JPS62201146A - Magnetic resonance imaging diagnostic apparatus - Google Patents

Magnetic resonance imaging diagnostic apparatus

Info

Publication number
JPS62201146A
JPS62201146A JP61041930A JP4193086A JPS62201146A JP S62201146 A JPS62201146 A JP S62201146A JP 61041930 A JP61041930 A JP 61041930A JP 4193086 A JP4193086 A JP 4193086A JP S62201146 A JPS62201146 A JP S62201146A
Authority
JP
Japan
Prior art keywords
subject
magnetic field
axis
magnetic resonance
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041930A
Other languages
Japanese (ja)
Other versions
JPH0679595B2 (en
Inventor
宏和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61041930A priority Critical patent/JPH0679595B2/en
Publication of JPS62201146A publication Critical patent/JPS62201146A/en
Publication of JPH0679595B2 publication Critical patent/JPH0679595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、天板上に仰臥される被検体を照射しこの被検
体の体軸方向と一致する基準線が設けられた投光器を有
する磁気共鳴画像装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a method for irradiating a subject lying supine on a top plate and providing a reference line that coincides with the body axis direction of the subject. The present invention relates to a magnetic resonance imaging apparatus having a light projector.

(従来の技術) 磁気共鳴画像診断装置(以下MRI装置と称する)にお
いては、天板上に仰臥される被検体を上方から照明する
投光器を有しており、この投光器には被検体の体軸方向
を一致させる例えば十字状の基準線が設けられている。
(Prior Art) A magnetic resonance imaging diagnostic apparatus (hereinafter referred to as an MRI apparatus) has a floodlight that illuminates a subject lying supine on a top plate from above. For example, a cross-shaped reference line is provided to match the directions.

この投光器は天板の中心を照射するようにFi5[され
ており、CTスキャナーと同様に固定された状態となっ
ている。
This projector is set to Fi5 so that it illuminates the center of the top plate, and is in a fixed state like a CT scanner.

このようなMHI装置によって被検体の横断像を倣形す
るときは、MRI装置に対する天板の進入方向(Z軸と
する)に勾配磁場を加えると共に、選択励起パルスを加
えてスキャンすることにより任意位置の横断像を得るよ
うにしている。この場合正確な診断を行なうためには、
被検体の体軸に関し左も対称な横断像を得ることが望ま
しく、このためには前記投光器の基準線と被検体の体軸
とを一致させることが必要となる。横断像の左右対称性
は特に頭部診断において重要な手掛りとなり、もし体軸
と基準線との不一致に基いて非対称な横断機が得られた
ときには、病変によるものか不一致による非対称像かの
区別がつかないことになる。
When tracing a cross-sectional image of a subject using such an MHI device, a gradient magnetic field is applied in the direction of approach of the top plate to the MRI device (referred to as the Z axis), and selective excitation pulses are applied to scan. I'm trying to get a cross-sectional view of the location. In this case, in order to make an accurate diagnosis,
It is desirable to obtain a transverse image that is symmetrical on the left with respect to the body axis of the subject, and for this purpose it is necessary to align the reference line of the light projector with the body axis of the subject. The left-right symmetry of the cross-sectional image is an important clue, especially in head diagnosis, and if an asymmetrical cross-sectional image is obtained due to a mismatch between the body axis and the reference line, it is difficult to distinguish whether the asymmetric image is due to a lesion or a mismatch. It will not be possible to get it.

ここで従来のMRI装置では投光器は前述のように固定
状態で設置されているために、被検体の方から体軸を基
準線に一致させるように天板上で姿勢を整える必要があ
る。
Here, in a conventional MRI apparatus, since the projector is installed in a fixed state as described above, it is necessary to adjust the posture of the subject on the top plate so that the body axis coincides with the reference line.

しかし、これでは被検体に無理な姿勢を強いる場合があ
るので苦痛を与えることになり、また被検体によっては
体型上そのような姿勢をとることが不可能な場合もある
However, this may force the subject into an unreasonable posture, causing pain, and depending on the subject, it may be impossible to assume such a posture due to the body shape of the subject.

