 18 is punched to the plate 14. Pump current is supplied to a pump electrode 21 to maintain the potential between a reference electrode 22 and sensor electrode 20 provided to the electrolyte 12 at target potential. The pump current is similarly supplied to the electrolyte 16 as well and these currents are converted to voltages and averaged to determine oxygen concn. If the sensor is constituted in the above-mentioned way, the plate 14 for limiting oxygen diffusion does not contact the gas to be measured and therefore the oxygen concn. is detected with high accuracy.

Description

【発明の詳細な説明】 この発明は、被al’l定カス中の酸素濃度を検出する
酸素センサに関し、特に内燃機関の排気中の酸素濃度を
検出する酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor that detects the oxygen concentration in an aliquot, and more particularly to an oxygen sensor that detects the oxygen concentration in the exhaust gas of an internal combustion engine.

厘米栽貴 一=一般に、内燃機関においては、吸入混合気の空燃比
を高精度に]ゴ標値に制御するために、空燃比と相関関
係をもつ排気カス中の酸素濃度を検出し、この検出した
酸素濃度に応して燃料供給量をフィードバック制御する
ようにしている。
In general, in internal combustion engines, in order to control the air-fuel ratio of the intake air-fuel mixture to a target value with high precision, the oxygen concentration in the exhaust gas, which has a correlation with the air-fuel ratio, is detected. The fuel supply amount is feedback-controlled in accordance with the oxygen concentration.

従来、このような空燃比検出装置に使用されている酸素
センサとして、例えは特開昭57 76450号公報に
記載されているようなものかあり、この酸素センサを第
1図を参照して説明する。
An example of an oxygen sensor conventionally used in such an air-fuel ratio detection device is the one described in Japanese Patent Application Laid-Open No. 57-76450. This oxygen sensor will be explained with reference to FIG. do.

この酸素センサ1は、酸素濃度1こ応し、て起電力を発
生する一種のa淡電池の原理を応用し、たものであり、
酸素イオン伝導性の固体電解質2の両面に、白金を主成
分とする基準電極乙と、金と白金の合金からなる酸素電
極4とをり」面させて形成して、その基準電極3を多孔
賀保愚層(コーティング層)5によって柚蹟し4前去雷
1ai 4を酌墨の流人、拡散を制限する多孔質保護層
(コーティング層)6によって被覆したものである。
This oxygen sensor 1 applies the principle of a kind of a-cell battery that generates an electromotive force in response to an oxygen concentration of 1.
A reference electrode B mainly composed of platinum and an oxygen electrode 4 made of an alloy of gold and platinum are formed on both sides of an oxygen ion conductive solid electrolyte 2, and the reference electrode 3 is made of a porous material. The layer 4 is coated with a porous protective layer (coating layer) 6 that restricts the diffusion of ink.

この酸素センサ1にあっては、被測定カス、例えば排気
カス中において、基準電極3に所定の大きさの流し込み
電流Isを供給すると、電流ISの大きさに応じた量の
酸素イオン○″−が電流Isと逆の方向に固体電解質2
を通じて移動するので、基準電4Ji!3に基71!!
酸素分圧Paか発生し、このとき酸素電極4に被測定カ
スの有する酸素分圧による酸素分圧P k)が発生して
いる。
In this oxygen sensor 1, when an injected current Is of a predetermined magnitude is supplied to the reference electrode 3 in a gas to be measured, for example, an exhaust gas, an amount of oxygen ions corresponding to the magnitude of the current IS is generated. is the solid electrolyte 2 in the opposite direction to the current Is.
Because it moves through the reference voltage 4Ji! 71 based on 3! !
An oxygen partial pressure Pa is generated, and at this time, an oxygen partial pressure Pk) is generated at the oxygen electrode 4 due to the oxygen partial pressure of the scum to be measured.

それによって、基(f+電極乙と酸素′fM、極4との
間には、酸素分圧Pa、Pbに基づいて、I’:=RT
/4+”・ρr+(Pa/Pb)−−(i)但し、■り
:気体定数、 T:絶対温度ド:ファラデイ定数 なるネルンストの式によって表わされる起電力Eか発生
し、この起電力Eは被測定ガスの酸素濃度により変化す
るので、これを酸素センサ1の出力Vsとして外部に取
出すことができる。
Thereby, between the group (f+ electrode B and oxygen 'fM, pole 4, based on the oxygen partial pressures Pa and Pb, I':=RT
/4+"・ρr+(Pa/Pb)--(i) However, the electromotive force E expressed by the Nernst equation where ri: gas constant, T: absolute temperature and de: Faraday constant is generated, and this electromotive force E is Since it changes depending on the oxygen concentration of the gas to be measured, this can be taken out as the output Vs of the oxygen sensor 1.

この出力Vsの変化を各流し込み電流値ごとに示したの
か第2図である。なお、この場合、被測定カスとして内
燃機関の排気ガスを用いており、その酸素濃度は内燃機
関に供給される混合気の空燃比(当量比λ、但しλ=現
空燃比/理論空燃比)に換算して示しである。
FIG. 2 shows the change in the output Vs for each injected current value. In this case, the exhaust gas of the internal combustion engine is used as the gas to be measured, and the oxygen concentration is determined by the air-fuel ratio (equivalence ratio λ, where λ = current air-fuel ratio/stoichiometric air-fuel ratio) of the mixture supplied to the internal combustion engine. The figure is converted to .

