JPS6220101B2 - - Google Patents
Info
- Publication number
- JPS6220101B2 JPS6220101B2 JP56096552A JP9655281A JPS6220101B2 JP S6220101 B2 JPS6220101 B2 JP S6220101B2 JP 56096552 A JP56096552 A JP 56096552A JP 9655281 A JP9655281 A JP 9655281A JP S6220101 B2 JPS6220101 B2 JP S6220101B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- metal foil
- plastic layer
- composite
- laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011888 foil Substances 0.000 claims description 143
- 229910052751 metal Inorganic materials 0.000 claims description 125
- 239000002184 metal Substances 0.000 claims description 125
- 239000010410 layer Substances 0.000 claims description 86
- 229920003023 plastic Polymers 0.000 claims description 82
- 239000004033 plastic Substances 0.000 claims description 82
- 229920005989 resin Polymers 0.000 claims description 70
- 239000011347 resin Substances 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 68
- 239000002131 composite material Substances 0.000 claims description 46
- 230000001070 adhesive effect Effects 0.000 claims description 38
- 239000000853 adhesive Substances 0.000 claims description 35
- 239000003822 epoxy resin Substances 0.000 claims description 31
- 229920000647 polyepoxide Polymers 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 25
- 239000011253 protective coating Substances 0.000 claims description 25
- 229920005992 thermoplastic resin Polymers 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 17
- 238000004826 seaming Methods 0.000 claims description 16
- 238000007789 sealing Methods 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 239000012948 isocyanate Substances 0.000 claims description 12
- 150000002513 isocyanates Chemical class 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- 239000012790 adhesive layer Substances 0.000 claims description 9
- 239000012744 reinforcing agent Substances 0.000 claims description 9
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 229920005672 polyolefin resin Polymers 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 239000012766 organic filler Substances 0.000 claims description 5
- 229920006122 polyamide resin Polymers 0.000 claims description 5
- 229920005668 polycarbonate resin Polymers 0.000 claims description 5
- 239000004431 polycarbonate resin Substances 0.000 claims description 5
- 229920001225 polyester resin Polymers 0.000 claims description 5
- 239000004645 polyester resin Substances 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- 239000002390 adhesive tape Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 239000004831 Hot glue Substances 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- 238000004873 anchoring Methods 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 125000001033 ether group Chemical group 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 235000013312 flour Nutrition 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 239000011342 resin composition Substances 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims description 2
- 239000011256 inorganic filler Substances 0.000 claims 4
- 229910003475 inorganic filler Inorganic materials 0.000 claims 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- 125000005587 carbonate group Chemical group 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 229910000000 metal hydroxide Inorganic materials 0.000 claims 1
- 150000004692 metal hydroxides Chemical class 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- -1 carbonate ester Chemical class 0.000 description 38
- 229910052782 aluminium Inorganic materials 0.000 description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 34
- 239000004743 Polypropylene Substances 0.000 description 28
- 229920001155 polypropylene Polymers 0.000 description 28
- 238000012360 testing method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 239000004593 Epoxy Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 13
- 239000002985 plastic film Substances 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 11
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 11
- 239000003973 paint Substances 0.000 description 11
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 10
- 229930185605 Bisphenol Natural products 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000005011 phenolic resin Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 150000001299 aldehydes Chemical class 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 8
- 239000007859 condensation product Substances 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 8
- 150000002989 phenols Chemical class 0.000 description 8
- 230000001954 sterilising effect Effects 0.000 description 8
- 238000004659 sterilization and disinfection Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000004809 Teflon Substances 0.000 description 6
- 229920006362 Teflon® Polymers 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 6
- 235000013405 beer Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000007765 extrusion coating Methods 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 235000014171 carbonated beverage Nutrition 0.000 description 4
- 235000013353 coffee beverage Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 239000005007 epoxy-phenolic resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- DNPFOADIPJWGQH-UHFFFAOYSA-N octan-3-yl prop-2-enoate Chemical group CCCCCC(CC)OC(=O)C=C DNPFOADIPJWGQH-UHFFFAOYSA-N 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- FRDVGLLSCPBABZ-UHFFFAOYSA-N 1,6-dimethylcyclohexa-2,4-diene-1-carbaldehyde Chemical compound CC1C=CC=CC1(C)C=O FRDVGLLSCPBABZ-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920001890 Novodur Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 150000004665 fatty acids Chemical group 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- OIAUFEASXQPCFE-UHFFFAOYSA-N formaldehyde;1,3-xylene Chemical compound O=C.CC1=CC=CC(C)=C1 OIAUFEASXQPCFE-UHFFFAOYSA-N 0.000 description 1
- UPSIAUXDGWYOFJ-UHFFFAOYSA-N formaldehyde;furan Chemical compound O=C.C=1C=COC=1 UPSIAUXDGWYOFJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- RCHKEJKUUXXBSM-UHFFFAOYSA-N n-benzyl-2-(3-formylindol-1-yl)acetamide Chemical compound C12=CC=CC=C2C(C=O)=CN1CC(=O)NCC1=CC=CC=C1 RCHKEJKUUXXBSM-UHFFFAOYSA-N 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000015192 vegetable juice Nutrition 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Description
本発明は、複合罐及びその製造方法に関するも
ので、より詳細には、金属罐に匹敵するバリヤー
性、保存性を有し、しかも軽量で焼却処理を可能
な複合罐及びその製造方法に関する。
種々の容器の内でも金属罐は、内容物を外気か
ら完全に遮断するとういうバリヤー性及び内容物
の保存性に特に優れたものであるが、容器重量が
比較的大であり、更に空罐の廃棄処理が困難であ
るという問題がある。
金属罐自体の重量を軽くし、使用する金属コス
トを低減させるために、金属罐の素材厚を減少さ
せる試みが種々なされている。しかしながら、こ
れらの試みは末だ十分に成功するに至つていな
い。例えば、ビールや炭酸飲料等の自生圧力を有
する内容物を充填する罐、即ち内圧罐の場合に
は、罐胴の厚みをかなり減少させても、内圧によ
る罐の変形等が問題となることは殆んどないが、
罐胴と罐蓋との巻締時に加わる圧下力によつて、
罐胴が座屈等の変形を生じるため、罐胴の肉厚を
或る限界値以上に薄くすることは到底困難であ
る。また、果汁飲料罐や通常の食罐のように内容
物が減圧状態で保存される罐、即ちバキユーム罐
においては、罐胴の厚みを内圧罐に比べてかなり
厚くしなければ罐胴に加わる外圧によつて罐胴が
容易に変形することになる。
近年、金属が有する優れたガスバリヤー性を利
用し、金属を複合材料の一素材成分として利用す
ることにより、容器を軽量化することも既に行わ
れている。このような複合材料容器の最も代表的
なものは、積層パウチと呼ばれるものであり、金
属箔の内側にヒートシール可能な樹脂層及び外側
により耐熱性のプラスチツクフイルム層を設けて
成る可撓性積層シートを、ヒートシーラントが対
面するように重ね合せ、周囲をヒートシールした
ものである。この積層パウチは容器としての自立
性及び形態保持性に欠けるばかりでなく、内容物
の保存性にも末だ問題があり、例えば酸性飲料や
酸性果実等を充填した場合には、ヒートシーラン
ト層と金属箔との間に所謂ブリスターと呼ばれる
フクレ等が生じてバリヤー性の低下により、内容
物の長期保存性が期待できない。のみならず、こ
のタイプの容器においては、ヒートシールによる
密封を行わねばならないという生産性上の制約が
ある。ヒートシールは、ヒートシーラント層への
伝熱及びヒートシーラント層の溶融により密封が
始めて可能となるものであるから、密封に1乃至
2秒間もの長時間を必要とし、密封操作を機械的
に行なう二重巻締では250乃至1200罐/分の高速
充填が可能であるのに対して、生産性が著しく悪
いことが明らかである。
従つて、本発明の目的は、金属箔、金属箔の外
面側に設けられたプラスチツク層及び金属箔の内
面側に設けられた保護塗膜から成り、しかも金属
罐に匹敵するバリヤー性と保存性とを有し、更に
二重巻締による密封が可能な複合罐を提供するに
ある。
本発明の他の目的は、バリヤー性や二重巻締性
を損わずに、用いる金属素材の厚みが箔のレベル
に薄肉化されており、その結果軽量性でしかも価
格も安価な複合罐を提供するにある。
本発明の更に他の目的は、空罐を焼却により容
易に廃棄処理に付し得る複合罐を提供するにあ
る。
本発明の更に他の目的は、複合素材を用いる点
を除けば従来の製罐操作と同様の操作で、しかも
従来の製罐設備を使用して、製罐が可能な複合罐
の製造方法の提供するにある。
本発明の更に他の目的は、高生産速度で製罐及
び密封が可能な複合罐の製造方法を提供するにあ
る。
本発明によれば、罐胴部材と一対の罐端部材と
を天地で二重巻締して成る罐においいて、前記罐
胴部材は内面側に位置し且つ内表面に保護塗膜を
有する金属箔と外面側に位置するプラスチツク層
との積層体から形成され、該積層体中の少なくと
も金属箔は罐胴の一端から他端へと延びている継
目を有し、前記保護塗膜はカルボニル基、水酸
基、エーテル基及びエポキシ基から成る群より選
ばれた極性基を10乃至2000ミリモル/100g樹脂
の濃度で含有する樹脂乃至は樹脂組成物から成
り、前記プラスチツク層は少なくとも85Kg/mm2以
上の弾性係数を有し且つ罐胴部材に自己保持性を
与えるに十分な厚みを有する事を特徴とする複合
罐が提供される。
本発明を以下に、添付図面に示す具体例を参照
しつつ説明する。
本発明の複合罐を示す第1図において、複合罐
は全体として1で示す罐胴部材と、全体として
2,2′で示す一対の罐端部材とから成つてお
り、両者は二重巻締により一体化され且つ密封さ
れている。
本発明の複合罐の重要な特徴の一つは、第2図
の断面図に示す通り、この罐胴部材1が、内面側
に位置し且つ内表面に保護塗膜3を有する金属箔
4と外面側に位置するプラスチツク層5との積層
体から形成されていることに存する。即ち、本発
明は、罐の内面側から外面側に向けて、保護塗膜
3/金属箔4/プラスチツク層5の順の積層構造
とすることにより、罐胴への成形やフランジ加
工、更には二重巻締操作が最も容易に行われると
共に、最も優れたバリヤー性と内容物の保存性と
が達成されるという知見に基づくものである。こ
の場合前記金属箔4とプラスチツク層5の間には
良好な成形性を確保し、さらに成形の自己保持性
をより強固なものとするために接着層6を設ける
ことが好ましい。既に述べた如く、金属箔4の内
面にプラスチツク層を設けた複合容器において
は、腐食性の強い内容物を充填したとき、プラス
チツク層と金属箔との間にブリスターが発生し、
金属箔の腐食やこれに伴なうガスバリヤー性の低
下が生じる。しかして、金属箔にこのような腐食
による孔アキが1点でも発生すると、プラスチツ
ク層は程度の差はあれ、かなり大きな気体透過性
を有し、しかも罐の内外では大きな圧力差がある
ため、気体のリークが生じ、内容物の保存性が低
下する。この原因は、末だ十分には明らかでない
が、プラスチツク層自体、イオンや水等の腐食性
成分に対して無視し得ない透過性を有しており、
プラスチツク層と金属箔との間に密着不良の部分
に、腐食性成分の透過が進行して、遂にブリスタ
ーの発生に至るものと思われる。これに対して、
本発明によれば、金属箔4の内に保護塗膜3を設
けたことにより、金属箔との間の密着性を著しく
向上するばかりではなく、腐食性成分の金属箔方
向への透過も抑制され、金属箔のブリスター発生
や腐食が防止されて、金属箔による氷続したガス
バリヤー効果が達成されるのである。のみなら
ず、金属箔自体は著しく機械加工性に劣り、更に
加工中に容易に変形を受けて傷が入りやすいとい
う欠点がある。これに対して、本発明によれば、
金属箔の外側にプラスチツクを貼り合せて積層体
としたことにより、金属箔の内面層にしわや、ク
ラツク、ピンホール等を発生させることなしに、
内面が滑らかな罐胴の形に成形が可能となり、更
にこの罐胴はフランジへの塑性加工や、罐端部材
との二重巻締も可能となるものである。
本発明の複合罐の罐胴部材1は、前述した如く
塗装金属箔4とプラスチツク層5との積層体から
形成されているが、この積層体の少なくとも金属
箔4は、罐胴の一端から他端へと延びている継目
7を有している。第1図に示す具体例では、この
継目7は罐胴の一端から他端へと垂直にストレー
トに延びているが、この継目は所謂螺状に一端か
ら他端へと延びていることができ、更に曲線状乃
至は屈折線状等の任意の形状を取ることができ
る。金属箔の継目、或いは金属箔とプラスチツク
層とが一体となつた積層体の継目は、後に製造法
に関して詳述するように、重ね合せ(ラツプ)接
合、突き合せ接合、ロツクシーム或いはこれらの
組合せで形成させることができる。
本発明において、前記保護塗膜が、カルボニル
