JPS6220118A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS6220118A
JPS6220118A JP15966585A JP15966585A JPS6220118A JP S6220118 A JPS6220118 A JP S6220118A JP 15966585 A JP15966585 A JP 15966585A JP 15966585 A JP15966585 A JP 15966585A JP S6220118 A JPS6220118 A JP S6220118A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
ferromagnetic
coil
magnetic path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15966585A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
健 高橋
Kazuo Nakamura
和夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15966585A priority Critical patent/JPS6220118A/en
Publication of JPS6220118A publication Critical patent/JPS6220118A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a thin film magnetic head which can reproduce signal magnetization of a high density by microminiaturizing magnetic paths to the extreme according to this invention. CONSTITUTION:The 1st thin film coil 7 itself constitutes one turn of a closed loop and intersects with the 1st magnetic path 9 consisting of a thin film magnetic detecting part 8. The 2nd lower thin ferromagnetic film 13 and 2nd upper thin ferromagnetic film 14 between which the rear of the 1st thin film coil 7 is inserted so as to constitute the 2nd magnetic path 16 intersecting with the coil 7 are laminated on the rear of the part 8 on a thin film forming surface 2. Both the front and rear ends thereof are joined to each other to constitute the closed loop. Plural turns of the 2nd thin film coil 15 are further formed so as to intersect with the 2nd magnetic path 16 and the front part thereof penetrates between the films 13 and 14 on the rear part of the coil 7. Thus the 1st thin film coil 7 and the 2nd thin film coil 15 respectively as the primary and secondary windings of a transformer constitute a step up transformer part 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度の信号磁化を効率良く記録再生するのに
好適な薄膜磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film magnetic head suitable for efficiently recording and reproducing high-density signal magnetization.

従来の技術 近年の磁気記録技術の進歩は著るしく、特に単位面積当
たりの記録密度は年々対数的に増大しつつある。このよ
うな高密度化は、信号磁化の短波長化と記録パターンの
狭トラツク化によってなされているわけであるが、現在
では波長1μm前後、トラック幅20μm前後での実用
化が行なわれている。このような高密度化に対応するた
めに磁気ヘッドとしては、第5図に示きるだけ小型化す
ることによって効率を高め、ギャップ長は0.3μm程
度まで狭めて短波長磁化を効率良く再生できるようにし
ている。一方近年になって薄膜磁気ヘッドが注目を沿び
ている。第6図に1例を示すが、非磁性基板CJ上に薄
膜形成技術とフォトリソグラフィ技術を用いて強磁性薄
膜による磁極Q9と複数ターンの薄膜コイ)vc2■を
形成し、略リング状の薄膜磁気ヘッドを構成する。この
ような薄膜磁気ヘッドは、製造技術的に狭ギャップ化、
狭トラツク化に適している。
BACKGROUND OF THE INVENTION Magnetic recording technology has made remarkable progress in recent years, and in particular, the recording density per unit area is increasing logarithmically year by year. Such high density is achieved by shortening the wavelength of the signal magnetization and narrowing the track of the recording pattern, and at present, a wavelength of about 1 μm and a track width of about 20 μm are being put into practical use. In order to cope with this increase in density, the efficiency of the magnetic head is increased by making it as small as shown in Figure 5, and the gap length can be narrowed to about 0.3 μm to efficiently reproduce short wavelength magnetization. That's what I do. On the other hand, thin film magnetic heads have been attracting attention in recent years. An example is shown in FIG. 6, where a magnetic pole Q9 made of a ferromagnetic thin film and a thin film coil (vc2) with multiple turns are formed on a non-magnetic substrate CJ using thin film formation technology and photolithography technology, and a substantially ring-shaped thin film is formed. Constitutes a magnetic head. Such thin-film magnetic heads are manufactured using narrower gap manufacturing technology.
Suitable for narrowing tracks.