しかしなから、この酸素センサ1の出力Vsは、流し込
み電流Isを固定した場合、出力Vsの変化する空燃比
の幅か小さいので、広範囲に亘る空燃比の検出をするこ
とは難しい。
However, since the output Vs of the oxygen sensor 1 is small in the air-fuel ratio range in which the output Vs changes when the inflow current Is is fixed, it is difficult to detect the air-fuel ratio over a wide range.

そこで、この酸素センサ1の出力Vsを目標電圧Va(
出力Vsに対応した値であればどのような値でもよいが
1例えば切り換わり空燃比において急変する酸素センサ
出力Vsの上限と下限の略中間値)として設定し、酸素
センサ出力Vsがこの目標値Vaとなるように、流し込
み電流Isを供給すると、この流し込み電流1sの値は
第3図に示すように現在の空燃比に応じた値となる。
Therefore, the output Vs of this oxygen sensor 1 is set to the target voltage Va(
Any value may be used as long as it corresponds to the output Vs, but it is set as 1 (approximately the intermediate value between the upper and lower limits of the oxygen sensor output Vs, which changes suddenly at switching air-fuel ratio), and the oxygen sensor output Vs is set to this target value. When the inflow current Is is supplied so that Va becomes equal to Va, the value of this inflow current Is becomes a value corresponding to the current air-fuel ratio as shown in FIG.

したがって、その酸素センサ1への流し込み電流Isの
値を検出することによって実際の空燃比を検出すること
ができる。
Therefore, by detecting the value of the current Is flowing into the oxygen sensor 1, the actual air-fuel ratio can be detected.

このように従来の酸素センサにあっては、被測定カスを
酸素の拡散を制限する多孔質層を通過させ、その多孔質
層を通過する酸素を電流として検出することによって、
被測定カス中の酸素濃度を検出するようにしている。
In this way, in conventional oxygen sensors, the scum to be measured passes through a porous layer that restricts oxygen diffusion, and the oxygen passing through the porous layer is detected as an electric current.
The oxygen concentration in the waste to be measured is detected.

そのため、被41す定カス中にカーボン粒子等のデポジ
ットがきまれでいる場合には、多孔質層に目づまりを生
じて、拡散する酸素分子の量が変化し、出力特性か変化
して正確に酸素濃度を検出できなくなるおそれがある。
Therefore, if there are deposits such as carbon particles in the fixed waste, the porous layer will become clogged, and the amount of oxygen molecules diffusing will change, which will change the output characteristics and accurately It may become impossible to detect the concentration.

1」−−−−−的 この発明は−に記の点に鑑みてなされたものであり、酸
素濃度を長期に亘って高精度に検出できるようにするこ
とを[1的とする。
1. This invention has been made in view of the points mentioned in . . . and has an object of [1] to enable oxygen concentration to be detected with high precision over a long period of time.

購−−1戊 そのため、この発明による酸素センサは、被測定カスか
ら隔離された第1.第2の空間を形成し、こAし等の第
1.第2の空間相互間に酸素の拡散を制限する手段を設
けると共に、第1.第2の空間を被測定カスから隔離し
ている各隔壁の一部又は全部を酸素イオン伝導性の固体
電解質で形成して、各固体電解質の両面に刻面する電極
を設けることによって、酸素の拡散を制限する手段が被
測定カスに触れないようにしたものである。
Purchase--1 Therefore, the oxygen sensor according to the present invention has a first oxygen sensor isolated from the waste to be measured. A second space is formed, and a first space such as this is formed. Providing means for restricting the diffusion of oxygen between the second space and the first space; By forming part or all of each partition wall that isolates the second space from the waste to be measured from a solid electrolyte that conducts oxygen ions, and providing carved electrodes on both sides of each solid electrolyte, oxygen can be removed. This means that the means for restricting diffusion does not come into contact with the scum to be measured.

笑庭忽 以下、この発明の実施例を添付図面の第4図以降を参照
して説明する。
Embodiments of the present invention will now be described with reference to FIG. 4 and subsequent figures of the accompanying drawings.

第4図及び第5図は、この発明を実施した酸素センサの
横断面図及び分解斜視図である。
4 and 5 are a cross-sectional view and an exploded perspective view of an oxygen sensor embodying the present invention.

この酸素センサ11は、平板状の酸素イオン伝導性の第
1の固体電解質12と、四角状の貫通孔13aを穿設し
た隔壁板1ろと、平板状の隔壁板14と、四角状の貫通
孔15aを穿設した隔壁板15と、平板状の第2の固体
電解質16とを積Jククして構成している。
This oxygen sensor 11 includes a flat oxygen ion conductive first solid electrolyte 12, a partition plate 1 having a square through hole 13a, a flat partition plate 14, and a square through hole 13a. It is constructed by stacking a partition plate 15 with holes 15a and a flat second solid electrolyte 16.

この酸素センサ11においては、第Jの固体電解質12
及び隔壁板13.14によって、被41す定カスから隔
離された第1の空間17か形成され、また隔壁板14.
15及び第2の固体電解質16によって、被測定カスか
ら隔離された第2の空間18が形成さツしている。
In this oxygen sensor 11, the J-th solid electrolyte 12
A first space 17 isolated from the waste to be covered 41 is formed by the partition plates 13, 14, and the partition plates 14.
15 and the second solid electrolyte 16 form a second space 18 isolated from the waste to be measured.

そして、それ等の第1.第2の空間17.18を画成し
ている隔壁板14には、第1の空間17と第2の空間相
互間での酸素の拡散を制限する手段である第1.第2の
空間17.18を連通ずる小孔19をg設しである。
And the first of these. The partition plate 14 defining the second space 17,18 includes a first space 17, which is a means for restricting the diffusion of oxygen between the first space 17 and the second space. A small hole 19 communicating with the second space 17, 18 is provided.