The present invention relates to a composite can and a method for manufacturing the same, and more particularly to a composite can that has barrier properties and preservability comparable to metal cans, is lightweight and can be incinerated, and a method for manufacturing the same. Among various types of containers, metal cans have particularly excellent barrier properties of completely shielding the contents from the outside air and are excellent in preserving the contents. There is a problem in that it is difficult to dispose of. In order to reduce the weight of the metal can itself and reduce the cost of the metal used, various attempts have been made to reduce the material thickness of the metal can. However, these attempts have not been fully successful. For example, in the case of cans that are filled with contents that have their own pressure, such as beer or carbonated drinks, that is, internal pressure cans, deformation of the can due to internal pressure will not become a problem even if the thickness of the can body is considerably reduced. There aren't many, but
Due to the rolling force applied when tightening the can body and can lid,
Since the can body undergoes deformation such as buckling, it is extremely difficult to reduce the thickness of the can body beyond a certain limit value. In addition, in cans where the contents are stored under reduced pressure, such as fruit juice cans and regular food cans, in other words, baquium cans, the thickness of the can body must be considerably thicker than that of internal pressure cans, otherwise external pressure will be applied to the can body. As a result, the can body is easily deformed. In recent years, the weight of containers has already been reduced by taking advantage of the excellent gas barrier properties of metals and using metals as a component of composite materials. The most typical type of composite material container is called a laminated pouch, which is a flexible laminated pouch consisting of a metal foil with a heat-sealable resin layer on the inside and a more heat-resistant plastic film layer on the outside. The sheets are stacked one on top of the other with the heat sealant facing each other, and the periphery is heat sealed. This laminated pouch not only lacks self-reliance and shape retention as a container, but also has problems with the preservation of the contents. The long-term shelf life of the contents cannot be expected due to the formation of so-called blisters between the container and the metal foil, resulting in a decrease in barrier properties. Furthermore, this type of container has a productivity limitation in that it must be sealed by heat sealing. With heat sealing, sealing is only possible through heat transfer to the heat sealant layer and melting of the heat sealant layer, so it requires a long time of 1 to 2 seconds to seal, and the sealing operation is mechanically performed. Although it is possible to fill at high speeds of 250 to 1200 cans/min with heavy seaming, it is clear that productivity is extremely poor. Therefore, an object of the present invention is to provide a metal foil, a plastic layer provided on the outer surface of the metal foil, and a protective coating film provided on the inner surface of the metal foil, and to have barrier properties and storage properties comparable to those of metal cans. It is an object of the present invention to provide a composite can which has the following features and which can be sealed by double seaming. Another object of the present invention is to reduce the thickness of the metal material used to the same level as foil without impairing barrier properties or double-sealing properties, and as a result, to create a composite can that is lightweight and inexpensive. is to provide. Still another object of the present invention is to provide a composite can that allows the empty can to be easily disposed of by incineration. Still another object of the present invention is to provide a method for manufacturing a composite can, which can be manufactured using conventional can manufacturing equipment, with the same operation as a conventional can manufacturing operation, except for the use of composite materials. It is on offer. Still another object of the present invention is to provide a method for manufacturing a composite can that can be manufactured and sealed at a high production rate. According to the present invention, in a can formed by double-sealing a can body member and a pair of can end members vertically, the can body member is located on the inner surface side and is made of metal having a protective coating on the inner surface. It is formed from a laminate of foil and an outer plastic layer, at least the metal foil in the laminate having a seam extending from one end of the can body to the other, and the protective coating is carbonyl based. , hydroxyl group, ether group, and epoxy group at a concentration of 10 to 2000 mmol/100 g of resin, and the plastic layer has a polar group of at least 85 kg/mm 2 or more. A composite can is provided having a modulus of elasticity and a thickness sufficient to provide self-retention to the can body. The invention will now be described with reference to specific examples shown in the accompanying drawings. In FIG. 1 showing the composite can of the present invention, the composite can consists of a can body member generally designated 1 and a pair of can end members generally designated 2 and 2', both of which are double-sealed. integrated and sealed. One of the important features of the composite can of the present invention is that, as shown in the cross-sectional view of FIG. It consists in being formed from a laminate with a plastic layer 5 located on the outer side. That is, the present invention has a laminated structure in the order of protective coating 3/metal foil 4/plastic layer 5 from the inner surface to the outer surface of the can, thereby making it easier to mold the can body, flange processing, and more. This is based on the knowledge that the double-sealing operation is the easiest to perform and achieves the best barrier properties and preservation of the contents. In this case, it is preferable to provide an adhesive layer 6 between the metal foil 4 and the plastic layer 5 in order to ensure good moldability and further strengthen the self-holding properties of the molding. As already mentioned, in a composite container in which a plastic layer is provided on the inner surface of the metal foil 4, when filled with highly corrosive contents, blisters are generated between the plastic layer and the metal foil.
Corrosion of the metal foil and associated deterioration of gas barrier properties occur. However, if even one hole occurs in the metal foil due to such corrosion, the plastic layer has considerable gas permeability to varying degrees, and there is a large pressure difference between the inside and outside of the can, so Gas leakage occurs, reducing the shelf life of the contents. The reason for this is not completely clear, but the plastic layer itself has a non-negligible permeability to corrosive components such as ions and water.
It is thought that corrosive components permeate through areas where there is poor adhesion between the plastic layer and the metal foil, eventually leading to the formation of blisters. On the contrary,
According to the present invention, by providing the protective coating film 3 within the metal foil 4, not only the adhesion with the metal foil is significantly improved, but also the permeation of corrosive components toward the metal foil is suppressed. This prevents blistering and corrosion of the metal foil, and achieves the continuous gas barrier effect of the metal foil. In addition, the metal foil itself has extremely poor machinability, and furthermore, it is easily deformed and scratched during processing. On the other hand, according to the present invention,
By bonding plastic to the outside of the metal foil to form a laminate, the inner layer of the metal foil is free from wrinkles, cracks, pinholes, etc.
It is possible to form a can body with a smooth inner surface, and furthermore, this can body can be plastic-processed into a flange and can be double-sealed with a can end member. The can body member 1 of the composite can of the present invention is formed from a laminate of the painted metal foil 4 and the plastic layer 5, as described above, and at least the metal foil 4 of this laminate extends from one end of the can body to the other end. It has a seam 7 extending to the end. In the specific example shown in FIG. 1, this seam 7 extends vertically and straight from one end of the can body to the other, but this seam can also extend in a so-called spiral shape from one end to the other. Furthermore, it can take any shape such as a curved line or a bent line. Seams in metal foils or in laminates of integral metal foils and plastic layers may be formed by lap joints, butt joints, lock seams, or combinations thereof, as detailed below regarding manufacturing methods. can be formed. In the present invention, the protective coating film is carbonyl
【式】基、水酸基、エーテル基及びエポキシ
基から成る群より選ばれた極性基を10乃至2000ミ
リモル/100g樹脂、特に50乃至1600ミリモル/
100g樹脂の濃度で含有する樹脂乃至は樹脂組成
物、特に熱硬化性樹脂乃至はその組成物から成る
ことも金属箔との密着性の点で極めて重要であ
る。即ち、極性基を上記濃度の下限よりも多い量
で含むものは、金属箔への密着性に優れており、
上記上限よりも少い量で含むものは、塗膜自体の
諸耐久性においても良好である。
更に、この保護塗膜は、1.0g/c.c.よりも大き
い密度、特に1.1乃至1.4g/c.c.の密度を有するこ
とが、腐食性成分に対するバリヤー性の点で望ま
しい。
本発明の保護塗膜の極性基において、カルボニ
ル[Formula] 10 to 2000 mmol/100 g of resin, especially 50 to 1600 mmol/
It is also extremely important from the point of view of adhesion to the metal foil that the resin or resin composition, especially a thermosetting resin or its composition, be contained at a concentration of 100 g of resin. That is, those containing polar groups in an amount greater than the lower limit of the above concentration have excellent adhesion to metal foil,
When contained in an amount smaller than the above upper limit, the coating film itself has good durability. Furthermore, it is desirable for the protective coating to have a density of greater than 1.0 g/cc, particularly from 1.1 to 1.4 g/cc, from the viewpoint of barrier properties against corrosive components. In the polar group of the protective coating film of the present invention, carbonyl