発明が解決しようとする問題点 現在、更に短波長の信号磁化の記録再生が要求されてお
り、例えば金属蒸着媒体では波長0.5μm 前後、最
近注目を沿びている垂直磁気記録ではビット長0.15
μm前後の信号磁化が取り扱かわれている。この様な高
密度磁化をリング型ヘッドで再生する場合、ギャップ損
失を考慮すると0.1μm 前後の超狭ギャップが要求
される。これに対して第5図に示したバルクヘッドでは
、加工技術による制限および直径30μm程度のバルク
巻線を巻くスペースが必要なことにより磁路の小型化に
制限があり、上記のような狭ギャップ化に対してギャッ
プ部での漏洩が急増し、記録再生効率が大きく低下する
と同時に、狭ギャップを精度良く形成するのが困難であ
る。一方、第6図に示すような薄膜磁気ヘッドでは磁極
およびギャップを薄膜形成技術で積層していく為狭ギャ
ップを高精度で形成する事は容易であるが、回路処理に
必要な信号出力を得る為に薄膜コイ/L/CI!6)を
複数ターン形成する必要があり、製造技術的に磁路の構
造が図示したように細長くなる。このような構造ではギ
ャップで再生した信号磁束が強磁性薄膜(2勺からなる
磁路を完全には通らず、途中の薄膜コイル部を通って徐
々に漏洩すると同時に、磁気ヘッドとしての磁路はバル
クタイプに較べると小型にはなるが、コアが薄膜になる
と磁気抵抗の増大があるため、相対的に磁路の小型化が
不十分となって効率が低く、特に狭ギャップ化において
はその影響がより顕著になるという問題点があった。
Problems to be Solved by the Invention Currently, there is a demand for recording and reproducing signal magnetization with even shorter wavelengths. For example, metal evaporated media have a wavelength of around 0.5 μm, and perpendicular magnetic recording, which has recently been attracting attention, has a bit length of 0.15.
Signal magnetization around μm is handled. When reproducing such high-density magnetization with a ring-type head, an ultra-narrow gap of around 0.1 μm is required in consideration of gap loss. On the other hand, with the bulkhead shown in Figure 5, there is a limit to the miniaturization of the magnetic path due to limitations due to processing technology and the need for space to wind bulk windings with a diameter of about 30 μm. As a result, leakage at the gap increases rapidly, recording and reproducing efficiency decreases significantly, and at the same time, it is difficult to accurately form a narrow gap. On the other hand, in a thin film magnetic head like the one shown in Figure 6, the magnetic poles and gaps are laminated using thin film formation technology, so it is easy to form narrow gaps with high precision, but it is difficult to obtain the signal output necessary for circuit processing. Thin film carp/L/CI! 6) needs to be formed into a plurality of turns, and the structure of the magnetic path becomes elongated as shown in the figure due to manufacturing technology. In such a structure, the signal magnetic flux reproduced in the gap does not completely pass through the magnetic path made of the ferromagnetic thin film (two ferromagnetic films), but gradually leaks through the thin film coil part in the middle, and at the same time, the magnetic path as the magnetic head is Although it is smaller than the bulk type, since the core becomes thinner, the magnetic resistance increases, so the magnetic path is relatively smaller and the efficiency is lower, especially when narrowing the gap. The problem was that it became more noticeable.

そこで、本発明は上記のような超高密度の信号磁化を効
率良く記録再生する薄膜磁気ヘッドを提供することを目
的とする。
Therefore, it is an object of the present invention to provide a thin film magnetic head that can efficiently record and reproduce ultra-high density signal magnetization as described above.

問題点を解決するための手段 本発明は上記問題点を解決するために、基板表面におい
て、略リング状の薄膜磁気検出部を構成する第1の磁路
と、この第1の磁路と鎖交しそれ自身で閉回路を構成す
る第1の薄膜コイルと、この第1の薄膜コイルと鎖交す
る第2の磁路と、この第2の磁路と鎖交し、第1の薄膜
コイルよりも多数回巻回した第2の薄膜コイルとを備え
たものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a first magnetic path constituting a substantially ring-shaped thin film magnetic detection section on the surface of the substrate, and a chain connected to the first magnetic path. A first thin film coil that intersects and forms a closed circuit by itself, a second magnetic path that interlinks with this first thin film coil, and a first thin film coil that interlinks with this second magnetic path. The second thin film coil is wound more times than the first thin film coil.

作用 本発明は上記した構成により、信号磁束検出部としての
第1の磁路を極限まで微小化し、狭ギャップ化した場合
でも十分高い電気信号への変換効率を有し、一方低巻数
による絶対出力の不足は第1の薄膜コイル−第2の磁路
−第2の薄膜コイルからなるステップアップトランスで
補なうことができ、従って高密度の信号磁化を効率良く
再生することができる。
Effect The present invention has the above-described configuration, which minimizes the first magnetic path as a signal magnetic flux detection unit to the utmost limit, and has a sufficiently high conversion efficiency to an electric signal even when the gap is narrowed, and on the other hand, the absolute output due to the low number of turns. This deficiency can be compensated for by a step-up transformer consisting of a first thin film coil, a second magnetic path, and a second thin film coil, thereby making it possible to efficiently reproduce high-density signal magnetization.