一方、第1の固体電解質12には、外面に第1のセンサ
電極20及び第1のポンプ’flt!1ii21を、内
面に第1のセンサ電極20及び第1のポンプ電極21と
対向する第1の基準電極22を設けである。
On the other hand, the first solid electrolyte 12 has a first sensor electrode 20 and a first pump 'flt!' on its outer surface. 1ii21, a first reference electrode 22 facing the first sensor electrode 20 and the first pump electrode 21 is provided on the inner surface.

また、第2の固体電解質16には、外面に第2のセンサ
電極23及び第2のポンプ電極24を、内面に第2のセ
ンサ電極23及び第2のポンプ電極24と対向する第2
の基$電極25を設けである。
The second solid electrolyte 16 also has a second sensor electrode 23 and a second pump electrode 24 on its outer surface, and a second sensor electrode 23 and a second pump electrode 24 on its inner surface, which are opposed to each other.
A base electrode 25 is provided.

なお、隔壁板16の第1の固体電解質12側面の貫通孔
13aの周囲には、第1.第2の固体電解質12.16
の活性を保つために、これ等を加熱するヒータ30を印
刷形成しである。
Note that the first solid electrolyte 12 of the partition plate 16 is surrounded by the through hole 13a on the side surface of the first solid electrolyte 12. Second solid electrolyte 12.16
In order to maintain the activity of these components, a heater 30 for heating them is formed by printing.

また、第1のセンサ電極20.第1のポンプ電極21.
第1の基準電極22には、夫々リード線62〜34を、
第2のセンサ電極23.第2のポンプ電極24.第2の
基7(+!電極25には、夫々リード線65〜67を、
ヒータろOには、ツー1〜線38.39を接続しである
Moreover, the first sensor electrode 20. First pump electrode 21.
Lead wires 62 to 34 are connected to the first reference electrode 22, respectively.
Second sensor electrode 23. Second pump electrode 24. Lead wires 65 to 67 are connected to the second group 7 (+! electrode 25, respectively).
To the heater filter O, wires 21 to 38 and 39 are connected.

さらに、第1.第2の固体電解質12.IEiとしては
、例えばZrO2、Hr02 、Tlx02 +Bi2
O3等の酸化物にC20,MgO,Y2O2+YB20
3等を(!I溶させた焼結体を用い、各電極20〜25
は、白金又は金を主成分とする。
Furthermore, the first. Second solid electrolyte 12. As IEi, for example, ZrO2, Hr02, Tlx02 +Bi2
C20, MgO, Y2O2+YB20 in oxides such as O3
Using a sintered body melted with 3 etc. (!I), each electrode 20-25
The main component is platinum or gold.

さらにまた、この実施例では、第1.第2の空間17.
18を被測定カスから隔離する隔壁の全部を第1.第2
の固体電解質12.16で形成しているが、電極20〜
25に対応する部分のみを固体電解質で形成してもよい
Furthermore, in this embodiment, the first. Second space 17.
18 from the waste to be measured. Second
Although the solid electrolyte 12.16 is formed from the electrode 20~
Only the portion corresponding to 25 may be formed of solid electrolyte.

第6図は、この実施例の酸素センサを使用した酸素濃度
(空燃比)検出回路の一例を示す回路図である。
FIG. 6 is a circuit diagram showing an example of an oxygen concentration (air-fuel ratio) detection circuit using the oxygen sensor of this embodiment.

この酸素濃度検出回路は、第1の制御回路41と、第2
の制御回路42と、平均回路43とからなる。
This oxygen concentration detection circuit includes a first control circuit 41 and a second control circuit 41.
It consists of a control circuit 42 and an averaging circuit 43.

第1の制御回路41は、まず、第1の、i18準Y6.
極22と第1のセンサ電極20との間の電位V SHと
目標電圧V a l(V a 1 ′L:0 )との差
を差動アンプ45で検出して、この差動アンプ45から
出力される差電圧ΔVsI (ΔVsI=Vsl )に
応じて第1のポンプ電流供給回路46が第1のポンプ電
極21に、第1のセンサ電極20及び第1のポンプ電極
21側から第1のへイ<(!電極22側に向って酸素イ
オンか第1の固体電解質12内を移動する方向に第1の
ポンプ電流IP+ を供給する。
The first control circuit 41 first controls the first i18 quasi Y6.
The difference between the potential V SH between the pole 22 and the first sensor electrode 20 and the target voltage V a l (V a 1 'L:0) is detected by the differential amplifier 45 , and the difference is detected from the differential amplifier 45 . The first pump current supply circuit 46 supplies voltage to the first pump electrode 21 from the first sensor electrode 20 and first pump electrode 21 side to the first pump current according to the output differential voltage ΔVsI (ΔVsI=Vsl). i<(!The first pump current IP+ is supplied in the direction in which oxygen ions move within the first solid electrolyte 12 toward the electrode 22 side.

つまり2この第1のポンプ電流供給回路46は、差動ア
ンプ45からの差電圧ΔV s Hがプラスであわは第
1のポンプ電流1p+ を増加し、差電圧ΔV s 1
 がマイナスであれば第1のポンプ電流11’ + を
減少させて、Vsl =Val =Oになるように第1
のポンプ電流11”+ を制御する。
In other words, the first pump current supply circuit 46 increases the first pump current 1p+ when the differential voltage ΔV s H from the differential amplifier 45 is positive, and the differential voltage ΔV s 1
If is negative, the first pump current 11' + is decreased so that Vsl = Val = O.
The pump current 11”+ is controlled.