【式】基としては、カルボン酸、カルボン
酸塩、カルボン酸エステル、カルボン酸アミ
ド、、炭酸エステル、ウレア或いはウレタン結合
に基ずくカルボニル基であつてよく、前述した極
性基は、樹脂の分子鎖中、分子鎖上のペンダント
基或いは末端基として含有されていてよい。
保護塗膜の適当な例は、熱硬化性樹脂塗料、例
えば、フエノール―ホルムアルデヒド樹脂、フラ
ン―ホルムアルデヒド樹脂、キシレン―ホルムア
ルデヒド樹脂、ケトン―ホルムアルデヒド樹脂、
尿素ホルムアルデヒド樹脂、メラミン―ホルムア
ルデヒド樹脂、アルキド樹脂、不飽和ポリエステ
ル樹脂、エポキシ樹脂、ビスマレイミド樹脂、ト
リアリルシアヌレート樹脂、熱硬化型アクリル樹
脂、シリコーン樹脂、油性樹脂、或いは熱可塑性
樹脂塗料、例えば塩化ビニル―酢酸ビニル共重合
体、塩化ビニル―酢酸ビニル共重合体部分ケン化
物、塩化ビニル―マレイン酸共重合体、塩化ビニ
ル―マレイン酸―酢酸ビニル共重合体、アクリル
重合体、飽和ポリエステル樹脂等である。これら
の樹脂塗料は単独でも2種以上の組合せでも使用
される。
金属箔基体への密着性や耐腐食性の見地から
は、60℃のクロロホルム中で60分間抽出すること
により求めたゲル分率が50乃至100%の範囲にあ
る熱硬化性の塗膜が好適である。
本発明の目的に最も好適な保護塗膜は、エポキ
シ樹脂と他の樹脂とを含有する組成物である。
エポキシ樹脂成分としては、分子中に1個より
も多いオキシラン環を有するエポキシ化合物、特
にビスエポキシドが使用され、好適なエポキシ樹
脂成分は、450乃至5500、特に1000乃至5000のエ
ポキシ当量を有する。
最も好適なエポキシ樹脂成分は、ビスフエノー
ル類とエピハロヒドリンとから誘導された芳香族
エポキシ樹脂である。
前述した他の樹脂成分(硬化剤成分)として
は、分子鎖上にエポキシ樹脂と反応し得る官能
基、例えば水酸基、カルボキシル基、酸無水物
基、アミノ基或いはアミド基を有し且つ好適には
それ自体も塗膜形成能を有する樹脂が単独または
2種以上の組合せで使用される。好適な硬化剤樹
脂成分の例はこれに限定されるものではないが、
次の通りである
水酸基含有樹脂:
レゾール型フエノール・アルデヒド樹脂、キシ
レン・アルデヒド樹脂、尿素―アルデヒド樹脂、
メラミン―アルデヒド樹脂、塩化ビニル―酢酸ビ
ニル共重合体部分乃至は完全ケン化物、ヒドロキ
シアルキルエステル型アクリル樹脂。
酸乃至は酸無水物含有樹脂:
塩化ビニル―無水マレイン酸共重合体、塩化ビ
ニル―酢酸ビニル―無水マレイン酸共重合体、カ
ルボン酸含有型アクリル樹脂。
アミノ基乃至アミド基含有樹脂:
ダイマー酸変性ポリアミド樹脂、アミノアルキ
ルエステル型アクリル樹脂。
本発明の目的に好適な硬化剤樹脂成分は、水酸
基含有型或いは酸乃至は酸無水物含有型のもので
ある。
エポキシ樹脂成分と硬化剤樹脂成分とは、95:
5乃至1:99、特に90:10乃至5:95の重量比で
組合せて使用するのがよい。即ち、エポキシ樹脂
成分の量が上記範囲よりも少ない場合には、アル
ミ箔との密着性が低下する傾向があり、一方上記
範囲よりも多い場合には耐腐食性が低下する傾向
がある。
本発明においては、プラスチツク層は罐胴部材
として、罐の成形、罐詰の製造及び流通段階過程
に罐の形態自己保持性を与えるに十分な強度及び
厚みを有する事が極めて重要である。従来の製罐
操作と同様に高速フランジ成形及び二重巻締を行
う際の圧縮力乃至垂直荷重による罐胴の座屈、空
罐の運搬及び倉庫における段積時の垂直荷重によ
る座屈を防止する形態自己保持性の中で最も厳し
い条件は二重巻締時の垂直荷重である。垂直荷重
は罐フランジ部の材質、厚み及び罐胴径によつて
異るが、従来の製罐操作と同様に高速二重巻締を
行う場合には通常100乃至150Kgの垂直荷重が必要
である。第一表に胴部材プラスチツクの縦弾性係
数と150Kg垂直荷重に対する罐胴の臨界弾性座屈
厚みの実験値、第二表に種々のプラスチツクの引
張乃至曲げ弾性係数を示す。
一方プラスチツク層は、シートへの成形性、フ
ランジの成形性、巻締め部分の大きさ、罐胴形成
(円筒形成)性、軽量性及び経済性の点等から、
0.3乃至1.5mm特に0.4乃至1.0mmの範囲にある事が
望ましい。前記の観点から、プラスチツク層層は
形態の自己保持性を与えるために少くとも85Kg/
mm2以上の弾性係数を有する事が必要である。
このようなプラスチツク層の適当な例は、これ
に限定されるものでないが、中―或いは高密度ポ
リエチレン、アイソタクテイツク・ポリプロピレ
ン、ポリメチルペンテン、結晶性プロピレン―エ
チレン共重合体、プロピレン―エチレン―ブテン
共重合体等のオレフイン系樹脂;ポリ塩化ビニ
ル、塩化ビニル―酢酸ビニル共重合体、塩化ビニ
ル―塩化ビニリデン共重合体等の塩化ビニル系樹
脂;ポリスチレン、ABS樹脂(アクリロニトリ
ル―ブタジエン―スチレン共重合体)等のスチレ
ン系樹脂;ポリエチレンテレフタレート、ポリテ
トラメチレンテレフタレート、ポリエチレンテレ
フタレート/イソフタレート、ポリエチレン/ブ
チレン・テレフタレート、ポリエチレンナフトエ
ート等のポリエステル樹脂;ポリカーボネート樹
脂;ナイロン6、ナイロン6,6、ナイロン6/
ナイロン6,6共重合体、ナイロン12、ナイロン
13、ナイロン6,10、ナイロン6/ナイロン10共
重合体等のポリアミド樹脂;ポリアセタール樹
脂;ポリメチルメタクリレート樹脂、ニトリル含
有量が60wt%以上の高ニトリル樹脂、ポリフエ
ニレンオキサイド樹脂等の熱可塑性樹脂、特に溶
融押出性、シート成形性及び経済性の点からオレ
フイン樹脂、塩化ビニル系樹脂、スチレン系樹
脂、ポリエステル系樹脂、ポリカーボネート樹脂
が好ましい。[Formula] The group may be a carbonyl group based on a carboxylic acid, a carboxylate, a carboxylic acid ester, a carboxylic acid amide, a carbonate ester, a urea, or a urethane bond. It may be contained as a pendant group or a terminal group on the molecular chain. Suitable examples of protective coatings include thermosetting resin coatings, such as phenol-formaldehyde resins, furan-formaldehyde resins, xylene-formaldehyde resins, ketone-formaldehyde resins,
Urea-formaldehyde resins, melamine-formaldehyde resins, alkyd resins, unsaturated polyester resins, epoxy resins, bismaleimide resins, triallyl cyanurate resins, thermosetting acrylic resins, silicone resins, oil-based resins, or thermoplastic resin coatings, such as chloride Vinyl-vinyl acetate copolymer, partially saponified vinyl chloride-vinyl acetate copolymer, vinyl chloride-maleic acid copolymer, vinyl chloride-maleic acid-vinyl acetate copolymer, acrylic polymer, saturated polyester resin, etc. be. These resin coatings may be used alone or in combination of two or more. From the standpoint of adhesion to the metal foil substrate and corrosion resistance, a thermosetting coating film with a gel fraction in the range of 50 to 100%, determined by extraction in chloroform at 60°C for 60 minutes, is preferred. It is. The most suitable protective coatings for the purposes of this invention are compositions containing epoxy resins and other resins. As epoxy resin component, epoxy compounds with more than one oxirane ring in the molecule, especially bisepoxides, are used; preferred epoxy resin components have an epoxy equivalent weight of 450 to 5500, especially 1000 to 5000. The most preferred epoxy resin components are aromatic epoxy resins derived from bisphenols and epihalohydrins. The other resin component (curing agent component) mentioned above has a functional group that can react with the epoxy resin on its molecular chain, such as a hydroxyl group, a carboxyl group, an acid anhydride group, an amino group, or an amide group, and is preferably Resins which themselves have coating film-forming ability may be used alone or in combination of two or more. Examples of suitable curing agent resin components include, but are not limited to:
Hydroxyl group-containing resins are as follows: resol type phenol aldehyde resin, xylene aldehyde resin, urea-aldehyde resin,
Melamine-aldehyde resin, vinyl chloride-vinyl acetate copolymer partially or completely saponified product, hydroxyalkyl ester type acrylic resin. Acid- or acid anhydride-containing resin: vinyl chloride-maleic anhydride copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, carboxylic acid-containing acrylic resin. Resins containing amino groups or amide groups: dimer acid-modified polyamide resins, aminoalkyl ester type acrylic resins. Curing agent resin components suitable for the purpose of the present invention are those containing hydroxyl groups or those containing acids or acid anhydrides. The epoxy resin component and hardener resin component are 95:
They are preferably used in combination at a weight ratio of 5 to 1:99, particularly 90:10 to 5:95. That is, when the amount of the epoxy resin component is less than the above range, the adhesion to aluminum foil tends to decrease, while when it exceeds the above range, the corrosion resistance tends to decrease. In the present invention, it is extremely important that the plastic layer, as a can body member, has sufficient strength and thickness to provide self-retention of the can shape during the can forming, can manufacturing and distribution steps. Prevents buckling of the can body due to compressive force or vertical load during high-speed flange forming and double seaming similar to conventional can manufacturing operations, as well as buckling due to vertical load when transporting empty cans and stacking them in warehouses. The most severe condition for form self-retention is the vertical load during double seaming. Although the vertical load varies depending on the material and thickness of the can flange and the diameter of the can body, a vertical load of 100 to 150 kg is usually required when performing high-speed double seaming similar to conventional can making operations. . Table 1 shows the experimental values of the longitudinal elastic modulus of the plastic body member and the critical elastic buckling thickness of the can shell under a vertical load of 150 kg, and Table 2 shows the tensile and flexural modulus of elasticity of various plastics. On the other hand, the plastic layer has several advantages in terms of formability into sheets, flange formability, size of the seamed part, can body formation (cylindrical formation), light weight, and economic efficiency.
It is desirable that it be in the range of 0.3 to 1.5 mm, especially 0.4 to 1.0 mm. In view of the above, the plastic layer should be at least 85 kg/kg to provide self-retention in form.
It is necessary to have an elastic modulus of mm 2 or more. Suitable examples of such plastic layers include, but are not limited to, medium- or high-density polyethylene, isotactic polypropylene, polymethylpentene, crystalline propylene-ethylene copolymers, propylene-ethylene copolymers, etc. Olefin resins such as butene copolymers; vinyl chloride resins such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers; polystyrene, ABS resins (acrylonitrile-butadiene-styrene copolymers); Styrenic resins such as polyethylene terephthalate, polytetramethylene terephthalate, polyethylene terephthalate/isophthalate, polyethylene/butylene terephthalate, polyethylene naphthoate; polycarbonate resins; nylon 6, nylon 6,6, nylon 6/
Nylon 6,6 copolymer, nylon 12, nylon
13, polyamide resins such as nylon 6, 10, and nylon 6/nylon 10 copolymers; polyacetal resins; thermoplastic resins such as polymethyl methacrylate resins, high nitrile resins with a nitrile content of 60 wt% or more, and polyphenylene oxide resins. In particular, olefin resins, vinyl chloride resins, styrene resins, polyester resins, and polycarbonate resins are preferred from the viewpoint of melt extrudability, sheet moldability, and economical efficiency.
【表】
屈が発生する最少厚みを示す。
[Table] Indicates the minimum thickness at which bending occurs.
【表】【table】
【表】
* 引張弾性係数乃至曲げ弾性係数を示す。
これらのプラスチツクは単独でも或いは2種以
上のブレンド物の形でも用いることができ、更に
プラスチツク層は単層でも或いは2層以上の積層
プラスチツクであつてもよい。
プラスチツク層には、それを増量し、またプラ
スチツク層の延びを損うことなく、特に罐胴への
形成を向上し更にプラスチツク層の自己形態保持
性を向上させるために充填剤乃至は補強剤を配合
せしめることができる。かかる充填剤としては、
軽質乃至は重質の炭酸カルシウム、気相分解法シ
リカ、中和法乃至酸法シリカ等の各種シリカ;酸
化マグネシウム、水酸化マグネシウム、炭酸マグ
ネシウム等のマグネシウム系充填剤;ケイ酸カル
シウム、ケイ酸マグネシウム、タルク、アスベス
ト粉等のケイ酸塩;カオリン、ベントナイト、焼
成カオリン、その他の粘土類等のアルミノケイ酸
塩、或いは無水石膏等の硫酸カルシウムを挙げる
ことができる。補強剤としては、カーボンブラツ
ク、ホワイトカーボン等の粉末補強剤、ガラス繊
維、ロツクウール等の繊維剤、マイカ、金属フレ
ーク、フレーク状ガラス等の薄片状補強剤が使用
される。更に、木粉、殻繊維、木綿、芳香族ポリ
アミド等の有機充填乃至補強剤も使用可能であ
る。
熱可塑性樹脂を比較的低温にてフランジ加工し
た場合、加工後の弾性回復(スプリングバツク)
が発生する。特に成形後の複合罐がレトルト処理
ないしは内容物をホツトパツクする如き高温度に
曝される場合、スプリングバツクにより巻締不良
乃至罐の変形が生じる。しかるに前記充填剤を混
合する事によつてスプリングバツクが著しく抑制
される事を見い出した。更にプラスチツク層の耐
熱温度(熱変形温度)自体が上昇する事によつて
本発明による複合罐の熱・温度に対する形態自立
性が著しく上昇する事を見い出した。
次に充填剤は、シート或いはフイルムへの成形
性及び罐胴への成形性、フランジ塑性加工性及び
二重巻締性を損わない範囲内で熱可塑性樹脂へ混
入出来る。
すなわち、これらの充填剤乃至は補強剤は樹脂
100重量部当り5乃至500重量部、特に10乃至200
重量部の量で使用すると、前述した目的(スプリ
ングバツクの抑制、罐胴への成形性、フランジ加
工性及び二重巻締性)に関して良好な結果が得ら
れる。
用いるプラスチツク層には、それ自体公知の配
合剤、例えば着色剤、酸化防止剤、紫外線吸収
剤、熱安定剤、滑剤、可塑剤、帯電防止剤等を公
知の処方に従つて配合できる。