実施例 本発明の第1の実施例を第1図a1bに示す。Example A first embodiment of the invention is shown in FIG. 1a1b.

同図において(1)はセラミックス等の非磁性ヘッド基
板で、(2)はその薄膜形成面、(3)は記録媒体対接
面である。薄膜形成面(2)上の記録媒体側前端部には
、第1の下部強磁性薄膜(4)と、第1の上部強磁性薄
膜(5)と、これらの薄膜(4)、(5)間において前
端の磁気ギャップとなるS/SiO□ 等の非磁性薄膜
(6)、及びその後方で強磁性薄膜(4)、(5)間を
貫通する部分を有する第1の薄膜コイル(7)が積層配
置され、これらの積層部より偏平な折返しリング型の薄
膜磁気検出部(8)が形成されギャップ(6)を含むそ
の前部を記録媒体(121に対接するようになっている
。この場合、リング型ヘッドとして動作する為には磁気
ギャップ長を磁極を構成する強磁性薄膜より十分薄くす
る必要がある。上記第1の薄膜コイル(7)はA/ 又
はAu等の良導電性金属からなり、それ自身で1ターン
の閉ループを構成しており、上記薄膜磁気検出部(8)
からなる第1の磁路(9)と鎖交している。
In the figure, (1) is a non-magnetic head substrate made of ceramic or the like, (2) is its thin film forming surface, and (3) is its recording medium contacting surface. A first lower ferromagnetic thin film (4), a first upper ferromagnetic thin film (5), and these thin films (4) and (5) are disposed at the front end on the recording medium side of the thin film forming surface (2). A first thin film coil (7) having a non-magnetic thin film (6) such as S/SiO□ which forms a magnetic gap at the front end in between, and a portion penetrating between the ferromagnetic thin films (4) and (5) behind it. are arranged in a laminated manner, and a flat folded ring-shaped thin film magnetic detection part (8) is formed from these laminated parts, and its front part including the gap (6) is brought into contact with the recording medium (121). In this case, in order to operate as a ring-type head, it is necessary to make the magnetic gap length sufficiently thinner than the ferromagnetic thin film that constitutes the magnetic pole.The first thin film coil (7) is made of a highly conductive metal such as A/ or Au. It constitutes a closed loop of one turn by itself, and the thin film magnetic detection section (8)
It interlinks with the first magnetic path (9) consisting of.

更に薄膜形成面(2)上における上記薄膜磁気検出部(
8)の後方には、第1の薄膜コイル(7)と鎖交する第
2の磁路α6jを構成するように前記コイ/1’(77
の後部を挟入した第2の下部強磁性薄膜αJと第2の上
部強磁性薄膜側が積層され、それらの前後両端部は互い
に接合されて閉ループを構成している。更に第2の磁路
(161と鎖交するように第2の薄膜コイ)Vα9が複
数ターン形成され、その前部が第1の薄膜コイzL/(
7]の後部上において強磁性薄膜α311(t41間を
貫通している。これにより第1の薄膜コイ)v (7)
と第2の薄膜コイ/L’(15)はそれぞれトランスの
1次、2次巻線としてステップアップトランス部(17
)を構成する。
Furthermore, the thin film magnetic detection section (
8), the coil/1' (77
The second lower ferromagnetic thin film αJ sandwiching the rear part of the second upper ferromagnetic thin film is laminated, and both front and rear ends thereof are joined to form a closed loop. Further, a second magnetic path (second thin film coil Vα9 interlinking with 161) is formed with a plurality of turns, and its front part is connected to the first thin film coil zL/(
7] on the rear part of the ferromagnetic thin film α311 (piercing between t41. This makes the first thin film coil) v (7)
and the second thin film coil/L' (15) are used as the primary and secondary windings of the transformer, respectively, in the step-up transformer section (17).
).