そして、この第1のポンプ電流供給回路46から第1の
ポンプ電極21に供給される第1のポンプ電流1p+ 
を、その給電路に介挿した抵抗47で電圧に変換し、こ
の抵抗47の両端間の電位差を差動アンプ48で検出し
て電圧V1 (V+”Ip+)として平均回路43に出
力する。
The first pump current 1p+ is supplied from the first pump current supply circuit 46 to the first pump electrode 21.
is converted into a voltage by a resistor 47 inserted in the power supply path, and the potential difference between both ends of this resistor 47 is detected by a differential amplifier 48 and outputted to the averaging circuit 43 as a voltage V1 (V+"Ip+).

第2の制御回路42は、ます、第2の基準電極25と第
1のセンサ電極2ろとの間の電位Vs2と電源50から
の目標電圧V a 2との差を差動アンプ51て検出し
て、この差動アンプ51から出力される差電圧ΔVs2
 (ΔVs2 = Vs2 V a 2 )に応じて第
2のポンプ電流供給回路52が第2のポンプ電極24に
、第2の基1′#電極25側から第2のセンサ電極23
及び第2のポンプ電極24側に向って酸素イオンか第2
の固体電解質16内を移動する方向に第2のポンプ電流
IP2を供給する。
The second control circuit 42 first detects the difference between the potential Vs2 between the second reference electrode 25 and the first sensor electrode 2 and the target voltage V a 2 from the power source 50 using the differential amplifier 51. Then, the differential voltage ΔVs2 output from this differential amplifier 51
(ΔVs2 = Vs2 Va 2 ), the second pump current supply circuit 52 supplies the second pump electrode 24 with the second sensor electrode 23 from the second base 1'# electrode 25 side.
and oxygen ions toward the second pump electrode 24 side.
A second pump current IP2 is supplied in the direction of movement within the solid electrolyte 16.

つまり、この第2のポンプ電流供給回路52は、差動ア
ンプ51からの差電圧ΔV S 2かプラスであれば第
2のポンプ電流IPzを減少し、差電圧ΔVS2がマイ
ナスであれば第2のポンプ電dもIP2を増加して、V
 S2 ” V a 2になるように第2のポンプ電流
1p2を制御する。
In other words, the second pump current supply circuit 52 reduces the second pump current IPz if the differential voltage ΔVS2 from the differential amplifier 51 is positive, and decreases the second pump current IPz if the differential voltage ΔVS2 is negative. The pump voltage d also increases IP2 and V
The second pump current 1p2 is controlled so that the second pump current 1p2 becomes S2''V a 2.

そして、この第2のポンプ電流供給回路52から第2の
ポンプ電極24に供給される第2のポンプ電流rII2
を、その給電路に介挿した抵抗53で電圧に変換し、こ
の抵抗52の両端間の↑h圧を差動アンプ54で検出し
て電圧■、(■2=IP2)として平均回路46に出力
する。
A second pump current rII2 is supplied from the second pump current supply circuit 52 to the second pump electrode 24.
is converted into a voltage by a resistor 53 inserted in the power supply path, and the ↑h voltage between both ends of this resistor 52 is detected by a differential amplifier 54 and sent to the averaging circuit 46 as a voltage ■, (■2=IP2). Output.

平均回路43は、抵抗値が同じ抵抗55及び抵抗56か
らなり、第1の制御回路41からの電圧v1と第2の制
御回路42からの電圧V、との平均値(V、 十v、、
)/2を平均電圧VNとして出力する。
The average circuit 43 consists of a resistor 55 and a resistor 56 having the same resistance value, and has an average value (V, 10 V, . . .
)/2 is output as the average voltage VN.

次に、このように構成したこの実施例の作用についで5
)2明する。
Next, we will explain the operation of this embodiment configured in this way.
) 2.

ます、酸素l農度検出回路の第1の制御回路41におけ
るII標屯圧V a HをV a I= OlnV、第
2の制御回路42における「1標電圧V a 2をV 
a 2=500+nVに設定した場合、第1のポンプ電
流供給回路4Bは、電圧’J s 1かV s 1= 
V a ) = 0になる第1のポンプ電流II)+ 
を第1のポンプ′市極21に供給し、第2のポンプ電流
供給回路52は電圧vS2がV s 2 =V a 2
 =500mVICなる第2のポンプ電流IP2を第2
のポンプ電極24に供給する。
First, the II standard pressure V a H in the first control circuit 41 of the oxygen level detection circuit is V a I=OlnV, and the II standard voltage V a 2 in the second control circuit 42 is V a I=OlnV.
When setting a2=500+nV, the first pump current supply circuit 4B has a voltage 'J s 1 or V s 1=
The first pump current II)+ such that V a ) = 0
is supplied to the first pump' city pole 21, and the second pump current supply circuit 52 has a voltage vS2 of V s 2 =V a 2
= 500mVIC, the second pump current IP2 is
is supplied to the pump electrode 24 of.

このとき、第1の空間17の酸素分圧をPL+第2の空
間18の酸素分圧をP2+被測定ガス中の酸素分圧をP
xとすると、温度が1000 Kのとき、前述したネル
ンストの式(中成)から明らかなように、p(=Px、
P2ΣP x X 1. O−”= Oとなる。
At this time, the oxygen partial pressure in the first space 17 is PL + the oxygen partial pressure in the second space 18 is P2 + the oxygen partial pressure in the gas to be measured is P
Assuming x, when the temperature is 1000 K, p(=Px,
P2ΣP x X 1. O-”=O.