金属箔としては、アルミ箔等の軽金属箔、鉄
箔、鋼箔、ブリキ箔等が有利に使用される。これ
らの金属箔は保護塗膜やプラスチツク層等の密着
性の点で、リン酸及び/又はクロム酸処理、ベー
マイト処理、アルマイト処理、電解クロム酸処理
等の表面処理をされていることをが望ましい。
本発明において、金属箔は、ガスバリヤー性の
点で、5ミクロン以上、特に9ミクロン以上の厚
みを有することが望ましく、一方経済性の点で
は、100ミクロン以下、特に60ミクロン以下の厚
みを有することが望ましい。
プラスチツク層の厚みは、金属箔との組合せで
罐胴に自己形態保持性を与えるものであり、一般
に0.3乃至1.5mm、特に0.4乃至1.0mmの厚みを有す
ることが、加工性との兼ね合いで有利である。
金属箔とプラスチツク層との厚みの比は、経済
性と内容物保存性との見地からは、1:3乃1:
300、特に1:8及至1:100の範囲にあることが
望ましい。
保護塗膜は、耐腐食性や加工性の見地から、1
乃至20ミクロン、特に3乃至15ミクロンの厚みを
有することが望ましい。
本発明の複合罐は種々の方法で製造することが
できる。本発明の一つの好適態様においては、プ
ラスチツク層と金属箔とを貼合せた積層体を、前
記金属箔が内側となるように丸めて側面継目を有
する罐胴に成形する工程と、前記罐胴成形工程の
前或いは後に金属箔の内表面に保護塗膜を形成す
る工程と、罐胴部材の両端部を塑性加工してフラ
ンジ付罐胴に形成する工程と、フランジ付罐胴と
一対の罐胴部材とを天地で二重巻締する工程とか
ら成る複合罐の製造法が提供される。
本発明の複合罐のこの製造工程を示す第3―A
乃至3―H図において、先ず第3―A図に示す通
り、塗装金属箔4とプラスチツク層5とを貼合せ
て成るシート状の積層体8を用意する。
この積層体8の継目となる端縁9,9′に、第
3―B図に示す接着剤テープ乃至は被覆10,1
0′を施こす。この際、継目の内側となる積層体
の端縁部9においては、この端縁部9を完全に被
覆するように、接触剤テープ乃至は被覆10をコ
の字状に折曲げて施してもよい。
この積層体8を、第3―C図に示す通り、塗装
金属箔4が内側となるように丸めて、積層体8の
両端縁9,9′を重ね合わす。次いで第3―D図
に示す通り、積層体の重ね合わされた端縁部9,
9′をバンパー11で押圧して接着剤10,1
0′の作用で接着させ、罐胴12とする。
フランジ加工工程を示す第3―E図において、
罐胴12の両端部を、フランジパイロツトと呼ば
れる工具13,13′で押圧してほぼ直角方向に
折曲げ、罐胴12の両端部にフランジ15,1
5′を形成させる。
次いで、第3―F図に示す通り、罐蓋16を罐
胴12の一端部と係合させ、フランジ15と罐蓋
周縁との間で二重巻締を行つて、内容物充填用の
罐胴12aとする。
充填工程(第3―C図)において、罐胴12a
の内部に内容物18を充填し、最後に密封工程
(第3―H図)において、罐蓋16′を罐胴12a
の上に載せ、罐蓋周縁とフランジ15′との間に
二重巻締して最終複合罐とする。
本発明に用いる積層体は、金属箔の一方の面に
プラスチツク層を貼り合せ、他方の面に保護塗膜
を設けることにより製造される。
金属箔とプラスチツク層との貼り合せは、プラ
スチツク層そのものが金属への熱接着性を有する
場合には、この熱接着性を利用して、或いはホツ
トメルト接着剤、イソシアネート系接着剤、エポ
キシ系接着剤、酸変性乃至は酸無水物変性熱可塑
性樹脂或いはアンカー剤を両者の間に介在させて
行うことができる。プラスチツク層は、予め形成
されたフイルム乃至はシートの形で金属箔と接着
させてもよく、また押出されたプラスチツク層
を、押出コートと呼ばれる方法で熱接着させても
よい。この際、前記接着剤やアンカー剤は、金属
箔側に設けても、プラスチツク層に設けてもよ
い。ホツトメルト接着剤としては、ポリエチレ
ン、エチレン―酢酸ビニル共重合体等のベース樹
脂に、スチレン系樹脂、石油樹脂、ロジン、変性
ロジン等を粘着剤として使用され、イソシアネー
ト系接着剤としてはそれ自体公知の一液型或いは
二液型イソシアネート接着剤が酸乃至は酸無水物
変性熱可塑樹脂としては、マレイン酸、無水マレ
イ酸、アクリル酸、メタクリル酸、無水シトラコ
ン酸、無水イタコン酸等でグラフト変性されたオ
レフイン系樹脂、石油樹脂等が、またアンカー剤
としては有機チタネート系、イソシアネート系の
アンカー剤が使用される。
これらの接着剤の塗布は、溶液、サスペンジヨ
ン、エマルジヨン等の形で行つてもよいし、また
粉末塗装、押出コート、多層共押出し、サンドイ
ツチラミネーシヨン等により行つてもよい。
保護塗膜の形成は、前述した樹脂成分を、トル
エン、キシレン等に芳香族系溶媒;メチルエチル
ケトン等のケトン系溶媒;ブチルセロソルブ等の
セロソルブ系溶媒等に、固形分が10乃至50%とな
るように溶解し、この溶液を塗布した後、これを
焼付けることにより形成される。塗膜の焼付は、
塗料の種類によつても相違するが150乃至400℃で
1秒乃至20分間の条件がよい。
継目の形成に使用する接着剤としては、イソシ
アネート系接着剤、エポキシ系接着剤等の熱硬化
型接着剤も使用し得るが、接着時間を短縮するた
めには、用いる接着剤は熱接着性の熱可塑性樹脂
を用いることが好ましい。このような熱接着剤の
適当な例は、前述したエチレン系不飽和カルボン
酸乃至は無水物で変性されたオレフイン系樹脂や
石油樹脂の他に、各種ポリアミドや各種コポリア
ミドを主体とする熱接触剤が使用される。これら
の熱接着剤はテープの形で熱接着により積層体素
材端縁に施こすのがよい。
積層体シートの罐胴への成形は、従来の製罐機
のロール・フオーマーを用いて容易に行なうこと
ができる。プラスチツク層によるスプリングバツ
ク傾向を緩和するために、ロール・フオーミング
に先立つて積層体の予備加熱し、プラスチツク層
を柔かくしておくことができる。継目の形成に際
して、積層体の接着剤が施された端縁部を、接着
剤の融点乃至は軟化点以上の温度に予備加熱して
おくことが生産性の上で望ましい。
積層体端縁部のバンピング、即ち重ね合せ継目
の形成は、溶融乃至軟化した接着剤を備えた端縁
部を、冷却されたハンマー乃至はバンパーで押圧
することにより容易に且つ高速度で行われる。前
述したように、端縁部の接着剤を予備加熱する場
合には、端縁部のプラスチツク層も溶融乃至は軟
化する傾向を示すが、このようにプラスチツク層
が溶融乃至軟化することによつて、かえつて継目
の形成が円滑に且つ確実に行われ、しかも段差の
小さい重ね合わせ継目の形成が可能となる。
フランジの形成は、プラスチツクの塑性加工と
して室温で行うこともできるが、一般にはスプリ
ングバツクを防止するためにフランジを形成する
両端部を予備加熱しておくことが望ましい。この
加熱温度は、プラスチツクの種類、厚み或いは充
填剤の含有量等によつても相違するが、プラスチ
ツクの融点乃至は軟化点より60℃低い温度から融
点乃至は軟化点迄の温度である。
罐蓋との巻締も室温で可能で可能であるが、フ
ランジ部を上記温度に加熱してから巻締を行つて
もよい。
尚、積層体の加熱は、赤外線加熱、超音波照
射、熱風吹付、熱ローラとの接触、高周波誘導加
熱或いはこれらの組合せで行うことができる。
本発明において、罐胴継目の形成は、上述した
接着手段に限定されない。例えば、積層体のプラ
スチツク層が熱接着性を有する場合には、第4図
に示す如く、積層体8の両端縁部9,9′を重ね
合わせ、これら両端縁部を、ヒートシールバー1
9,19′で加熱下に押圧してヒートシールを行
うことにより継目を形成させることができる。
また、第5図に示す如く、積層体8の両端縁部
9,9′を突き合せ、これら両端縁部を加熱機構
20で加熱して、融着による継目を形成させるこ
ともできる。
更に、第6―A図に示す通り、積層体として、
一端部9において金属箔の突出部22を備えた積
層体8aを製造し、この突出部22の外側となる
面に接着剤層23を設けると共に、他端部9′の
金属箔4上にも接着剤層23′を設け、次いで第
6―B図に示す通り、一端の金属箔突出部22と
他端の金属箔とを接着剤23を介して重ね合せ接
すると共に、プラスチツク層の両端部を突き合せ
接合することによつて継目とすることができる。
更にまた、第7―A図に示す通り、積層体8b
の一端にハゼ折り24、及びこの積層体の他端部
に逆向きのハゼ折り24′を形成させ、次いで第
7―B図に示す通り、これらハゼ折り24及び2
4′を、接着剤23を介して係合させることによ
り継目を形成させることができる。
本発明の別の好適態様によれば、マンドレル上
に金属箔を巻付け、この金属箔の周囲にプラスチ
ツクを被覆し、形成される積層体をマンドレルか
ら引出して罐胴に成形する工程と、前記罐胴成形
工程の前或いは後に金属箔の内表面に保護塗膜を
形成する工程と、罐胴部材の両端部を塑性加工し
てフランジ付罐胴に成形する工程と、フランジ付
罐胴と一対の罐端部材とを天地で二重巻締する工
程とから成る複合罐体の製造法が提供される。
この方法の製造工程の要部を示す第8―A乃至
8―C図において、先ず、第8―A図に示すよう
に、マンドレル25の上に金属箔乃至塗装金属箔
4aを巻付ける。第8―A図に示す具体例におい
ては、マンドレル25の周よりも若干長い巾の金
属箔4aがマンドレル25上に供給され、マンド
レル25上にストレートな継目28を有する筒の
形に巻付けられる。この場合、金属箔4aの重ね
合される端縁部には接着剤層26が設けられてお
り、マンドレル25上にヒートシールローラ30
を設けて、金属箔の巻付けと同時に、金属箔4a
の重ね合せ接合を行う。
次いで、第8―B図に示す通り、マンドレル2
5に巻付けられた金属箔の筒4b周囲にプラスチ
ツク層5aを被覆する。第8―B図に示す具体例
では、この被覆のために、マンドレル25包囲す
るようにクロスヘツドダイ31が設けられ、プラ
スチツクは押出機32で混練された後ダイ31を
通して金属箔の筒4bの周囲に筒状に溶融押出さ
れ、押出成形と同時に金属箔への積層が行われ
る。
第8―C図の工程図に示す通り、この筒状の積
層体37はダイス出口から引出され、サイジング
ユニツト(キヤリブレーテイングダイ)38及び
冷却槽39で冷却固化されて、切断機41で所定
寸法への裁断とが行われて、罐胴部材1へ成形さ
れることになる。
以後の工程は、第1の方法について詳述したの
と同様な方法で行われる。
第8―A図に示すように、金属箔の巻付を行う
代りに、第9図にすように、マンドレル25に対
して、金属箔4cを螺旋状に巻付けることも可能
であることが了解されるべきである。
また、プラスチツク層を溶融押出被覆する代り
に、第10図に示す通り、マンドレル25上の金
属箔の筒4bの上に、予じめ形成されたプラスチ
ツクのフイルム乃至シート5bを巻付けて、筒状
の積層体37とすることも可能である。この場
合、金属箔及びプラスチツクの継目の形成並びに
金属箔とプラスチツク層との接着は、既に詳述し
た接着剤によつて行なうことができる。
本発明において、図示していないが、フランジ
加工工程に先立つて、罐胴先端乃至はこれに近接
した部分を、それ自体公知のダイ方式或いはスピ
ン方式(ロール方式)により、側壁部よりも小径
に絞つてネツクを形成させることもできる。
また、罐胴への成形時に金属箔4に傷が入るの
を防止するために、積層体の金属箔側外表面には
予じめ前述した塗膜を設けておくことが望まし
い。しかしながら、勿論、この塗膜は、積層体を
罐胴に成形した後、その内表面に設けてもよい。
また、罐胴への成形に先立つて、金属箔外表面に
予じめ塗膜を施こし、更に成形後の罐胴内面に第
二の塗膜をトツプコートとして施こしてもよい。
この態様によれば、金属箔の保護が一層完全なも
のとなる。
本発明を次に例で説明する。
実施例 1
片面にエポキシ樹脂(ビスフエノール類とエピ
ハロヒドリンより誘導される芳香族エポキシ樹
脂、平均分子量2900、エポキシ当量1900)とフエ
ノール樹脂(アルカリ性触媒下でのフエノール類
とアルデヒド類の縮合物、平均分子量640)を
50:50の重量比で混合した塗料を塗布し、200℃
で10分間焼付して厚さ5μmの塗膜(極性基
950mmol/100g樹脂含有、ゲル分率85%、密度
1.20g/c.c.)を形成させた厚さ20μmの軟質アル
ミニウム箔を準備した。一方、表1に示したよう
な厚さと物性を有する8種類のプラスチツク・シ
ートを準備し、イソシアネート系の接着剤を用い
て前記の片面途装した軟質アルミニウム箔の非塗
装面に接着して積層シートとし、145mm×170mmの
矩形に切断して8種類の試料のブランクを得た。
この積層シートのブランクの片方の短切側のアル
ミニウム箔を端縁に添つて幅約5mmにわたつて切
削して除去した後、テフロン・コートされたステ
ンレス製の直径525mm、長さ145mmの丸棒に塗膜面
が丸棒と対面するように巻付けて、前記ブランク
の短辺側の端縁部のプラスチツク・シートが互い
に対面するように載置して固定し、超音波溶接法
によつて重ね合せ部のプラスチツク層を互いに接
着せしめて円筒状に成形した。次に、これらの円
筒状の成形体の両端を、夫々、4mm切断して、内
径52.5mm、高さ137mmの本発明による8種類の試
験罐胴を得た。これらの試験罐胴の両端を幅約5
mmにわたつて赤外線ヒーターで加熱してプラスチ
ツク層を軟化させ、冷却されたフランジ形成用治
具を両側から押付けることによつて二重巻締用の
フランジを形成させ、更に、一端に通常のアルミ
ニウム製の罐蓋を二重巻締して試験罐体を得た。
これらの試験罐体を用いて、熱間充填法による
果肉飲料(ネクター)罐詰とツナ油漬けを充填後
115℃で60分間加熱殺菌処理に賦した魚肉罐詰を
製造し、室温で1年間保存した後に罐内面の状態
と内容品を評価して表2に示す結果を得た。[Table] * Indicates tensile elastic modulus or bending elastic modulus.
These plastics can be used alone or in the form of a blend of two or more types, and the plastic layer can be a single layer or a laminated plastic layer of two or more layers. Fillers or reinforcing agents may be added to the plastic layer in order to increase its weight and, without impairing the elongation of the plastic layer, particularly improve its formation into the can body and further improve the self-shape retention of the plastic layer. It can be blended. Such fillers include:
Various types of silica such as light to heavy calcium carbonate, vapor phase decomposition silica, neutralized silica or acid silica; magnesium fillers such as magnesium oxide, magnesium hydroxide, and magnesium carbonate; calcium silicate, magnesium silicate Examples include silicates such as , talc, and asbestos powder; aluminosilicates such as kaolin, bentonite, calcined kaolin, and other clays; and calcium sulfate such as anhydrite. As the reinforcing agent, powdered reinforcing agents such as carbon black and white carbon, fiber agents such as glass fiber and rock wool, and flaky reinforcing agents such as mica, metal flakes, and flaky glass are used. Furthermore, organic fillers or reinforcing agents such as wood flour, shell fibers, cotton, and aromatic polyamides can also be used. When thermoplastic resin is flanged at a relatively low temperature, elastic recovery after processing (spring back)
occurs. In particular, when the molded composite can is subjected to high temperatures such as retorting or hot-packing the contents, springback may cause poor seaming or deformation of the can. However, it has been found that springback can be significantly suppressed by mixing the filler described above. Furthermore, it has been found that by increasing the heat resistance temperature (heat deformation temperature) of the plastic layer itself, the form independence against heat and temperature of the composite can according to the present invention increases significantly. Next, the filler can be mixed into the thermoplastic resin within a range that does not impair the moldability into a sheet or film, the moldability into a can body, the flange plastic workability, and the double seamability. In other words, these fillers or reinforcing agents are
5 to 500 parts by weight per 100 parts by weight, especially 10 to 200 parts by weight
When used in the amount of parts by weight, good results are obtained with respect to the aforementioned objectives (suppression of spring back, formability into can bodies, flanging properties and double seaming properties). The plastic layer to be used may contain compounding agents known per se, such as colorants, antioxidants, ultraviolet absorbers, heat stabilizers, lubricants, plasticizers, antistatic agents, etc., according to known formulations. As the metal foil, light metal foil such as aluminum foil, iron foil, steel foil, tin foil, etc. are advantageously used. In order to improve the adhesion of the protective coating and plastic layer, these metal foils are preferably subjected to surface treatments such as phosphoric acid and/or chromic acid treatment, boehmite treatment, alumite treatment, electrolytic chromic acid treatment, etc. . In the present invention, the metal foil desirably has a thickness of 5 microns or more, especially 9 microns or more in terms of gas barrier properties, while it has a thickness of 100 microns or less, especially 60 microns or less in terms of economy. This is desirable. The thickness of the plastic layer, in combination with the metal foil, gives the can body self-shape retention, and it is generally advantageous to have a thickness of 0.3 to 1.5 mm, particularly 0.4 to 1.0 mm, in terms of workability. It is. The thickness ratio of the metal foil and the plastic layer is 1:3 to 1: from the viewpoint of economy and content preservation.