上記の構成において、一連の強磁性薄膜はパーマロイ、
センダスト、アモルファス磁性薄膜等であり、各部に適
した材料が用いられる。例えば、薄膜磁気検出部(8)
に用いられる強磁性薄膜としては記録媒体走行に対し耐
摩耗性の優れているセンダストやアモルファス磁性薄膜
が望ましいし、ステップアップトランス部α力の強磁性
薄膜としては厚膜パターン形成の容易なパーマロイが適
している。なお、記録媒体(121において、α@は磁
性層、aDはベークである。
In the above configuration, a series of ferromagnetic thin films are permalloy,
Sendust, amorphous magnetic thin film, etc., and materials suitable for each part are used. For example, the thin film magnetic detection section (8)
As the ferromagnetic thin film used for the recording medium, it is desirable to use sendust or amorphous magnetic thin film, which has excellent wear resistance against running of the recording medium, and as the ferromagnetic thin film for the step-up transformer α force, permalloy, which is easy to form a thick film pattern, is preferable. Are suitable. Note that in the recording medium (121), α@ is a magnetic layer, and aD is a bake layer.

以上の構成を有する薄膜磁気ヘッドの動作は再生時にお
いては、記録媒体(12+の磁性層α0)に記録された
信号磁化からの信号磁束を薄膜磁気検出部(8)の磁気
ギャップ部で拾い、第1の磁路(9)に導くととにより
、これと鎖交する第1の薄膜コイ/” (7)にその時
間変化に比例した起電力が発生して同コイルに信号電流
が流れる。この電流がステップアップトランス部(17
1のトランスを励磁して、トランス2次巻線である第z
の薄膜コイルUの端子(17+にステップアップ比に応
じた起電力を発生し、信号出力電圧が得られる。記録時
は以上の動作の逆過程を経て薄膜磁気検出部(8)のギ
ャップ先端から記録磁界が記録媒体に与えられる。
The operation of the thin film magnetic head having the above configuration is that during reproduction, the signal magnetic flux from the signal magnetization recorded on the recording medium (12+ magnetic layer α0) is picked up by the magnetic gap part of the thin film magnetic detection part (8). By guiding the coil to the first magnetic path (9), an electromotive force proportional to the change over time is generated in the first thin film coil (7) interlinked with the coil, and a signal current flows through the coil. This current flows to the step-up transformer section (17
1 transformer is excited, and the z-th transformer secondary winding is
An electromotive force corresponding to the step-up ratio is generated at the terminal (17+) of the thin-film coil U of the thin-film coil U, and a signal output voltage is obtained. During recording, the signal is transferred from the tip of the gap of the thin-film magnetic detection section (8) through the reverse process of the above operation. A recording magnetic field is applied to the recording medium.

このような構造にすることにより、薄膜磁気検出部(8
)の磁路は極限まで小さくすることができ、従ってギャ
ップ長を0.1μm前後あるいはそれより小さな超狭ギ
ャップにしても極めて高い効率で記録磁化からの信号磁
束を電気信号に変換することができ、更に高効率のステ
ップアップトランスで回路処理に必要な信号出力を得る
ことができる。本実施例ではトランスを構成する強磁性
薄膜の厚さを厚くし、更に薄膜コイルが鎖交する断面形
状の縦演比ができるだけ等しくなるように設計する事に
より高効率のステップアップトランスを実現することが
できる。・第2図は本発明の第2の実施例を示すもので
ステップアップトランス部(171において第2の下部
強磁性薄膜(13a)は第2の薄膜コイtvQ5)の最
外周より広い領域にわたって形成され、第1の薄膜コイ
lv(刀及び第2の薄膜コイ1v(15)の後側部は互
いに整合するように配置され、第2の上部強磁性薄膜(
14a)はこれらコイル(7)、0勺の後側部を、下部
強磁性薄膜(13a)と協同して包囲するための下向凹
部罰と第2の薄膜コイル(19の前側部上面を覆う段差
面啜を有する。したがって第2の上部強磁性薄膜(14
a )は上記第2の薄膜コイ/L/(15)の中心部と
第1および第2の薄膜コイ/l/ (’t> 、(15
)の外側領域で第2の下部強磁性薄膜(13a)と結合
し、外鉄型トランスコアを構成している。このような外
鉄型トランスでは、1次、2次両コイルが接近して電磁
的同軸状に巻回されているため、極めて高効率のトラン
スが実現できる。なお、第2図aにおいては第2の上部
強磁性薄膜(14a)は図示を省略している。
By adopting such a structure, the thin film magnetic detection section (8
) can be made as small as possible, so even if the gap length is made extremely narrow, around 0.1 μm or smaller, the signal magnetic flux from the recording magnetization can be converted into an electrical signal with extremely high efficiency. Furthermore, the signal output necessary for circuit processing can be obtained with a highly efficient step-up transformer. In this example, a highly efficient step-up transformer is realized by increasing the thickness of the ferromagnetic thin film that constitutes the transformer, and by designing the longitudinal ratio of the cross-sectional shape where the thin film coils are interlinked to be as equal as possible. be able to.・Figure 2 shows a second embodiment of the present invention, in which the second lower ferromagnetic thin film (13a) is formed over an area wider than the outermost periphery of the step-up transformer section (171). The rear parts of the first thin film coil lv (15) and the second thin film coil 1v (15) are arranged so as to be aligned with each other, and the second upper ferromagnetic thin film (
14a) has a downward recess for surrounding the rear side of these coils (7), in cooperation with the lower ferromagnetic thin film (13a), and a second thin film coil (covering the upper surface of the front side of 19). Therefore, the second upper ferromagnetic thin film (14
a) is the central part of the second thin film coil /L/(15) and the first and second thin film coil /l/ ('t>, (15)
) is combined with the second lower ferromagnetic thin film (13a) to form an outer iron type transformer core. In such an external iron type transformer, both the primary and secondary coils are wound close to each other in an electromagnetic coaxial manner, so that an extremely highly efficient transformer can be realized. Note that the second upper ferromagnetic thin film (14a) is not shown in FIG. 2a.