したかつて、隔壁板14の小孔1日を通って拡散する0
2の量Qは、拡散係数をDとすると、Q”D (P+〜
P2)・・・f3) =D (Px−0) ・・・・・1臭)となる。
Once, the 0 diffusion through the small holes of the partition plate 14
The quantity Q of 2 is Q”D (P+~
P2)...f3) = D (Px-0)...1 odor).

この02の量Qは、定常的には、第1のポンプ電流IP
+及び第2のポンプ電流TII;!に比例するので、第
1のポンプ電流1p+及び第2のポンプ電流11’2は
、 IP!””IP2”Kl ’Q=に+ ・D−Px二に
2・I”x・−・く〈1) となる。但し、K、、に、、は定数である。
This amount Q of 02 is constantly determined by the first pump current IP
+ and second pump current TII;! Since the first pump current 1p+ and the second pump current 11'2 are proportional to IP! ""IP2"Kl 'Q=+ ・D−Px2 2・I"x・−・ku〈1). However, K, , , are constants.

この−4)式かJ゛)、第1のポンプ電流■1〕1及び
第2のポンプ′l′II流+112は、被測定カス中の
酸素分11:i−” xに比例する二とか分かる。
In this equation -4), the first pump current ■1]1 and the second pump'l'II flow +112 are proportional to the oxygen content 11:i-''x in the gas to be measured. I understand.

つまり、第1のポンプ主流IIM及び第2のポンプ電b
ffi + P 2の値か、いず4しも被測定カス中の
酸素分圧(濃度)を表わす。
That is, the first pump main flow IIM and the second pump current b
The value of ffi + P 2 represents the oxygen partial pressure (concentration) in the dregs to be measured.

したがって、酸−Mj農度農用検出回路1の制御回路4
1及び第2の制御回路42かI’)出力される電IIE
V+#び■2は、夫々被ル1す定カス中の酸素濃度に応
し、・た値どなり、平均回路43か+5その電圧V1、
■2勺平均化【また酸素濃度に応じた平均電圧\711
Jか出力さ狛る1゜ この、J、つにして酸素C農用検出回路・かり出力され
る酸;(・S濃度に)1ずろ平均電圧VNの特性を第7
図に小しCある、。
Therefore, the control circuit 4 of the acid-Mj agricultural detection circuit 1
1 and 2nd control circuit 42 or I') Output electric current IIE
V+# and 2 correspond to the oxygen concentration in the sludge, respectively, and the average circuit 43 or +5 has a voltage V1,
■2-level averaging [Also, the average voltage according to the oxygen concentration\711
The output of J is 1゜ This is J, and the oxygen C agricultural detection circuit is outputted from the acid;
There is a small C in the diagram.

ところで、この酸素センサ11にあっては、酸メ・:の
拡散を制限する″ト段である隔壁板15の小孔19が披
41す定カスに触4することかない。
By the way, in this oxygen sensor 11, the small hole 19 of the partition plate 15, which is a step for restricting the diffusion of acid, does not come into contact with the scum 41.

したがって、被測定カス中にカーボン粒子等のテボシツ
1〜が含まれていても、そのテボシツ1−か小孔1Sに
付着することがなく、拡散するV素分子の量が変化する
ことがない。、 そ抗によって、長期間に旦って酸素濃度を高精度に検出
することができる。
Therefore, even if particles 1- such as carbon particles are included in the measurement waste, the particles 1- will not adhere to the small pores 1S, and the amount of diffused V elementary molecules will not change. , the oxygen concentration can be detected with high precision over a long period of time.

なお、上記実施例においては、第1の空間17の酸素分
圧を被測定カスの酸素分圧と同じに保ち、第2の空間1
8の酸素分圧を被i1’l定カスの酸素分圧の約1 /
 I O”に保ったが、他の倍率に保ってもよい。
In the above embodiment, the oxygen partial pressure in the first space 17 is kept the same as the oxygen partial pressure in the scum to be measured, and the oxygen partial pressure in the second space 17 is
Approximately 1 / of the oxygen partial pressure of i1'l constant
Although the magnification was kept at IO'', it may be kept at other magnifications.

例えば、第1の空間17の酸素分圧を被測定カスの酸素
分圧の2倍に、第2の空間18の酸素分圧を被81り定
カスの酸素分圧の1/2倍に保っても、被測定カス中の
酸素濃度を検出できる、。
For example, the oxygen partial pressure in the first space 17 is maintained at twice the oxygen partial pressure of the gas to be measured, and the oxygen partial pressure in the second space 18 is maintained at 1/2 times the oxygen partial pressure of the gas to be measured. The oxygen concentration in the waste to be measured can be detected.

つまり、第1の固体電解質12に電流を供給して酸素イ
オンを移動させ、第1の空間17の酸素濃度を被測定カ
スの酸素濃度の第1の所定イざに保ち、第2の固体電解
質16に電流を供給して酸素イオンを移動させ、第2の
空間18の酸素濃度を被測定カスの酸素濃度の第2の所
定倍に保ち、第1の固体電解質12及び第2の固体電解
質16に供給する電流の少なくとも一方の電流を検出す
ることによって被d1す定カスの酸素濃度を検出できる
In other words, a current is supplied to the first solid electrolyte 12 to move oxygen ions, the oxygen concentration in the first space 17 is maintained at the first predetermined interval of the oxygen concentration of the waste to be measured, and the second solid electrolyte is 16 to move oxygen ions, keep the oxygen concentration in the second space 18 at a second predetermined times the oxygen concentration of the gas to be measured, and By detecting at least one of the currents supplied to d1, it is possible to detect the oxygen concentration of the scum to be subjected to d1.