300, particularly preferably in the range of 1:8 to 1:100. From the viewpoint of corrosion resistance and processability, the protective coating film is
Preferably it has a thickness of between 20 and 20 microns, particularly between 3 and 15 microns. The composite can of the present invention can be manufactured by various methods. In one preferred embodiment of the present invention, the steps include the steps of: rolling a laminate in which a plastic layer and a metal foil are bonded together so that the metal foil is on the inside to form a can body having a side seam; A process of forming a protective coating on the inner surface of the metal foil before or after the forming process, a process of plastically working both ends of the can body member to form a flanged can body, and a process of forming a flanged can body and a pair of cans. A method for manufacturing a composite can is provided, which comprises a step of double seaming a body member and a body member at the top and bottom. Part 3-A showing this manufacturing process of the composite can of the present invention
In Figures 3-H to 3-H, first, as shown in Figure 3-A, a sheet-like laminate 8 made by laminating painted metal foil 4 and plastic layer 5 is prepared. Adhesive tapes or coatings 10, 1 as shown in FIG.
Apply 0'. At this time, the contact tape or coating 10 may be bent into a U-shape and applied to the edge 9 of the laminate that is inside the seam so as to completely cover the edge 9. good. As shown in FIG. 3-C, this laminate 8 is rolled up so that the coated metal foil 4 is on the inside, and both end edges 9, 9' of the laminate 8 are overlapped. Next, as shown in FIG. 3-D, the overlapping edge portions 9,
9' with bumper 11 and adhesive 10,1
0' to form the can body 12. In Figure 3-E showing the flange processing process,
Both ends of the can body 12 are pressed with tools 13, 13' called flange pilots and bent in an almost right angle direction, and flanges 15, 1 are attached to both ends of the can body 12.
5' is formed. Next, as shown in Figure 3-F, the can lid 16 is engaged with one end of the can body 12, and double seaming is performed between the flange 15 and the periphery of the can lid to close the can for filling with contents. It is assumed that the body is 12a. In the filling process (Figure 3-C), the can body 12a
The contents 18 are filled into the inside of the can body 12a, and in the final sealing process (Fig. 3-H), the can lid 16' is closed to the can body 12a.
The final composite can is then placed on top of the can and double-sealed between the periphery of the can lid and the flange 15'. The laminate used in the present invention is produced by laminating a plastic layer on one side of a metal foil and providing a protective coating on the other side. If the plastic layer itself has thermal adhesive properties to metal, the metal foil and the plastic layer can be bonded together by utilizing this thermal adhesive property, or by using hot melt adhesive, isocyanate adhesive, or epoxy adhesive. This can be carried out by interposing an acid-modified or acid anhydride-modified thermoplastic resin or an anchor agent between the two. The plastic layer may be adhered to the metal foil in the form of a preformed film or sheet, or the extruded plastic layer may be thermally bonded by a process called extrusion coating. At this time, the adhesive or anchor agent may be provided on the metal foil side or on the plastic layer. Hot melt adhesives use a base resin such as polyethylene or ethylene-vinyl acetate copolymer, and a styrene resin, petroleum resin, rosin, modified rosin, etc. as an adhesive.Isocyanate adhesives are known per se. One-component or two-component isocyanate adhesives are graft-modified with acid- or acid anhydride-modified thermoplastic resins such as maleic acid, maleic anhydride, acrylic acid, methacrylic acid, citraconic anhydride, itaconic anhydride, etc. Olefin resins, petroleum resins, etc. are used, and organic titanate-based and isocyanate-based anchor agents are used as anchor agents. These adhesives may be applied in the form of solutions, suspensions, emulsions, etc., or may be applied by powder coating, extrusion coating, multilayer coextrusion, sandwich lamination, etc. To form the protective coating, the above-mentioned resin component is mixed with an aromatic solvent such as toluene or xylene; a ketone solvent such as methyl ethyl ketone; or a cellosolve solvent such as butyl cellosolve, etc., so that the solid content is 10 to 50%. It is formed by dissolving, applying this solution, and then baking it. The baking of the paint film is
Although it varies depending on the type of paint, conditions of 1 second to 20 minutes at 150 to 400°C are best. Thermosetting adhesives such as isocyanate adhesives and epoxy adhesives can also be used to form seams, but in order to shorten the bonding time, the adhesive used should be a thermosetting adhesive. It is preferable to use thermoplastic resin. Suitable examples of such thermal adhesives include the aforementioned olefinic resins and petroleum resins modified with ethylenically unsaturated carboxylic acids or anhydrides, as well as thermal adhesives based on various polyamides and various copolyamides. agent is used. These thermal adhesives are preferably applied in tape form to the edges of the laminate material by thermal bonding. The laminate sheet can be easily formed into a can body using a roll former of a conventional can making machine. To alleviate the springback tendency of the plastic layer, the laminate can be preheated prior to roll forming to soften the plastic layer. When forming the seam, it is desirable from the viewpoint of productivity to preheat the edge portion of the laminate to which the adhesive is applied to a temperature equal to or higher than the melting point or softening point of the adhesive. Bumping of the edges of the laminate, i.e. the formation of lap seams, is easily and rapidly achieved by pressing the edges with the melted or softened adhesive with a cooled hammer or bumper. . As mentioned above, when the adhesive on the edge is preheated, the plastic layer on the edge also tends to melt or soften. On the contrary, the seam can be formed smoothly and reliably, and it is also possible to form an overlapping seam with a small level difference. Although the flange can be formed at room temperature by plastic working of plastic, it is generally desirable to preheat both ends where the flange will be formed in order to prevent springback. This heating temperature varies depending on the type, thickness, filler content, etc. of the plastic, but is from a temperature 60° C. lower than the melting point or softening point of the plastic to the melting point or softening point. Sealing with the can lid can also be done at room temperature, but the seaming may be performed after heating the flange portion to the above temperature. The laminate can be heated by infrared heating, ultrasonic irradiation, hot air blowing, contact with a heat roller, high frequency induction heating, or a combination thereof. In the present invention, the formation of the can body joint is not limited to the adhesive means described above. For example, if the plastic layer of the laminate has thermal adhesive properties, as shown in FIG.
The seam can be formed by heat sealing by pressing under heat at 9 and 19'. Further, as shown in FIG. 5, it is also possible to abut both end edges 9, 9' of the laminate 8 and heat these end edges with a heating mechanism 20 to form a seam by fusing. Furthermore, as shown in Figure 6-A, as a laminate,
A laminate 8a is manufactured which has a metal foil protrusion 22 at one end 9, and an adhesive layer 23 is provided on the surface that is the outside of this protrusion 22, and also on the metal foil 4 at the other end 9'. An adhesive layer 23' is provided, and then, as shown in FIG. 6-B, the metal foil protrusion 22 at one end and the metal foil at the other end are overlapped and bonded via the adhesive 23, and both ends of the plastic layer are bonded together. A seam can be formed by butt joining. Furthermore, as shown in FIG. 7-A, the laminate 8b
A seam fold 24 is formed at one end and a reverse seam fold 24' is formed at the other end of the laminate, and then these seam folds 24 and 2 are formed as shown in FIG. 7-B.
4' can be engaged via adhesive 23 to form a seam. According to another preferred embodiment of the present invention, the steps of: winding a metal foil on a mandrel, covering the metal foil with plastic, and drawing the formed laminate from the mandrel to form a can body; A process of forming a protective coating on the inner surface of the metal foil before or after the can body forming process, a process of plastically working both ends of the can body member to form a flanged can body, and a pair of flanged can bodies. A method for manufacturing a composite case is provided, which comprises a step of double-sealing a can end member and a can end member at the top and bottom. In FIGS. 8-A to 8-C showing the main parts of the manufacturing process of this method, first, as shown in FIG. 8-A, a metal foil or painted metal foil 4a is wrapped around a mandrel 25. In the specific example shown in FIG. 8-A, a metal foil 4a having a width slightly longer than the circumference of the mandrel 25 is supplied onto the mandrel 25, and is wound onto the mandrel 25 in the shape of a cylinder having a straight seam 28. . In this case, an adhesive layer 26 is provided on the overlapping edge of the metal foil 4a, and a heat seal roller 30 is placed on the mandrel 25.
is provided, and at the same time the metal foil is wrapped, the metal foil 4a is wrapped.
Perform overlapping joining. Next, as shown in Figure 8-B, the mandrel 2
A plastic layer 5a is coated around the metal foil cylinder 4b wrapped around the metal foil. In the specific example shown in FIG. 8-B, a crosshead die 31 is provided to surround the mandrel 25 for this coating, and the plastic is kneaded in an extruder 32 and then passed through the die 31 into a metal foil cylinder 4b. It is melt-extruded into a cylindrical shape around the periphery, and laminated onto metal foil at the same time as extrusion. As shown in the process diagram of FIG. 8-C, this cylindrical laminate 37 is pulled out from the die outlet, cooled and solidified in a sizing unit (calibrating die) 38 and a cooling tank 39, and cut into a predetermined shape by a cutting machine 41. It is then cut to size and formed into the can body member 1. The subsequent steps are performed in a manner similar to that detailed for the first method. Instead of wrapping the metal foil as shown in Figure 8-A, it is also possible to spirally wrap the metal foil 4c around the mandrel 25 as shown in Figure 9. It should be understood. Alternatively, instead of melt extrusion coating the plastic layer, a preformed plastic film or sheet 5b may be wrapped around the metal foil tube 4b on the mandrel 25, as shown in FIG. It is also possible to form a laminate 37 having a shape. In this case, the formation of the metal foil and plastic seam and the adhesion of the metal foil and the plastic layer can be carried out by means of the adhesives already described in detail. In the present invention, although not shown in the drawings, prior to the flange processing step, the tip of the can body or a portion close to this is made into a smaller diameter than the side wall portion by a die method or a spin method (roll method), which is known per se. It can also be squeezed to form a net. Further, in order to prevent the metal foil 4 from being scratched during molding into a can body, it is desirable to provide the above-mentioned coating film in advance on the outer surface of the laminate on the metal foil side. However, of course, this coating film may be provided on the inner surface of the can body after the laminate is formed into the can body.
Furthermore, a coating film may be applied to the outer surface of the metal foil in advance prior to molding into a can body, and a second coating film may be applied as a top coat to the inner surface of the can body after molding.
According to this aspect, the protection of the metal foil becomes even more complete. The invention will now be illustrated by way of example. Example 1 Epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 2900, epoxy equivalent weight 1900) and phenol resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight) on one side 640)
Apply paint mixed at 50:50 weight ratio and heat at 200℃
Baked for 10 minutes for 5 μm thick coating (polar group)
950mmol/100g resin content, gel fraction 85%, density
A 20 μm thick soft aluminum foil was prepared. On the other hand, eight types of plastic sheets having the thickness and physical properties shown in Table 1 were prepared and laminated by adhering them to the unpainted surface of the single-sided soft aluminum foil using an isocyanate adhesive. It was made into a sheet and cut into rectangles of 145 mm x 170 mm to obtain blanks for eight types of samples.
After removing the aluminum foil from one short cut side of the laminated sheet blank along the edge to a width of approximately 5 mm, a Teflon-coated stainless steel round bar with a diameter of 525 mm and a length of 145 mm was cut. Wrap the blank so that the coated surface faces the round bar, place and fix the blank so that the short edges of the plastic sheet face each other, and use ultrasonic welding to The overlapping plastic layers were glued together and formed into a cylindrical shape. Next, both ends of these cylindrical molded bodies were each cut by 4 mm to obtain eight types of test can bodies according to the present invention each having an inner diameter of 52.5 mm and a height of 137 mm. The width of both ends of these test can bodies is approx.
The plastic layer is softened by heating with an infrared heater over a length of mm, and a cooled flange forming jig is pressed from both sides to form a flange for double seaming. A test case was obtained by double-sealing an aluminum can lid. Using these test containers, we filled canned pulp beverages (nectar) and tuna pickled in oil using the hot filling method.
Canned fish meat that had been subjected to heat sterilization treatment at 115°C for 60 minutes was produced, and after being stored at room temperature for one year, the condition of the inner surface of the can and the contents were evaluated, and the results shown in Table 2 were obtained.