このためこれらの場合には本来のスキャン操作に先立っ
て、予め位置決め用スキャン装置を行なって冠状面像を
倣形し、この冠状面像に基いて位置決めをして本来のス
キャン操作を行なうことにより左右対称な横断像を得る
にうな方法がとられている。
Therefore, in these cases, prior to the original scanning operation, a positioning scanning device is used in advance to copy the coronal image, positioning is performed based on this coronal image, and the original scanning operation is performed. A method is used to obtain bilaterally symmetrical cross-sectional images.

(発明が解決しようと覆る問題点) 従来のMRI装置では左右対称な横断像を得るために位
置決め用スキャンを必要とするので検査工程が増加する
と共に検査時間が長くなるという問題がある。
(Problems to be Solved by the Invention) Conventional MRI apparatuses require positioning scanning in order to obtain bilaterally symmetrical cross-sectional images, so there is a problem that the number of inspection steps increases and the inspection time becomes longer.

本発明はこのにうな問題に対処してなされたもので、位
置決め用スキャンを行なうことなく左右対称な横断像を
得るにうにしたMRI装置を提供することを目的とする
The present invention has been made in response to this problem, and it is an object of the present invention to provide an MRI apparatus that can obtain bilaterally symmetrical cross-sectional images without performing a positioning scan.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために本発明は、投光器を天板に対
して回転可能に取り付け、投光器の回転角度の情報を計
算機に入力する手段と、この情報に応じて計算機によっ
て勾配磁場電源を制御する手段とを備えることを特徴と
するものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides means for rotatably attaching a projector to a top plate and inputting information on the rotation angle of the projector into a computer. and means for controlling the gradient magnetic field power supply by a computer in accordance with this information.

(作用) 投光器を回転することによりこの基準線を体軸に合わせ
るので、被検体の姿勢は任意のままで位置決め用スキャ
ンを行なうことなく、左右対称な横断像を得ることがで
きる。投光器の回転角度の情報は計算機に入力され、削
算機はそれに応じて所望の勾配となるように勾配磁場電
源を制御するので、誤りのない真の横断像を得ることが
できる。
(Function) Since this reference line is aligned with the body axis by rotating the projector, a symmetrical cross-sectional image can be obtained without performing a positioning scan while keeping the subject's posture as desired. Information on the rotation angle of the projector is input to the computer, and the subtraction machine controls the gradient magnetic field power supply accordingly to obtain the desired gradient, so that a true cross-sectional image without errors can be obtained.

(実施例) 第1図は本発明実施例のMRI装置の概略図を示すもの
で、天板1には被検体2(患者)が仰臥され、この被検
体2の頭部3は天板1の中心線4(Z軸)からθ゛傾い
た状態にあるものとする。
(Embodiment) FIG. 1 shows a schematic diagram of an MRI apparatus according to an embodiment of the present invention, in which a subject 2 (patient) lies supine on a top plate 1, and the head 3 of this subject 2 is placed on the top plate 1. It is assumed that the position is tilted by θ° from the center line 4 (Z-axis).

j輸わち被検体2の体軸5はZ軸からθ°だけ図中左方
向に傾いたZ′軸にある。投光器6は天板1に対してZ
軸を中心として回転可能に設置されており、これによっ
てその基準線7を前記被検体2の体軸Z−に一致する位
置まで移動させるa8は架台である。
In other words, the body axis 5 of the subject 2 is located on the Z' axis tilted to the left in the figure by θ° from the Z axis. The floodlight 6 is placed at a Z angle with respect to the top plate 1.
Reference numeral a8 is a pedestal that is rotatably installed around an axis and thereby moves the reference line 7 to a position that coincides with the body axis Z- of the subject 2.

このように投光器6を回転させることにより、被検体2
はZ軸から傾いた状態にある頭部3の姿勢を変えること
なく、体軸Z−と基準線7とを一致させることができる
By rotating the light projector 6 in this way, the subject 2
The body axis Z- can be made to coincide with the reference line 7 without changing the posture of the head 3 which is tilted from the Z-axis.