第8図は、この発明を実施した酸素センサの他の例を示
す横断面図である。
FIG. 8 is a cross-sectional view showing another example of an oxygen sensor embodying the present invention.

この酸素センサ61は1貫通孔62aを形成した隔壁板
62と、この隔壁板62を挟む第1の固体電解質12及
び第2の固体電解質16とを積層して、被」り定カスか
ら隔離された第1.第2の空間を共通しこシた共通空間
63を形成し、この共通空間63内に酸素の拡散を制限
する多孔質体64を充填したものである。
This oxygen sensor 61 is constructed by laminating a partition plate 62 with one through hole 62a formed therein, and a first solid electrolyte 12 and a second solid electrolyte 16 sandwiching this partition plate 62, and is isolated from the surrounding waste. 1st. A common space 63 is formed in common with the second space, and this common space 63 is filled with a porous material 64 that restricts the diffusion of oxygen.

この場合、第1.第2の空間は共通空間となっているの
で、各々の明確な境界は存在しないが、実際には、第1
の基準電極22近傍の多孔質体64の部分が第1の空間
を形成し、又第2の基準電極25近傍の多孔質体64の
部分が第2の空間を形成し、また、その間の多孔質体6
4の部分が酸素の拡散を制限する手段を形成している。
In this case, 1. Since the second space is a common space, there are no clear boundaries between the two, but in reality, the first
A portion of the porous body 64 near the reference electrode 22 forms a first space, a portion of the porous body 64 near the second reference electrode 25 forms a second space, and the porous body 64 in the vicinity of the second reference electrode 25 forms a second space. substance 6
4 forms a means for restricting oxygen diffusion.

この酸素センサ61を使用した酸素検出回路の構成は、
前述した実施例と同様であるので、説明を省略する。
The configuration of an oxygen detection circuit using this oxygen sensor 61 is as follows:
Since this embodiment is similar to the embodiment described above, the explanation will be omitted.

第9図及び第10図は5この発明を実施した酸素センサ
の更に他の異なる例を示す横断面図である。
FIGS. 9 and 10 are cross-sectional views showing still other different examples of oxygen sensors embodying the present invention.

第9図に示す酸素センサ71は、第1の固体電解質12
と、隔壁板16と、酸素の拡散制限用小孔19を穿設し
た第3の固体電解質72と、隔壁板15と、第2の固体
電解質16とを積層しである。
The oxygen sensor 71 shown in FIG.
A partition plate 16, a third solid electrolyte 72 having small holes 19 for restricting oxygen diffusion, a partition plate 15, and a second solid electrolyte 16 are laminated.

そして、その第1の固体電解質12の両面には第1のセ
ンサ電極20及び第1のポンプ電極21と第1の基準電
極22とを設け、第2の固体電解質16の両面には第2
のポンプ電極24ど第2の基準電極25とを設け、第3
の固体電解質72の両面には第2のセンサ電極73及び
第3の基準電極74を設けている。
A first sensor electrode 20, a first pump electrode 21, and a first reference electrode 22 are provided on both sides of the first solid electrolyte 12, and a second sensor electrode 20, a first pump electrode 21, and a first reference electrode 22 are provided on both sides of the second solid electrolyte 16.
A pump electrode 24 is provided with a second reference electrode 25, and a third reference electrode 25 is provided.
A second sensor electrode 73 and a third reference electrode 74 are provided on both sides of the solid electrolyte 72 .

この酸素センサ71にあっては、第1の空間17の酸素
分圧と第2の空間18の酸素分圧との差を第2のセンサ
?!!極73及び第3の基7(+8電(セフ4とて検出
して、この検出結果に応して第2のポンプ電極24及び
第2の基準電極25間に流す第2のポンプ電流を制御し
て、第2の空間18の酸素分圧を所定値に保つ。なお、
第1の空間17の酸素分圧の制御については上記実施例
と同様である。
In this oxygen sensor 71, the difference between the oxygen partial pressure in the first space 17 and the oxygen partial pressure in the second space 18 is detected by the second sensor? ! ! The electrode 73 and the third group 7 (+8 electric current (CEF 4) are detected, and the second pump current flowing between the second pump electrode 24 and the second reference electrode 25 is controlled according to the detection result. to maintain the oxygen partial pressure in the second space 18 at a predetermined value.
Control of the oxygen partial pressure in the first space 17 is the same as in the above embodiment.

次に、第10図に示す酸素センサ81は、第1の固体電
解り112と、隔壁板13と、小孔1Bを9設した隔壁
板14と、第2の室間18を形成する貫通孔82.及び
大気を導入する人気導入空間8ろを形成するt%!! 
82 bを形成した固体電解質の隔壁板82と、第2の
固体型g!E91F+とに積層しである。
Next, the oxygen sensor 81 shown in FIG. 82. And t% to form a popular introduction space 8 to introduce the atmosphere! !
The solid electrolyte partition plate 82 formed with 82 b and the second solid type g! It is laminated with E91F+.

そして、第1の固体電解?(12の両面に第1のセンサ
電極20及び第1のポンプ電極21と第1の基ス(1!
”、lj極22とを設け、第2の固体電解りτ16の両
面に第2のポンプ電極24と第2の基窄@極25とを設
けると共に、第2の空間18と大気導入空間83との間
の隔壁板82の隔壁の両面に第2のセンサ電極84と第
3の基準電極85とを設けている。
And the first solid electrolyte? (The first sensor electrode 20 and the first pump electrode 21 and the first base (1!
", lj pole 22 is provided, a second pump electrode 24 and a second base@pole 25 are provided on both sides of the second solid electrolyte τ16, and a second space 18 and an atmosphere introduction space 83 are provided. A second sensor electrode 84 and a third reference electrode 85 are provided on both sides of the partition wall of the partition plate 82 between the two.