【表】【table】
【表】
比較例 1
実施例1に示した、エポキシ樹脂とフエノール
樹脂を混合した塗料を塗布・焼付した厚さ20μm
の軟質アルミニウム箔の非塗装面に、厚さ200μ
mの低密度ポリエチレンのシート(弾性率25Kg/
mm2)をイソシアネート系の接着剤を用いて接着
し、積層シートを作製した。該積層シートを用い
て、実施例1に示した方法により比較試料1の試
験罐胴を作製し、更に、フランジを形成せしめ
た。この比較試料1のフランジ付きの試験罐胴の
一端に、通常の202径のアルミニウム製の罐蓋を
二重巻締しようと試みたが、巻締機内で罐胴が弾
性坐屈し、罐蓋を罐胴に正常に装着することがで
きなかつた。
実施例 2
片面にエポキシ樹脂(ビスフエノール類とエピ
ハロヒドリンより誘導される芳香族エポキシ樹
脂、平均分子量3750、エポキシ当量2900)とフエ
ノール樹脂(アルカリ性触媒下でのフエノール類
とアルデヒド類の縮合物、平均分子量380)を
80:20の重量比で混合した塗料を塗布し、210℃
で10分間焼付して厚さ約5μmの塗膜(極性基
1030m mol/100g樹脂含有、ゲル分率90%、
密度1.14g/c.c.)を形成させた厚さ30μmの軟質
アルミニウム箔の他の片面に無水マレイン酸で変
性したポリプロピレンの厚さ約30μmのフイルム
を熱ロールにより熱融着させて積層シートとし、
該積層シートを211.1mm×112.5mmの矩形に切断し
て積層シートのブランクを得た。一方、表3の示
したような充填剤を表3に示したような比率で含
有する厚さ約800μmのポリプロピレンのシート
を圧縮成形法により成形し、206.1mm×112.5mmの
矩形に切断してプラスチツク・シートのブランク
を作製した。次に、前記の積層シートのブランク
を、発熱体を埋込んで240℃に保持された、テフ
ロン・コーテイングされた直径65.6mm、長さ
112.5mmのステンレス製の丸棒に塗装面が丸棒と
対面するように巻付けて、前記の積層シートのブ
ランクの短辺側の端縁部が互いに重り合うように
載置し、前記のブランクの端縁部が重り合つた部
分を厚さ3mmのシリコン・ゴムのシートを介して
押圧して両端縁部を互いに接着せしめた。更に、
この積層シートのブランクを巻付けてある丸棒の
外側に前記のプラスチツク・シートのブランクを
巻付けて、シリコン・ゴム製の押圧ロールで丸棒
の全面を順次押圧して積層シートの変性ポリプロ
ピレン面とプラスチツク・シートのブランクを熱
接着させた。この際、プラスチツク・シートのブ
ランクの短辺側の端縁は巻付けた時に互いに対面
するように載置され、押圧によつて互いに熱融着
した。最後に丸棒を約130℃まで冷却して円筒状
に成形された積層体を丸棒から引抜き、両端を4
mm切断して本発明による試験罐胴(211径、7号
罐)を得た。これらの試験罐胴に実施例1に示し
た方法に従つてフランジを形成させ、片方に211
径のアルミニウム製の罐蓋を二重巻締し、オレン
ジ・ジユース及びコンソメ・スープを充填して他
端にも211径のアルミニウム製の罐蓋を二重巻締
し、所定の殺菌処理をした後保存試験に供した。
室温で1年間保存した後に開罐して評価した結果
を表4に示す。[Table] Comparative Example 1 The paint mixture of epoxy resin and phenolic resin shown in Example 1 was applied and baked to a thickness of 20 μm.
on the unpainted surface of soft aluminum foil, 200μ thick
m low-density polyethylene sheet (elastic modulus 25Kg/
mm 2 ) were adhered using an isocyanate adhesive to produce a laminated sheet. Using the laminated sheet, a test can body of Comparative Sample 1 was produced by the method shown in Example 1, and a flange was further formed. An attempt was made to double-seal a regular 202-diameter aluminum can lid to one end of the flanged test can body of Comparative Sample 1, but the can body buckled elastically in the seaming machine, causing the can lid to tighten. It was not possible to attach it to the can body properly. Example 2 Epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 3750, epoxy equivalent weight 2900) and phenol resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight) on one side 380)
Apply paint mixed in a weight ratio of 80:20 and heat at 210℃
Baked for 10 minutes with
1030mmol/100g resin content, gel fraction 90%,
On the other side of a 30 μm thick soft aluminum foil with a density of 1.14 g/cc), a polypropylene film modified with maleic anhydride with a thickness of about 30 μm is thermally fused using a hot roll to form a laminated sheet.
The laminated sheet was cut into a rectangle of 211.1 mm x 112.5 mm to obtain a laminated sheet blank. On the other hand, a polypropylene sheet approximately 800 μm thick containing the fillers shown in Table 3 in the proportions shown in Table 3 was molded by compression molding, and cut into a rectangle of 206.1 mm x 112.5 mm. A plastic sheet blank was made. Next, the above laminated sheet blank was heated to 65.6 mm in diameter and 65.6 mm in length with a Teflon coating, which was maintained at 240 °C with a heating element embedded in it.
Wrap it around a 112.5 mm stainless steel round bar so that the painted surface faces the round bar, and place the laminated sheet blank so that the short side edges of the blank overlap each other. The overlapping portions of the two end edges were pressed together through a 3 mm thick silicone rubber sheet to adhere the two end edges to each other. Furthermore,
The plastic sheet blank was wrapped around the outside of the round rod around which the laminated sheet blank was wrapped, and the entire surface of the round rod was sequentially pressed with a silicone rubber pressure roll to form the modified polypropylene surface of the laminated sheet. and plastic sheet blanks were hot glued together. At this time, the edges of the short sides of the plastic sheet blanks were placed so as to face each other when wrapped, and were thermally fused together by pressing. Finally, cool the round bar to about 130℃, pull out the cylindrical laminate from the round bar, and attach 4
A test can body (211 diameter, No. 7 can) according to the present invention was obtained by cutting mm. Flanges were formed on these test can bodies according to the method shown in Example 1, and flanges were formed on one side.
A 211-diameter aluminum can lid was double-sealed, orange juice and consommé soup were filled, and the other end was double-sealed with a 211-diameter aluminum can lid, followed by a prescribed sterilization process. It was then subjected to a storage test.
Table 4 shows the results of evaluation after opening the can after being stored at room temperature for one year.
【表】【table】
【表】【table】
【表】
比較例 2
実施例2に示した、エポキシ樹脂とフエノール
樹脂を混合した塗料を塗布・焼付した厚さ30μm
の軟質アルミニウム箔の非塗装面に、実施例2と
同様に、無水マレイン酸で変性したポリプロピレ
ンのフイルムを熱融着せしめ、所定の大きさに切
断して積層シートのブランクを得た。一方、樹脂
100重量部当り800重量部の炭酸カルシウムの粉末
を含有するポリプロピレンを厚さ約800μmのシ
ートに成形し、所定の大きさに切断してプラスチ
ツク・シートのブランクを作製した。これらの積
層シートのブランクとプラスチツク・シートのブ
ランクを用いて、実施例2に示した方法に従つ
て、比較試料2の試験罐胴を作製し、実施例1に
示した方法に従つてフランジを形成せしめた。こ
のフランジ付きの試験罐胴の一端に、通常の211
径のアルミニウム製の罐蓋を二重巻締することを
試みたところ、罐胴の巻締部付近のプラスチツク
層にヒビ割れが発生し、正常に罐蓋を罐胴に装着
することができなかつた。
実施例 3
表5に示したような厚さを有する5種類の金属
箔を準備し、夫々の金属箔の片面に、エポキシ樹
脂(ビスフエノール類とエピハロヒドリンより誘
導される芳香族エポキシ樹脂、平均分子量3300、
エポキシ当量2300)とフエノール樹脂(アルカリ
性触媒下でのフエノール類とアルデヒド類の縮合
物、平均分子量340)を20:80の重量比で混合し
た塗料を塗布し、205℃で10分間焼付けして厚さ
約5μmの塗膜(極性基1100m mol/100g樹
脂含有、ゲル分率80%、密度1.26g/c.c.)を形成
させて片面塗装金属箔を作製した。一方、通常の
ポリプロピレン(弾性率110Kg/mm2)と炭酸カル
シウムの粉末を樹脂100重量部当り200重量部の比
率で前記のポリプロピレンに混合したブレンド物
(弾性率310Kg/mm2)を厚さ比1:1で共押出しし
て表5に示した厚さを有する複合シートを作製
し、該複合シートの炭酸カルシウムを含まないポ
リプロピレンの面と前記の片面塗装金属箔の非塗
装面をイソシアネート系の接着剤を用いて接着
し、積層シートを得た。次に、この積層シートを
206.1mm×112.5mmの矩形に切断して積層シートの
ブランクを作製した。該積層シートのブランクを
テフロン・コーテイングされた直径65.6mm長さ
112.5mmのステンレス製の丸棒に塗装面が丸棒と
対面するように巻付けて、前記の積層シートのブ
ランクの短辺側の端縁が互いに接触して対面する
ように載置し、この短辺側の端縁が対面している
部分を超音波加熱して互いに溶融接着せしめて円
筒状に成形し、更に、この円筒状の成形体の両端
を、夫々、4mm切断して211ダイヤ、7号罐用の
本発明による罐胴を作製した。これらの試験罐胴
に、実施例1に示した方法に従つて、フランジを
形成させ、一端に通常のぶりき製の211径の罐蓋
を二重巻締し、10%アツプル・ドリンク及びツナ
水煮を充填し、他端にも211径の通常のぶりき製
罐蓋を二重巻締し、所定の殺菌処理をした後に保
存試験に賦した。室温で1年間保存した後に開罐
して評価した結果、罐内面の状態及び内容品の保
存状態はいずれの罐についても全く異常は認めら
れなかつた。[Table] Comparative Example 2 The paint mixture of epoxy resin and phenol resin shown in Example 2 was applied and baked to a thickness of 30 μm.
In the same manner as in Example 2, a polypropylene film modified with maleic anhydride was heat-sealed to the unpainted surface of the soft aluminum foil and cut into a predetermined size to obtain a laminated sheet blank. On the other hand, resin
Polypropylene containing 800 parts by weight of calcium carbonate powder per 100 parts by weight was formed into a sheet approximately 800 μm thick and cut into a predetermined size to produce a plastic sheet blank. Using these laminated sheet blanks and plastic sheet blanks, a test can body of Comparative Sample 2 was prepared according to the method shown in Example 2, and a flange was attached according to the method shown in Example 1. formed. At one end of this flanged test can body, a regular 211
When an attempt was made to double-seal an aluminum can lid with a diameter of Ta. Example 3 Five types of metal foils having the thicknesses shown in Table 5 were prepared, and one side of each metal foil was coated with an epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 3300,
A paint made by mixing epoxy equivalent (2300) and phenol resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight 340) in a weight ratio of 20:80 is applied and baked at 205℃ for 10 minutes to thicken the coating. A coating film with a diameter of about 5 μm (containing 1100 m mol of polar group/100 g resin, gel fraction 80%, density 1.26 g/cc) was formed to produce a single-sided coated metal foil. On the other hand, a blend of ordinary polypropylene (modulus of elasticity 110 Kg/mm 2 ) and calcium carbonate powder mixed with the above polypropylene (modulus of elasticity 310 Kg/mm 2 ) at a ratio of 200 parts by weight per 100 parts by weight of the resin was used. A composite sheet having the thickness shown in Table 5 was prepared by coextrusion at a ratio of 1:1, and the calcium carbonate-free polypropylene side of the composite sheet and the non-painted side of the single-sided coated metal foil were coated with an isocyanate-based coating. A laminated sheet was obtained by bonding using an adhesive. Next, this laminated sheet
A laminated sheet blank was prepared by cutting into a rectangle of 206.1 mm x 112.5 mm. The laminated sheet blank is Teflon-coated with a diameter of 65.6 mm and a length of
Wrap it around a 112.5 mm stainless steel round bar so that the painted surface faces the round bar, and place the laminated sheet blank so that the short edges of the sheet are in contact with each other and face each other. The parts where the edges of the short sides face each other are heated ultrasonically to melt and adhere to each other to form a cylindrical shape.Furthermore, both ends of this cylindrical molded body are cut by 4 mm each to form a 211 diamond. A can body according to the present invention for a No. 7 can was manufactured. Flanges were formed on these test can bodies according to the method shown in Example 1, and a regular tin can lid with a diameter of 211 was double-sealed on one end, and 10% apple drink and tuna were added. The can was filled with boiling water, double-sealed with a regular tin can lid of 211 diameter on the other end, and subjected to a prescribed sterilization treatment before being subjected to a storage test. After being stored at room temperature for one year, the cans were opened and evaluated. As a result, no abnormalities were observed in the condition of the inner surface of the can or the storage condition of the contents.