画像化のための勾配磁場はZ軸方向に勾配をもつように
加えられているが、本来Z軸に平行な基準線7がZ軸か
らθ°傾いたZ−軸におることにより、磁場勾配の向き
も同様にθ°ずらず必要がある。第2図はこのための勾
配磁場の制御系を示すもので、投光器6が投光器回転m
’H9によってθ°回転するように制tmされると、回
転エンコーダ10はこの回転角度θ°を検出してデジタ
ル信号として符号化する。この信号はインターフェース
11を介して計算機12に読み込まれる。この結果、計
算機12はインターフェース13を介して勾配磁場電源
14を、回転角度θ°に応じた所望の磁場勾配の向きと
なるように制御する。すなわち、勾配磁場電源14は、
tanθ=Gx/GZ(GZ:Z軸方向の磁場勾配の大
きざ、Gx:Z!1!1方向と直交するX軸方向の磁場
勾配の大きざ)で示される割合の磁場Gx、 Gzとな
るようにその勾配T!i場コイルの電流値を決定する。
The gradient magnetic field for imaging is applied with a gradient in the Z-axis direction, but because the reference line 7, which is originally parallel to the Z-axis, is on the Z-axis tilted by θ° from the Z-axis, the magnetic field gradient is Similarly, the direction of should also be shifted by θ°. Figure 2 shows a gradient magnetic field control system for this purpose, in which the projector 6 rotates m
When the rotation angle θ° is controlled by H9, the rotary encoder 10 detects this rotation angle θ° and encodes it as a digital signal. This signal is read into the computer 12 via the interface 11. As a result, the computer 12 controls the gradient magnetic field power supply 14 via the interface 13 so that the magnetic field gradient has a desired direction according to the rotation angle θ°. That is, the gradient magnetic field power supply 14 is
The magnetic fields Gx and Gz have a ratio of tanθ=Gx/GZ (GZ: magnitude of the magnetic field gradient in the Z-axis direction, Gx: magnitude of the magnetic field gradient in the X-axis direction perpendicular to the Z!1!1 direction). Like that slope T! Determine the current value of the i-field coil.

勾配磁場コイルの電流値Iiに比例して磁場勾配Giの
大きざを制御することができる[IiαGi (i=X
、V、Z)]。
The magnitude of the magnetic field gradient Gi can be controlled in proportion to the current value Ii of the gradient magnetic field coil [IiαGi (i=X
, V, Z)].

これによって、被検体2の体軸Z一方向の勾配G= (
Gx、0.GZ)を設定することができるので、この体
軸Z−に垂直方向に1度のスキャン操作を行なうことに
より第3図のような左右対称な真の横断像を得ることが
できる。従って、従来のような位置決め用スキャンは不
要となるので、被検体は楽な姿勢のままで検査を受ける
ことができ、また検査工程が少なくなると共に検査時間
も短縮される。
As a result, the gradient G in one direction of the body axis Z of the subject 2 = (
Gx, 0. GZ) can be set, so by performing one scan operation in the direction perpendicular to the body axis Z-, a symmetrical true transverse image as shown in FIG. 3 can be obtained. Therefore, the conventional positioning scan is not required, so the subject can be examined in a comfortable posture, and the number of inspection steps and inspection time are also shortened.

[発明の効果〕 以上のように本発明によれば、投光器を回転することに
より基準線を体軸に一致させるようにしたので、位置決
め用スキャンを行なうことなく1度のスキャンを行なう
だけで左右対称な横断像を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the reference line is made to coincide with the body axis by rotating the projector, so that the left and right positions can be adjusted by performing a single scan without performing a positioning scan. A symmetrical cross-sectional image can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のMRI装置を示す概略図、第2
図は本発明のMRI装置の勾配磁場の制御系を示すブロ
ック図、第3図は本発明のMRI装置によって得られた
左右対称の横断像を示す略図である。 1・・・天板、2・・・被検体、3・・・頭部、4・・
・中心線(Z軸)、 5・・・体軸(Z軸とθ°ずれたZ′軸)、6・・・投
光器、7・・・投光器の基準線、10・・・回転エンコ
ーダ、12・・・計樟機、14・・・勾配磁場電源。
FIG. 1 is a schematic diagram showing an MRI apparatus according to an embodiment of the present invention, and FIG.
The figure is a block diagram showing a gradient magnetic field control system of the MRI apparatus of the present invention, and FIG. 3 is a schematic diagram showing a bilaterally symmetrical cross-sectional image obtained by the MRI apparatus of the present invention. 1...Top plate, 2...Subject, 3...Head, 4...
- Center line (Z axis), 5... Body axis (Z' axis shifted by θ° from the Z axis), 6... Emitter, 7... Reference line of the emitter, 10... Rotary encoder, 12 ...Mechanical machine, 14...Gradient magnetic field power supply.