この酸素センサ81にあっては、大気の酸素分圧と第2
の空間18の酸素分圧との差を第2のセンサ電極84及
び第3の基準電極85によって検出し、この検出結果に
応じて第2のポンプ電極24と第2の基準@極25の間
に流す第2のポンプ電流を制御して、第2の空間18の
酸素分圧を大気の所定倍に保つ。なお、第1の空間17
の酸素分圧の制御については上記実施例と同様である。
In this oxygen sensor 81, the atmospheric oxygen partial pressure and the second
The difference between the oxygen partial pressure in the space 18 and the oxygen partial pressure in the space 18 is detected by the second sensor electrode 84 and the third reference electrode 85, and the difference between the second pump electrode 24 and the second reference @ pole 25 is detected according to the detection result. The oxygen partial pressure in the second space 18 is maintained at a predetermined times that of the atmosphere by controlling the second pump current flowing through the air. Note that the first space 17
The control of the oxygen partial pressure is the same as in the above embodiment.

これ等の酸素センサ71.81においても、rf&素の
拡散を制限する手段である小孔19が被41!1定カス
1こ触Aしないので、酸素濃度を長期に■1って高精度
に検出できる。
In these oxygen sensors 71 and 81, the small hole 19, which is a means of restricting the diffusion of RF and elements, does not touch the 41! Can be detected.

なお、上記各実施例において、センサ電極及びポンプ電
極と基準電極との位置関係を反対にしてもよく、またセ
ンサ電極とポンプ7’、474に対向する基準電極を別
個にしてもよい。
In each of the embodiments described above, the positional relationship between the sensor electrode, the pump electrode, and the reference electrode may be reversed, or the sensor electrode and the reference electrode facing the pumps 7' and 474 may be separate.

また、ポンプ電極とセンサ電極を共通にして、ポンプ電
流を供給する電極と酸素分圧比によって発生する電Jf
を検出する電極とを兼用させることもできる。
In addition, by using the pump electrode and the sensor electrode in common, the electrode that supplies the pump current and the electric current Jf generated by the oxygen partial pressure ratio.
It can also be used as an electrode for detecting.

たたし、このようにすると、電極間の電圧としては酸素
分圧比によって発生する電圧だけでなく、センサの内部
抵抗による電圧降下分か含ま九るので、固体電PAj質
の両面間の酸素分圧比を一定に保つための1」標電圧の
設定を精度よく行うためには、この内部抵抗による電圧
降下分を袖償する必要があるか、例えは特開昭57−1
92850号公報に見らiLるように、酸素センサの電
極間に流し込む電流に交流を重畳して、第6図の抵抗4
7゜53の両端から検出する信号の直流成分をipの検
出信号とし、交流成分から内部抵抗を算出して、直流成
分によって検出したl pを乗じて酸素センサの内部抵
抗による電圧降下分をめ、これを加えることにより前記
目標電圧とすれば、前述の実施例と同様に空燃比を連続
的に精度よく検出することが可能である。
However, in this case, the voltage between the electrodes includes not only the voltage generated by the oxygen partial pressure ratio but also the voltage drop due to the internal resistance of the sensor, so the oxygen content between both sides of the solid electrolyte PAj is reduced. In order to accurately set the 1" standard voltage to keep the pressure ratio constant, is it necessary to compensate for the voltage drop due to this internal resistance?
As seen in Japanese Patent No. 92850, an alternating current is superimposed on the current flowing between the electrodes of the oxygen sensor, and the resistor 4 shown in FIG.
The DC component of the signal detected from both ends of 7゜53 is used as the IP detection signal, and the internal resistance is calculated from the AC component, and the voltage drop due to the internal resistance of the oxygen sensor is calculated by multiplying by l p detected by the DC component. , by adding this to obtain the target voltage, it is possible to continuously detect the air-fuel ratio with high precision as in the above-described embodiment.