第3図は本発明の第3の実施例を示すものである。この
実施例ではヘッド基板としてフェライト等の強磁性基板
α印を用い、薄膜磁気検出部(8)の下部磁極とステッ
プアップトランス部αnの下部強磁性体を上記強磁性基
板08で構成し、これによって製造工程を減らし、又パ
ターンの段差を小さくして製造を容易にし次ものである
FIG. 3 shows a third embodiment of the invention. In this embodiment, a ferrite or other ferromagnetic substrate α mark is used as the head substrate, and the lower magnetic pole of the thin-film magnetic detection section (8) and the lower ferromagnetic body of the step-up transformer section αn are constructed from the above-mentioned ferromagnetic substrate 08. This reduces the number of manufacturing steps and reduces the steps in the pattern to facilitate manufacturing.

この場合、第1及び第2の薄膜コイル(7)、α9、並
びに第1及び第2の上部強磁性体(5)、(14a )
の配置、形状等は第2図の実施例と同様でおる。
In this case, the first and second thin film coils (7), α9, and the first and second upper ferromagnetic bodies (5), (14a)
The arrangement, shape, etc. are the same as in the embodiment shown in FIG.

又、図に示し九非磁性体C1!Jは、少くとも第2の薄
膜コイ/l/■が配置される部分の下の強磁性基板α&
に形成された溝に充填されたもので、特にステップアッ
プ比率を大きくとる必要がある場合第2の磁路(161
が細長くなることによるトランス効率の低下を防ぐもの
である。
In addition, the nine non-magnetic materials C1 shown in the figure! J is at least the ferromagnetic substrate α&under the part where the second thin film coil/l/■ is arranged.
The second magnetic path (161
This prevents a decrease in transformer efficiency due to the elongation of the transformer.