【表】
実施例 4
厚30μmの硬質アルミニウム箔の片面に、エポ
キシ樹脂(ビスフエノール類とエピハロヒドリン
より誘導される芳香族エポキシ樹脂、平均分子量
3750、エポキシ当量2900)とフエノール樹脂(ア
ルカリ性触媒下でのフエノール類とアルデヒド類
の縮合物、平均分子量380)を80:20の重量比で
混合した塗料を塗布し、210℃で10分間焼付して
厚さ約5μmの塗膜(極性基1030m mol/100
g樹脂含有、ゲル分率90%、密度1.14g/c.c.)を
形成させて片面塗装アルミニウム箔を作製した。
試料23作製用の積層シートは前記の片面塗装アル
ミニウム箔の非塗装面にイソシアネート系の接着
剤を用いて厚さ500μmのポリプロピレンのシー
ト(弾性率110Kg/mm2)を接着して得た。試料24
作製用の積層シートは前記の片面塗装アルミニウ
ム箔の非塗装面にイソシアネート系のアンカー剤
を用いてポリプロピレン(弾性率110Kg/mm2)を
厚さ約500μmに押出コーテイングして得た。試
料25作製用の積層シートは前記の片面塗装アルミ
ニウム箔の非塗装面に無水マレイン酸で変性した
ポリプロピレンを厚さ約10μmに押出コーテイン
グし、更に、この面に厚さ500μmのポリプロピ
レンのシートを熱ロールを用いて溶融接着せしめ
て得た。試料26作製用の積層シートは前記の片面
塗装アルミニウム箔の非塗装面にマレイン酸で変
性したポリプロピレンと通常のポリプロピレンを
20:80の重量比でブレンドした樹脂の厚さ500μ
mシート(弾性率112Kg/mm2)を熱ロールを用い
て溶融接着せしめて得た。これらの積層シートを
211.1×112.5mmの矩形に切断して製罐用のブラン
クとし、該ブランクの両方の短辺側の端縁部に無
水マレイン酸で変性したポリプロピレンの厚さ30
μm、幅10mmのテープを前記端縁部を熱風により
局部加熱した後に押圧ロールにより押着して前記
の端縁を覆うようにして熱融着せしめ、更に、テ
フロン・コートされた直径65.6mm、長さ112.5mm
のステンレ製の丸棒に塗装面が丸棒と対面するよ
うに巻付けて、前記のブランクの短辺側の端縁部
が互いに重り合うように載置し、超音波溶接法に
より端縁部を溶融接着せしめて円筒状に成形し、
この円筒状の成形体の両端を、夫々、4mm切断し
て本発明による4種の試験罐胴を得た。これらの
試験罐胴に、実施例1に示した方法に従つてフラ
ンジを形成させた後に一端に通常のアルミニウム
製の211ダイヤの罐蓋を二重巻締し、コーヒー飲
料とカツオ味付を充填して他の一端にも前記の罐
蓋を二重巻締して罐詰を製造した。これらの罐詰
は所定の加熱殺菌処理に賦した後保存試験に供し
た。室温で1年間保存した後に開罐して評価した
結果、罐内面の状態及び内容品の保存状態などに
全く異常は認められなかつた。
比較例 3
実施例4に示した、片面にエポキシ樹脂とフエ
ノール樹脂を混合した塗料を塗布・焼付した厚さ
30μmの硬質アルミニウム箔の非塗装面にアンカ
ー剤を用いないでポリプロピレン(弾性率110
Kg/mm2)を厚さ約500μmに押出コーテイングし
た。この積層シートを用いて、実施例4に示した
方法に従つて、罐胴の作製を試みたところ、超音
波溶接後にブランクの押えを取りはずす際に無水
マレイン酸で変性したポリプロピレンの層が破断
し、プラスチツク層がアルミニウム箔から剥離し
て弾性回復して円筒状の成形体を得ることができ
なかつた。
実施例 5
厚さ50μmの電解クロム酸処理した鋼箔を準備
した。試料27作製用の片面塗装金属箔は前記の電
解クロム酸処理した鋼箔の片面にエポキシ樹脂
(ビスフエノール類とエピハロヒドリンより誘導
される芳香族エポキシ樹脂、平均分子量3750、エ
ポキシ当量2900)とフエノール樹脂(アルカリ性
触媒下でのフエノール類とアルデヒド類の縮合
物、平均分子量380)を80:20の重量比で混合し
た塗料を塗布し、210℃で10分間焼付して厚さ約
5μmの塗膜(極性基1030m mol/100g樹脂
含有、ゲル分率90%、密度1.14g/c.c.)を形成さ
せて得た。試料28作製用の片面塗装金属箔は前記
の電解クロム酸処理した鋼箔の片面にエポキシ樹
脂(ビスフノール類とエピハロヒドリンより誘導
される芳香族エポキシ樹脂、平均分子量3750、エ
ポキシ当量2900)と尿素樹脂(尿素とホルムアル
デヒドの縮合物、平均分子量320)を85:15の重
量比で混合した塗料を塗布し、200℃で10分間焼
付して厚さ約5μmの塗膜(極性基1080m
mol/100g樹脂含有、ゲル分率70%、密度1.18
g/c.c.)を形成させて得た。試料29作製用の片面
塗装金属箔は前記の電解クロム酸処理した鋼箔の
片面に85重量部の塩化ビニルと酢酸ビニルの共重
合体(塩化ビニル87重量部、酢酸ビニル13重量
部、平均重合度400)、8重量部の塩化ビニル、酢
酸ビニル、マレイン酸の共重合体(塩化ビニル86
重量部、酢酸ビニル13重量部、マレイン酸1重量
部、平均重合度400)、7重量部の部分けん化した
塩化ビニルと酢酸ビニルの共重合体(塩化ビニル
91重量部、酢酸ビニル3重量部、ビニルアルコー
ル6重量部、平均重合度500)を混合した塗料を
塗布し、180℃で10分間焼付して厚さ約5μmの
塗膜(極性基220m mol/100g樹脂含有、ゲル
分率2%、密度1.35g/c.c.)を形成させて得た。
試料30作製用の片面塗装金属箔は前記の電解クロ
ム酸処理した鋼箔の片面に70重量部の軟質の塩化
ビニル・ペースト(塩化ビニル樹脂の平均重合度
1100:可塑剤:エポキシ化大豆油、平均分子量
960、エポキシ当量140、塩化ビニル樹脂:可塑剤
=50:20(重量比))、10重量部のアクリル系樹脂
(メチルメタクリレート40重量部、エチルアクリ
レート30重量部、エチルヘキシルアクリレート30
重量部の共重合体、平均分子量52000)、5重量部
のフエノール樹脂(アルカリ性触媒下でのフエノ
ール類とアルデヒド類の縮合物、平均分子量
380)、5重量部のエポキシ樹脂(ビスフエノール
類とエピハロヒドリンより誘導される芳香族エポ
キシ樹脂、平均分子量900、エポキシ当量500)を
混合した塗料を塗布し、200℃で10分間焼付して
厚さ約5μmの塗膜(極性基290m mol/100g
樹脂含有、ゲル分率5%、密度1.14g/c.c.)を形
成させて得た。一方、高密度ポリエチレンに樹脂
100重量部の炭酸カルシウムの粉末を混合したブ
レンド物を厚さ約300μmのシート(弾性率305
Kg/mm2)に成形し、前記の4種類の片面塗装金属
箔の非塗装面にイソシアネート系の接着剤を用い
て接着し、積層シートを作製した。これらの積層
シートを216.1mm×112.5mmの矩形に切断した後両
方の短辺側の端縁部を幅約5mmにわたつて赤外線
加熱し、無水マレイン酸で性性したポリエチレン
の厚さ約50μm、幅4mmのテープを貼着せしめ、
更に、両方の短辺側の端縁部を幅5mmにわたつ
て、夫々、反対側へはぜ折りした。これらの短辺
側の端縁部がはぜ折りされた矩形シートを塗膜面
が内面側となるようにしてはぜ折りした部分を互
いにかみ合させた後、テフロンコートされたステ
ンレス製の直径65.6mm、長さ112.5mmの丸棒には
め込んで固定し、はぜ折りした部分のかみ合せ部
を赤外線で加熱し、厚さ5mmのシリコンゴムのシ
ーを介して押圧して互いに接着せしめ、円筒状の
成形体とした。これらの円筒状の成形体の両端
を、夫々、4mm切断した後、実施例1に示した方
法によりフランジを形成せしめ、一端に通常の
211径の電解クロム酸処理鋼板製の罐蓋を二重巻
締して本発明による4種類の罐体とし、野菜ジユ
ースとツナのドレツシングソース漬けを所定の条
件で充填し、他端にも通常の211径の電解クロム
酸処理鋼板製の罐蓋を二重巻締し、更に、所定の
加熱殺菌処理をした後保存試験に賦した。室温で
1年間保存した後に開罐して評価した結果を表6
に示す。[Table] Example 4 Epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight
3750, epoxy equivalent: 2900) and phenolic resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight: 380) in a weight ratio of 80:20 was applied and baked at 210℃ for 10 minutes. coating film with a thickness of approximately 5 μm (polar group 1030 m mol/100
A single-sided coated aluminum foil was prepared by forming a gel containing g resin, gel fraction 90%, density 1.14 g/cc).
The laminated sheet for producing Sample 23 was obtained by adhering a 500 μm thick polypropylene sheet (modulus of elasticity 110 Kg/mm 2 ) to the unpainted surface of the single-sided coated aluminum foil using an isocyanate adhesive. Sample 24
The laminated sheet for production was obtained by extrusion coating polypropylene (modulus of elasticity 110 Kg/mm 2 ) on the non-painted surface of the single-sided painted aluminum foil to a thickness of about 500 μm using an isocyanate-based anchoring agent. The laminated sheet for making sample 25 was made by extrusion coating polypropylene modified with maleic anhydride to a thickness of about 10 μm on the non-painted side of the single-sided coated aluminum foil, and then heat-coating a polypropylene sheet with a thickness of 500 μm on this surface. It was obtained by melt-bonding using a roll. The laminated sheet for making sample 26 was made by applying polypropylene modified with maleic acid and regular polypropylene to the unpainted side of the single-sided coated aluminum foil.
Thickness of resin blended at 20:80 weight ratio 500μ
A m-sheet (elastic modulus: 112 Kg/mm 2 ) was obtained by melt-bonding using a hot roll. These laminated sheets
A blank for can making is cut into a rectangle of 211.1 x 112.5 mm, and a 30 mm thick polypropylene modified with maleic anhydride is attached to the edges of both short sides of the blank.
A tape with a diameter of 65.6 mm and a diameter of 65.6 mm coated with Teflon was applied by heating the end edge locally with hot air and then pressing it with a pressure roll to cover the end edge. Length 112.5mm
Wrap the blank around a stainless steel round bar so that the painted surface faces the round bar, place the blank so that the short edges of the blank overlap each other, and weld the edges by ultrasonic welding. are melted and bonded and formed into a cylindrical shape.
Both ends of this cylindrical molded body were each cut by 4 mm to obtain four types of test can bodies according to the present invention. Flanges were formed on these test can bodies according to the method shown in Example 1, and then a normal aluminum 211 diamond can lid was double-sealed on one end, and coffee beverage and bonito flavored were filled. Then, the can lid was double-sealed to the other end to produce a can. These cans were subjected to a predetermined heat sterilization treatment and then subjected to a storage test. After being stored at room temperature for one year, the can was opened and evaluated, and no abnormalities were observed in the condition of the inner surface of the can or the storage condition of the contents. Comparative Example 3 Thickness of paint mixed with epoxy resin and phenolic resin applied and baked on one side as shown in Example 4
Polypropylene (modulus of elasticity 110
Kg/mm 2 ) was extrusion coated to a thickness of about 500 μm. When an attempt was made to fabricate a can body using this laminated sheet according to the method shown in Example 4, the layer of polypropylene modified with maleic anhydride broke when the blank holder was removed after ultrasonic welding. However, the plastic layer was not able to peel off from the aluminum foil and recover elastically to obtain a cylindrical molded body. Example 5 A steel foil treated with electrolytic chromic acid and having a thickness of 50 μm was prepared. The single-sided coated metal foil used to prepare sample 27 was made by applying epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 3750, epoxy equivalent 2900) and phenol resin to one side of the steel foil treated with electrolytic chromic acid. (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight 380) was mixed in a weight ratio of 80:20 and baked at 210°C for 10 minutes to form a coating film with a thickness of approximately 5 μm ( A gel containing 1030 m mol of polar groups/100 g of resin, a gel fraction of 90%, and a density of 1.14 g/cc) was obtained. The single-sided coated metal foil used to prepare Sample 28 was made by applying epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 3750, epoxy equivalent 2900) and urea resin ( A paint made by mixing a condensate of urea and formaldehyde (average molecular weight 320) in a weight ratio of 85:15 was applied and baked at 200°C for 10 minutes to form a coating film with a thickness of approximately 5 μm (polar group: 1080 m).
Mol/100g resin content, gel fraction 70%, density 1.18
g/cc). The single-sided coated metal foil used to prepare Sample 29 was coated with 85 parts by weight of a copolymer of vinyl chloride and vinyl acetate (87 parts by weight of vinyl chloride, 13 parts by weight of vinyl acetate, average polymerization) on one side of the steel foil treated with electrolytic chromic acid. 8 parts by weight of a copolymer of vinyl chloride, vinyl acetate, and maleic acid (vinyl chloride 86
parts by weight, 13 parts by weight of vinyl acetate, 1 part by weight of maleic acid, average degree of polymerization 400), 7 parts by weight of partially saponified copolymer of vinyl chloride and vinyl acetate (vinyl chloride)
91 parts by weight of vinyl acetate, 3 parts by weight of vinyl alcohol, 6 parts by weight of vinyl alcohol, average degree of polymerization 500) was applied and baked at 180°C for 10 minutes to form a coating film with a thickness of about 5 μm (220 m mol of polar groups/ A gel containing 100 g of resin, a gel fraction of 2%, and a density of 1.35 g/cc) was obtained.
The single-sided coated metal foil used to prepare sample 30 was coated with 70 parts by weight of soft vinyl chloride paste (average polymerization degree of vinyl chloride resin) on one side of the steel foil treated with electrolytic chromic acid.