Claims (1)

【特許請求の範囲】[Claims] 天板上に仰臥される被検体を照明しこの被検体の体軸方
向と一致する基準線が設けられた投光器を有する磁気共
鳴画像診断装置において、前記投光器はその基準線が被
検体の体軸方向に応じて移動し得るように天板に対して
回転可能になつており、投光器の回転角度を検出し符号
化して計算機に読み込ませる手段と、勾配磁場を形成す
る勾配磁場電源を計算機によって前記回転角度に応じて
制御する手段とを備えることを特徴とする磁気共鳴診断
装置。
In a magnetic resonance imaging diagnostic apparatus having a floodlight that illuminates a subject lying supine on a top plate and is provided with a reference line that coincides with the body axis direction of the subject, the floodlight has a reference line that is aligned with the body axis of the subject. It is rotatable with respect to the top plate so that it can be moved in accordance with the direction, and means for detecting and encoding the rotation angle of the projector and reading it into a computer, and a gradient magnetic field power source for forming a gradient magnetic field are connected to the computer. A magnetic resonance diagnostic apparatus comprising: means for controlling according to a rotation angle.
JP61041930A 1986-02-28 1986-02-28 Magnetic resonance imaging system Expired - Lifetime JPH0679595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041930A JPH0679595B2 (en) 1986-02-28 1986-02-28 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041930A JPH0679595B2 (en) 1986-02-28 1986-02-28 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JPS62201146A true JPS62201146A (en) 1987-09-04
JPH0679595B2 JPH0679595B2 (en) 1994-10-12

Family

ID=12621952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041930A Expired - Lifetime JPH0679595B2 (en) 1986-02-28 1986-02-28 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JPH0679595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085372A (en) * 2000-09-13 2002-03-26 Toshiba Corp Magnetic resonance imaging apparatus
JP2010178849A (en) * 2009-02-04 2010-08-19 Toshiba Corp Medical image processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085372A (en) * 2000-09-13 2002-03-26 Toshiba Corp Magnetic resonance imaging apparatus
JP2010178849A (en) * 2009-02-04 2010-08-19 Toshiba Corp Medical image processing apparatus
US8588491B2 (en) 2009-02-04 2013-11-19 Kabushiki Kaisha Toshiba Medical image processing apparatus

Also Published As

Publication number Publication date
JPH0679595B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
GB2149510A (en) Patient alignment system for nmr studies
CN101014284A (en) Magnetic resonance imaging apparatus and method
EP2094161B1 (en) Panoramic x-ray photographing apparatus and method for photographing using the same
JPH05269113A (en) Positioning/photographing method in mri
JPS5848839A (en) Testing device using nuclear magnetic resonance
JPS62201146A (en) Magnetic resonance imaging diagnostic apparatus
JP2002177244A (en) Operating method of magnetic resonance apparatus
JPH04109929A (en) Method for measuring living body magnetism
JP3758712B2 (en) Measuring position alignment method and system of multi-point type direct feed to rotary moving CT scanner
JPS6244232A (en) Mri scanning program system
JPS63294843A (en) Surface coil positioning apparatus for mri
JPH0361451B2 (en)
JPS62172940A (en) Magnetic resonance imaging apparatus
JPH03118491A (en) Apparatus for forming image of distribution of magnetic flux density
JPS6121955U (en) Nuclear magnetic resonance imaging device
EP0393405B1 (en) Method and system for processing RI images in spect apparatus
JPS625332A (en) X-ray irradiation apparatus
JP2003126063A (en) Method of imaging for alignment for mri and mri apparatus
JPS63209637A (en) Magnetic resonance imaging apparatus
Anhalt MODIFICATION OF A DIAGNOSTIC ULTRASOUND UNIT’S MOVEMENT SYSTEM TO PERFORM SCANNING DURING FOCUSSED, ULTRASOUND HYPERTHERMIA
JP2006014751A (en) Magnetic resonance imaging apparatus
JPS6274337A (en) Ct scanner
JPS61170440A (en) Positioning control system of rotary stand
JPH0321225A (en) Nuclear magnetic resonance tomography diagnosing apparatus
JPH03193034A (en) Magnetic resonance imaging device