カー来 以上説明したように、この発明によれば、酸素センサに
おけるカスの拡散を制限する手段が被i(+1定ガスに
触れないので、酸素濃度を長期に亘って高精度に検出で
きる。
As described above, according to the present invention, since the means for restricting the diffusion of scum in the oxygen sensor does not come into contact with the i(+1 constant gas), the oxygen concentration can be detected with high precision over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の酸素センサの一例を示す断面図、第2
図及び第6図は、第1図の作用説明に供する酸素センサ
出力−空燃比特性及び流し込み電流−空燃比特性を示す
線図、 第4図及び第5図は、この発明の実施例を示す酸素セン
サの横断面図及び分解斜視図、 第6図は、その酸素センサを使用した酸素濃度検出回路
の一例を示す回路図、 第7図は、同しくその出力−酸素濃度及び空燃比特性を
示す線図、 第8図は、この発明の他の実施例を示す酸素センサの横
断面図、 第9図及び第10図は、この発明のさらに他の異なる実
施例を示す酸素センサの横断面図である。 11.61,71.81・・・酸素センサ12・・第1
の固体?l!M質 13.14,15.62.72.82・・・隔壁板16
・第2の固体電解質 1−7・・第1の空間18・・第
2の空間 1日・・小孔 20・・第1のセンサ電極 21・・・第1のポンプ電極 22・・・第1の基$電t!i23・・・第2のセンサ
電極24・・第2のポンプ電極 25・・・第2の基準
電極66・・・多孔質体 第1囚 第2図 空燃比(当量比λ) 第4図 第5図 第6図 第7図 空燃比(A/ F) 第8図 第10図
Fig. 1 is a sectional view showing an example of a conventional oxygen sensor;
6 and 6 are diagrams showing the oxygen sensor output-air-fuel ratio characteristic and the injected current-air-fuel ratio characteristic for explaining the operation of FIG. 1. FIG. 4 and FIG. 5 show an embodiment of the present invention. A cross-sectional view and an exploded perspective view of the oxygen sensor; Fig. 6 is a circuit diagram showing an example of an oxygen concentration detection circuit using the oxygen sensor; Fig. 7 shows the output-oxygen concentration and air-fuel ratio characteristics. FIG. 8 is a cross-sectional view of an oxygen sensor showing another embodiment of the present invention; FIGS. 9 and 10 are cross-sectional views of an oxygen sensor showing still other different embodiments of the present invention. It is a diagram. 11.61, 71.81...Oxygen sensor 12...1st
solid? l! M quality 13.14, 15.62.72.82...Partition plate 16
-Second solid electrolyte 1-7...First space 18...Second space 1st...Small hole 20...First sensor electrode 21...First pump electrode 22...First 1 base $dent! i23...Second sensor electrode 24...Second pump electrode 25...Second reference electrode 66...Porous body first prisoner Figure 2 Air-fuel ratio (equivalence ratio λ) Figure 4 Figure 5 Figure 6 Figure 7 Air-fuel ratio (A/F) Figure 8 Figure 10

Claims (1)

【特許請求の範囲】 1 被iff!l定カスから隔離された第1.第2の空
間を形成し、該第1.第2の空間相互間に酸素の拡散を
制限する手段を設けると共に、前記第1.第2の空間を
被41す定カスから隔離している各隔壁の一部又は全部
を酸素イオン伝導性の固体71¥解質て形成し、各固体
電解質の両面に対向する電極を設けてなることを特徴と
する酸素センサ。 2 酸素の拡散を制限する手段が、前記第1.第2の空
間を連通ずる小孔である特許請求の範囲第1項記載の酸
素センサ。 3 第1.第2の空間が共通空間であり、酸素の拡散を
制限する手段が前記共通空間に充填した多孔質体である
特許請求の範囲第1項記載のrj61素センサ。
[Claims] 1. If! The first one isolated from the constant dregs. forming a second space; means for restricting the diffusion of oxygen between the second spaces; A part or all of each of the partition walls separating the second space from the fixed dregs 41 is formed by dissolving an oxygen ion conductive solid 71, and opposing electrodes are provided on both sides of each solid electrolyte. An oxygen sensor characterized by: 2. The means for restricting oxygen diffusion is provided in the above-mentioned 1. The oxygen sensor according to claim 1, which is a small hole communicating with the second space. 3 1st. 2. The RJ61 elementary sensor according to claim 1, wherein the second space is a common space, and the means for restricting oxygen diffusion is a porous body filled in the common space.
JP59032545A 1984-02-24 1984-02-24 Oxygen concentration detector Expired - Lifetime JPH0634004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032545A JPH0634004B2 (en) 1984-02-24 1984-02-24 Oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032545A JPH0634004B2 (en) 1984-02-24 1984-02-24 Oxygen concentration detector

Publications (2)

Publication Number Publication Date
JPS60177258A true JPS60177258A (en) 1985-09-11
JPH0634004B2 JPH0634004B2 (en) 1994-05-02

Family

ID=12361899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032545A Expired - Lifetime JPH0634004B2 (en) 1984-02-24 1984-02-24 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPH0634004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174178A (en) * 2013-03-12 2014-09-22 Robert Bosch Gmbh Microelectrochemical sensor and method for operating the microelectrochemical sensor
JP2016125890A (en) * 2014-12-26 2016-07-11 日本特殊陶業株式会社 Gas sensor element and gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100853A (en) * 1982-12-01 1984-06-11 Hitachi Ltd Manufacture of oxygen sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100853A (en) * 1982-12-01 1984-06-11 Hitachi Ltd Manufacture of oxygen sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174178A (en) * 2013-03-12 2014-09-22 Robert Bosch Gmbh Microelectrochemical sensor and method for operating the microelectrochemical sensor
JP2016125890A (en) * 2014-12-26 2016-07-11 日本特殊陶業株式会社 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JPH0634004B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
KR910006224B1 (en) Air fuel ratio detector
EP0068321A1 (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
EP0580206A1 (en) Wide-range oxygen sensor
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
US4578171A (en) Air/fuel ratio detector
JPH0414305B2 (en)
JPH0260142B2 (en)
EP0121905B1 (en) Oxygen sensor
JPS60177258A (en) Oxygen sensor
JPS61180131A (en) Air fuel ratio sensor for automobile
JPS61138155A (en) Air-fuel ratio detector
JPS59208451A (en) Air-fuel ratio sensor for engine
JPH0245819B2 (en)
JPH0436341B2 (en)
JPS61161445A (en) Air/furl ratio detector
JPS60224051A (en) Air-fuel ratio detecting device
JP2003149201A (en) Composite gas sensor element
JPS60238755A (en) Air fuel ratio detecting device
JPS61296262A (en) Air/fuel ratio sensor
JPH061258B2 (en) Air-fuel ratio detector
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio
JPS6135347A (en) Heater for oxygen sensor
JPS61186849A (en) Detecting device for air fuel ratio
JPH065224B2 (en) Air-fuel ratio detection element
JPS60211355A (en) Oxygen sensor and oxygen concentration measuring device