第4図は本発明の第4の実施例を示すものである。この
実施例ではヘッド基板としてフェライト等の強磁性体(
支))の前端に非磁性体(211の領域を設けてなる複
合基板を用いるものである。非磁性体(211は記録媒
体(121との対接側に配置し、その上に第1及び第2
実施例のものと同様な磁気検出部(8)を構成し、強磁
性体(2■の上には、第3の実施例と同様なステップア
ップトランス部(t71を配置し、第2の磁路(161
の下部を前記強磁性体■で構成したものである。なお、
第4図は第3図と同様、トランス効率を上げるための非
磁性体α9を充填した溝を図示しである。この構成はヘ
ッドが更に小型化した場合、第1の磁路(9)と第2の
磁路(1θがお互いに干渉するのを防ぐものである。複
合基板の製造方法としては、強磁性体■と非磁性体CD
を接合する方法や強磁性体(201に溝を形成し、非磁
性体(211を充填する方法等がある。なお、第3の実
施例において、薄膜磁気検出部(8)とステップアップ
トランス部鶴の間の強磁性基板α印に非磁悌7しμs〆
非磁性体で充填した溝を形成したり、あるいは強磁性体
基板a&を非磁性体で完全に分離しても同様の効果があ
る。
FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, the head substrate is made of ferromagnetic material such as ferrite (
A composite substrate is used in which a non-magnetic material (211) is provided at the front end of a non-magnetic material (211). Second
A magnetic detection section (8) similar to that of the embodiment is constructed, and a step-up transformer section (t71) similar to that of the third embodiment is arranged on top of the ferromagnetic material (2). Road (161
The lower part of the ferromagnetic material (2) is made of the ferromagnetic material (2). In addition,
Similar to FIG. 3, FIG. 4 illustrates a groove filled with a non-magnetic material α9 to increase transformer efficiency. This configuration prevents the first magnetic path (9) and the second magnetic path (1θ) from interfering with each other when the head is further miniaturized. ■ and non-magnetic CD
There is a method of joining a ferromagnetic material (201), a method of forming a groove in a ferromagnetic material (201), and filling it with a non-magnetic material (211). The same effect can be obtained by forming a groove filled with a non-magnetic material in the ferromagnetic substrate α mark between the cranes, or by completely separating the ferromagnetic substrate a& with a non-magnetic material. be.

以上の実施例ではステップアップトランス部αDの上部
強磁性体を、強磁性薄膜として説明したが、微細加工を
施したフェライト等の強磁性体ブロックを接合して構成
しても良い。
In the above embodiments, the upper ferromagnetic material of the step-up transformer section αD has been described as a ferromagnetic thin film, but it may also be constructed by bonding microfabricated ferrite blocks or other ferromagnetic material blocks.

本発明の薄膜磁気ヘッドの場合、ギャップ長が短いほど
従来のヘッドに較べて相対的にその効果が顕著に現われ
る。すなわち、ギャップ長が0.2μm程度まではバル
クヘッドでもある程度対応が可能であるが、それより短
く、特に0゜15μm以下の極めて短いギャップ長にな
ると製造法的に精度良くギャップを形成するのが困難に
なり効率が急激に低下してくる。これに対して本発明の
薄膜磁気ヘッドでは、磁極を構成する強磁性薄膜及びギ
ャップとなる非磁性薄膜を蒸着やスパッタリング等の薄
膜形成技術で積層していくため、上記のような微小寸法
でも精度的に何ら問題が無い。又、リングヘッドとして
の磁路を極限まで微小化しているため、狭ギャップ化に
よる効率の低下は極めて少なく、ステップアップ部のト
ランス効率も実用的に90%以上の高効率が十分に得ら
れ、従って極めて短波長の信号でも効率良く再生できる
ものである。
In the case of the thin film magnetic head of the present invention, the shorter the gap length, the more remarkable the effect becomes relative to the conventional head. In other words, bulkheads can be used to some extent for gap lengths up to about 0.2 μm, but for shorter gap lengths, especially extremely short gap lengths of 0°15 μm or less, it is difficult to form gaps with high precision due to manufacturing methods. becomes difficult and efficiency drops rapidly. In contrast, in the thin-film magnetic head of the present invention, the ferromagnetic thin film that constitutes the magnetic pole and the non-magnetic thin film that forms the gap are laminated using thin film forming techniques such as vapor deposition and sputtering, so even the minute dimensions described above can be achieved with precision. There is no problem whatsoever. In addition, since the magnetic path as a ring head is made as small as possible, the drop in efficiency due to narrowing the gap is extremely small, and the transformer efficiency of the step-up section is sufficiently high for practical purposes, exceeding 90%. Therefore, even signals with extremely short wavelengths can be efficiently reproduced.

とにより、極めてせまいギャップ長の場合でも1ターン
当たりの効率が高く、かつ等価回路的に信号巻線回数が
多くなるため、十分な絶対出力が得られ、従って高密度
の信号磁化を高効率で再生できる薄膜磁気ヘッドを実現
できる。その構成は、実際の製造が容易なものであり、
特に狭ギャップ化に伴なって要求される精度の向上にも
十分対応でき、量産上の効果もきわめて大きい。
As a result, even in the case of an extremely narrow gap length, the efficiency per turn is high, and the number of signal windings is increased in terms of an equivalent circuit, so sufficient absolute output can be obtained, and therefore high density signal magnetization can be carried out with high efficiency. A thin film magnetic head that can reproduce data can be realized. Its configuration is easy to manufacture;
In particular, it can sufficiently respond to the improvement in precision required as gaps become narrower, and the effect on mass production is also extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の第1の実施例における薄膜磁気ヘッ
ドの平面図、同すはaのA−A’ 断面図、第2図aは
本発明の第2の実施例における薄膜磁気ヘッドの平面図
、同すはaのA−A’断面図、第3図および第4図は各
々本発明の第3および第4の実施例における薄膜磁気ヘ
ッドの断面図、第5図は従来のパルり型リングヘッドの
平面図、第6図は従来の薄膜磁気ヘッドの断面図である
。 (1)・・・・・ヘッド基板 (6)・・・・・非磁性薄膜 (7)・・・・・第1の薄膜コイル (9)・・・・・第1の磁路 ■・・・・・第2の薄膜コイル α0・・・・・第2の磁路
FIG. 1a is a plan view of a thin film magnetic head according to a first embodiment of the present invention, and FIG. FIGS. 3 and 4 are cross-sectional views of thin-film magnetic heads according to third and fourth embodiments of the present invention, respectively, and FIG. FIG. 6 is a plan view of a pulse type ring head and a cross-sectional view of a conventional thin film magnetic head. (1)...Head substrate (6)...Nonmagnetic thin film (7)...First thin film coil (9)...First magnetic path ■... ...Second thin film coil α0...Second magnetic path

Claims (6)

【特許請求の範囲】[Claims] (1)記録媒体対接面に略垂直な薄膜形成面を有するヘ
ッド基板と、前記対接面に整合した非磁性薄膜よりなる
磁気ギャップを有し、少なくとも一方の磁極が強磁性薄
膜であつて、その磁極の厚みが前記非磁性薄膜より厚い
略リング状の薄膜積層型磁気検出部と、前記リング状薄
膜磁気検出部と記録媒体とで構成される第1の磁路と鎖
交し、それ自身で閉回路を構成する第1の薄膜コイルと
、その第1の薄膜コイルと鎖交する上部および下部強磁
性体よりなる薄膜積層型の第2の磁路と、その第2の磁
路と鎖交し前記第1の薄膜コイルよりも多数回巻回した
第2の薄膜コイルとを備え、前記第2の薄膜コイルから
出力を取り出すようにしたことを特徴とする薄膜磁気ヘ
ッド。
(1) A head substrate having a thin film forming surface substantially perpendicular to the recording medium facing surface, and a magnetic gap made of a nonmagnetic thin film aligned with the facing surface, and at least one magnetic pole is a ferromagnetic thin film. , interlinking with a first magnetic path composed of a substantially ring-shaped thin-film laminated magnetic detection section whose magnetic pole is thicker than the non-magnetic thin film, and the ring-shaped thin-film magnetic detection section and a recording medium; A first thin film coil that forms a closed circuit by itself, a thin film laminated second magnetic path made of an upper and lower ferromagnetic material that interlinks with the first thin film coil, and the second magnetic path. A thin film magnetic head comprising: a second thin film coil that is interlinked and wound more times than the first thin film coil, and output is extracted from the second thin film coil.
(2)第2の磁路が強磁性薄膜を含む構成であることを
特徴とする特許請求の範囲第(1)項記載の薄膜磁気ヘ
ッド。
(2) A thin film magnetic head according to claim (1), wherein the second magnetic path includes a ferromagnetic thin film.
(3)第1の薄膜コイルの閉回路の内側に第2の薄膜コ
イルの中心部を有し、第2の磁路を構成する上部強磁性
体が第2の薄膜コイルのほぼ全体と第1の薄膜コイルの
一部を覆い、第1および第2の薄膜コイルの外側領域と
上記中心部で下部強磁性体と結合し、外鉄型トランスコ
アとしての第2の磁路を構成したことを特徴とする特許
請求の範囲第(1)項又は第(2)項記載の薄膜磁気ヘ
ッド。
(3) The center part of the second thin film coil is located inside the closed circuit of the first thin film coil, and the upper ferromagnetic material constituting the second magnetic path connects almost the entire second thin film coil to the first thin film coil. A part of the thin film coil is covered, and the outer regions of the first and second thin film coils are coupled to the lower ferromagnetic body at the center, forming a second magnetic path as an outer iron type transformer core. A thin film magnetic head according to claim (1) or (2).
(4)ヘッド基板が強磁性基板であり、上記磁気検出部
の一方の磁極と第2の磁路の下部強磁性体を前記強磁性
基板で構成したことを特徴とする特許請求の範囲第(1
)〜(3)項のいずれか1項に記載の薄膜磁気ヘッド。
(4) The head substrate is a ferromagnetic substrate, and one magnetic pole of the magnetic detection section and the lower ferromagnetic body of the second magnetic path are constructed of the ferromagnetic substrate. 1
The thin film magnetic head according to any one of items ) to (3).
(5)ヘッド基板が強磁性体と非磁性体の複合基板であ
り、前記非磁性体部の上に磁気検出部、強磁性体部の上
に第2の磁路を配置し、第2の磁路の下部強磁性体を前
記強磁性基板で構成したことを特徴とする特許請求の範
囲第(1)〜(3)項のいずれか1項に記載の薄膜磁気
ヘッド。
(5) The head substrate is a composite substrate of a ferromagnetic material and a non-magnetic material, and a magnetic detection section is arranged on the non-magnetic material part, a second magnetic path is arranged on the ferromagnetic material part, and a second magnetic path is arranged on the ferromagnetic material part. The thin film magnetic head according to any one of claims (1) to (3), characterized in that a lower ferromagnetic material of the magnetic path is formed of the ferromagnetic substrate.
(6)第2の磁路を構成する強磁性基板の少くとも第2
の薄膜コイルが配置される位置に非磁性体で充填された
溝を有することを特徴とする特許請求の範囲第(4)〜
(5)項のいずれか1項に記載の薄膜磁気ヘッド。
(6) At least the second magnetic substrate of the ferromagnetic substrate constituting the second magnetic path
Claims (4) to 3 include a groove filled with a non-magnetic material at a position where the thin film coil is arranged.
The thin film magnetic head according to any one of item (5).
JP15966585A 1985-07-18 1985-07-18 Thin film magnetic head Pending JPS6220118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15966585A JPS6220118A (en) 1985-07-18 1985-07-18 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15966585A JPS6220118A (en) 1985-07-18 1985-07-18 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6220118A true JPS6220118A (en) 1987-01-28

Family

ID=15698662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15966585A Pending JPS6220118A (en) 1985-07-18 1985-07-18 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6220118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721651A (en) * 1995-08-02 1998-02-24 Tdk Corporation Thin film magnetic head and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721651A (en) * 1995-08-02 1998-02-24 Tdk Corporation Thin film magnetic head and manufacturing method of the same
US5837963A (en) * 1995-08-02 1998-11-17 Tdk Corporation Method of manufacturing a thin film magnetic head with identification marks

Similar Documents

Publication Publication Date Title
US5995342A (en) Thin film heads having solenoid coils
US4546398A (en) Perpendicular magnetic recording and reproducing head
JP3368247B2 (en) Thin-film single-pole magnetic recording head
US4745506A (en) Magnetic head for perpendicular magnetic recording and reproduction
JPH0327967B2 (en)
JPS61175916A (en) Triple-pole magnetic reading/writing head
US5969911A (en) Inductive/MR composite type thin-film magnetic head
JPH0459685B2 (en)
US4443826A (en) Magneto-resistive effect type magnetic head
JPS6220118A (en) Thin film magnetic head
US4937227A (en) Thin-film magnetic head including an inductive transducing element
JPS6275924A (en) Unified thin film magnetic head
JPS6059517A (en) Recording and reproducing composite head for vertical magnetic recording
JPH01166309A (en) Thin film magnetic head
US5726842A (en) Thin-film type magnetic head having an auxiliary magnetic film
JP2563251B2 (en) Thin film magnetic head and method of manufacturing the same
JPH05242429A (en) Thin-film magnetic head
JPH0512762B2 (en)
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS6333206B2 (en)
KR100261615B1 (en) Combination read/write thin film magnetic head
JPH01201814A (en) Superconducting magnetic head
EP0913812A1 (en) Thin-film technology for a head drum
JPS63273206A (en) Thin film magnetic head
JPH01224908A (en) Thin film magnetic head for perpendicular recording