1100: Plasticizer: Epoxidized soybean oil, average molecular weight
960, epoxy equivalent 140, vinyl chloride resin: plasticizer = 50:20 (weight ratio)), 10 parts by weight of acrylic resin (40 parts by weight of methyl methacrylate, 30 parts by weight of ethyl acrylate, 30 parts by weight of ethylhexyl acrylate)
parts by weight of copolymer, average molecular weight 52000), 5 parts by weight of phenol resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight
380), a paint mixed with 5 parts by weight of epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 900, epoxy equivalent 500) was applied and baked at 200℃ for 10 minutes to determine the thickness. Approximately 5μm coating film (polar group 290mmol/100g
It was obtained by forming a gel containing resin, gel fraction 5%, density 1.14 g/cc). On the other hand, resin in high-density polyethylene
A sheet with a thickness of about 300 μm (elastic modulus 305
kg/mm 2 ) and adhered to the non-painted surfaces of the four types of single-sided coated metal foils using an isocyanate adhesive to produce a laminated sheet. After cutting these laminated sheets into a rectangle of 216.1 mm x 112.5 mm, the edges of both short sides were heated with infrared rays over a width of about 5 mm, and the polyethylene was cured with maleic anhydride to a thickness of about 50 μm. Attach 4mm wide tape,
Furthermore, the edges of both short sides were folded over a width of 5 mm to the opposite side. These rectangular sheets with their short edges folded are then interlocked with each other so that the coated surface is on the inner surface, and then a Teflon-coated stainless steel sheet with a diameter It is fitted into a round bar of 65.6 mm and length 112.5 mm, fixed, and the interlocking parts of the folded parts are heated with infrared rays and pressed together through a 5 mm thick silicone rubber sheath to bond them together to form a cylinder. It was made into a shaped body. After cutting both ends of each of these cylindrical molded bodies by 4 mm, a flange was formed by the method shown in Example 1, and a normal
Four types of cans according to the present invention are made by double-sealing can lids made of 211-diameter electrolytic chromic acid-treated steel plates, filled with vegetable juices and tuna in dressing sauce under predetermined conditions, and then sealed at the other end. The can lid was double-sealed with an ordinary 211-diameter electrolytic chromic acid-treated steel plate, and after being subjected to a prescribed heat sterilization treatment, it was subjected to a storage test. Table 6 shows the results of evaluation after opening the can after storing it at room temperature for one year.
Shown below.
【表】
実施例 6
幅190mm、厚さ9μmのロールに巻かれたアル
ミニウム箔の片面に、70重量部の軟質の塩化ビニ
ル・ペースト(塩化ビニル樹脂の平均重合度
1100;可塑剤:エポキシ化大豆油、平均分子量
960、エポキシ当量140、塩化ビニル樹脂:可塑剤
=50:20(重量比))、10重量部のアクリル系樹脂
(メチルメタクリレート40重量部、エチルアクリ
レート30重量部、エチルヘキシルアクリレート30
重量部の共重合体、平均分子量52000)、5重量部
のフエノール樹脂(アルカリ性触媒下でのフエノ
ール類とアルデヒド類の縮合物、平均分子量
380)、5重量部のエポキシ樹脂(ビスフエノール
類とエピハロヒドリンより誘導される芳香族エポ
キシ樹脂、平均分子量900、エポキシ当量500)を
混合した塗料を塗布し、280℃に設定された熱風
オーブン中を10秒間走行させて焼付けし、厚さ約
5μmの塗膜(極性基290mm2 mol/100g樹脂含
有、ゲル分率6%、密度1.14g/c.c.)を形成せし
めて片面塗装アルミニウム箔を作製した。
メルトインデツクス1.0g/10minのポリプロ
ピレンを外層材料とし、メルトインデツクス20
g/10minの無水マレイン酸で変性したポリプロ
ピレンを内層材料として、直径115mm、有効長さ
2530mmのフルフライト型スクリユーを内蔵する外
層用押出機及び直径40mm、有効長さ880mmのフル
フライト型スクリユーを内蔵する内層用押出機、
クロスヘツド2層ダイ、サイジングユニツト(キ
ヤリブレーテイングダイ)、水冷冷却槽、引取機
及びカツターの組み合せから成るパイプ成形機を
使用して2層パイプを押出しながら、前記クロス
ヘツドダイのコアに直結され該クロスヘツドの外
側に突き出た外径52.5mmのコア上に、前記の片面
塗装したアルミニウム箔を幅167.9mmにスリツト
後塗膜面が前記のコアと対面し且つオーバーラツ
プ量が3mmとなる様に巻き付けながら、前記2層
パイプの押出線速度と同一の供給線速度でクロス
ヘツドダイ内に供給することにより、前記クロス
ヘツドダイ内でコアに巻き付いた片面塗装アルミ
ニウム箔の非塗装面に変性ポリプロピレンの層を
介してポリプロピレンを接着せしめた。このよう
にして得られる、ダイヘツドから押出されて引き
抜かれる積層体のパイプは直ちに外径が52.5mmの
バキユームサイジングユニツト、冷却槽、引取機
及びカツターを径て内径が52.5mm、肉厚が0.614
mm、高さが137mmの罐胴に成形した。ここで、ポ
リプロピレン層の厚さは約590μm、無水マレイ
ン酸で変性したポリプロピレン層の厚さは約10μ
m、これら2層の積層体の弾性率は115Kg/mm2で
あつた。次いで、前記の罐胴の内面側のアルミニ
ウム箔が重り合つたラツプ部に無水マレイン酸で
変性したポリプロピレンの厚さ50μm、幅5mmの
テープを熱ロールを用いて押着することにより接
着せしめた。このようにして作製された本発明に
よる試験罐胴(試料31)に、実施例1に示した方
法によりフランジを形成させ、更に、一端に通常
の202径のアルミニウム製の罐蓋を二重巻締し、
ビール、炭酸入りオレンジ・ドリンク、及び透明
炭酸飲料を冷却充填して他端にも通常の202径の
アルミニウム製の罐蓋を二重巻締して飲料の罐詰
を得た。ビールを充填した罐詰は70℃で20分間殺
菌後、他はそのままで保存試験に賦した。
室温で1年間保存した後に開罐して評価した結
果、罐内面の状態や内容品の保存状態には全く異
常は認められず、また、アルミニウムの内容品へ
の溶出量も通常の全アルミニウム製の罐を使用し
た場合と同レベルであり、異常は認められなかつ
た。
実施例 7
厚さ20μmの軟質アルミニウム箔の片面にエポ
キシ樹脂(ビスフエノール類とエピハロヒドリン
より誘導される芳香族エポキシ樹脂、平均分子量
3750、エポキシ当量2900)とフエノール樹脂(ア
ルカリ性触媒下でのフエノール類とアルデヒド類
の縮合物、平均分子量380)を80:20の重量比で
混合した塗料を塗布し、270℃で1分間焼付して
厚さ約5μmの塗膜(極性基1030m mol/100
g樹脂含有、グル分率93%、密度1.14g/c.c.)を
形成させて、片面塗装アルミニウム箔を作製し
た。一方、通常のポリプロピレン75重量部、無水
マレイン酸で変性したポリプロピレン25重量部、
脂肪酸で表面処理した粉末の炭酸カルシウム200
重量部をドライブレンドし、ペレタイザーを通す
ことによつて練り混ぜた後に厚さ約300μmのシ
ート(弾性率305Kg/mm2)に成形した。次いで、
前記の片面塗装したアルミニウム箔の非塗装面に
前記のシートを対面させて載置し、熱ロールによ
り押圧して積層シートを得た。
次に、前記の積層シートを211.1mm×104.5mmの
矩形に切断し、テフロンコートされた直径65.6
mm、長さ112.5mmのステンレス製の丸棒に塗膜面
が丸棒と対面するように巻付けて載置し、短辺側
の端縁部が互いに重り合つている部分を上から超
音波溶接用のホーンで押圧しながら超音波を印加
して互いに接着せしめ、内径が65.6mm、高さが
104.5mmの円筒状の罐胴(試料32)を得た。これ
らの罐胴に、実施例1に示した方法に従つてフラ
ンジを形成せしめた後に、一端に通常のアルミニ
ウム製の211径の罐蓋を二重巻締し、ビール、透
明炭酸飲料、50%オレンジ・ドリンク、コーヒー
飲料、ツナ油漬け及びツナの水煮を充填し、他端
にも通常のアルミニウム製の211径の罐蓋を二重
巻締して罐詰とした。なお、ビール及び透明炭酸
飲料は冷却充填し、ビールの罐詰は70℃20分の加
熱殺菌処理に賦した。また、50%オレンジ・ドリ
ンク及びコーヒー飲料は熱間充填し、コーヒー飲
料の罐詰は125℃20分の加熱殺菌処理に賦した。
更に、ツナ油漬け及びツナの水煮は真空巻締法に
より充填・巻締し、120℃60分間の加熱殺菌処理
に賦した。
これらの罐詰を室温で1年間保存した後に評価
した結果、罐内面の金属腐食や水素膨張などの重
大欠陥の発生は全く認められなかつたのはもちろ
んのこと、内容品の味や色の変化も認められなか
つた。[Table] Example 6 70 parts by weight of soft vinyl chloride paste (average polymerization degree of vinyl chloride resin
1100; Plasticizer: Epoxidized soybean oil, average molecular weight
960, epoxy equivalent 140, vinyl chloride resin: plasticizer = 50:20 (weight ratio)), 10 parts by weight of acrylic resin (40 parts by weight of methyl methacrylate, 30 parts by weight of ethyl acrylate, 30 parts by weight of ethylhexyl acrylate)
parts by weight of copolymer, average molecular weight 52000), 5 parts by weight of phenol resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight
380), a paint mixed with 5 parts by weight of epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight 900, epoxy equivalent 500) was applied, and the mixture was heated in a hot air oven set at 280°C. It was run for 10 seconds and baked to form a coating film with a thickness of about 5 μm (containing polar groups 290 mm 2 mol/100 g resin, gel fraction 6%, density 1.14 g/cc) to produce a single-sided coated aluminum foil. The outer layer material is polypropylene with a melt index of 1.0 g/10 min, and a melt index of 20
g/10min maleic anhydride modified polypropylene as inner layer material, diameter 115mm, effective length
An extruder for the outer layer has a built-in full-flight screw of 2530 mm, and an extruder for the inner layer has a built-in full-flight screw with a diameter of 40 mm and an effective length of 880 mm.
While extruding a two-layer pipe using a pipe forming machine consisting of a combination of a cross-head two-layer die, a sizing unit (calibrating die), a water-cooled cooling tank, a take-off machine, and a cutter, the pipe is directly connected to the core of the cross-head die and After slitting the aluminum foil coated on one side to a width of 167.9 mm on the core with an outer diameter of 52.5 mm protruding from the outside of the crosshead, wrap the aluminum foil so that the coated surface faces the core and the overlap amount is 3 mm. , a layer of modified polypropylene is applied to the non-painted surface of the single-sided coated aluminum foil wrapped around the core in the crosshead die by feeding the modified polypropylene into the crosshead die at the same feed linear speed as the extrusion linear speed of the two-layer pipe. Polypropylene was bonded through it. The pipe of the laminate obtained in this way, which is extruded and pulled out from the die head, is immediately passed through a vacuum sizing unit with an outer diameter of 52.5 mm, a cooling tank, a pulling machine, and a cutter, and has an inner diameter of 52.5 mm and a wall thickness of 0.614 mm.
It was molded into a can body with a height of 137 mm. Here, the thickness of the polypropylene layer is approximately 590 μm, and the thickness of the polypropylene layer modified with maleic anhydride is approximately 10 μm.
m, and the elastic modulus of the laminate of these two layers was 115 Kg/mm 2 . Next, a polypropylene tape modified with maleic anhydride having a thickness of 50 μm and a width of 5 mm was adhered to the lap portion of the inner surface of the can body where the aluminum foil overlapped by pressing it using a hot roll. A flange was formed on the test can body (sample 31) according to the present invention produced in this way by the method shown in Example 1, and a regular aluminum can lid with a diameter of 202 mm was wrapped double-wrap around one end. Tighten,
Beer, carbonated orange drink, and clear carbonated drink were cooled and filled, and a regular 202 diameter aluminum can lid was double-sealed on the other end to obtain a bottled beverage. The cans filled with beer were sterilized at 70°C for 20 minutes and then subjected to a storage test with the rest intact. As a result of opening the can and evaluating it after storing it at room temperature for one year, no abnormalities were observed in the condition of the inner surface of the can or the storage condition of the contents, and the amount of aluminum leached into the contents was also the same as that of ordinary all-aluminum products. The level was the same as when using the can, and no abnormalities were observed. Example 7 Epoxy resin (aromatic epoxy resin derived from bisphenols and epihalohydrin, average molecular weight) was applied to one side of a 20 μm thick soft aluminum foil.
3750, epoxy equivalent: 2900) and phenolic resin (condensation product of phenols and aldehydes under alkaline catalyst, average molecular weight: 380) in a weight ratio of 80:20 was applied and baked at 270℃ for 1 minute. coating film with a thickness of approximately 5 μm (polar group 1030 m mol/100
A single-sided coated aluminum foil was prepared by forming an aluminum foil containing g resin, a glue fraction of 93%, and a density of 1.14 g/cc). On the other hand, 75 parts by weight of normal polypropylene, 25 parts by weight of polypropylene modified with maleic anhydride,
Powdered calcium carbonate 200 surface treated with fatty acids
Parts by weight were dry blended, kneaded by passing through a pelletizer, and then formed into a sheet with a thickness of about 300 μm (modulus of elasticity 305 Kg/mm 2 ). Then,
The sheet was placed facing the non-painted surface of the single-sided aluminum foil and pressed with a hot roll to obtain a laminated sheet. Next, the laminated sheet was cut into a rectangle of 211.1 mm x 104.5 mm, and the 65.6 mm diameter rectangle was coated with Teflon.
Wrap it around a stainless steel round bar with a length of 112.5 mm and place it so that the coating surface faces the round bar, and apply ultrasonic waves from above to the part where the short side edges overlap each other. They are bonded together by applying ultrasonic waves while being pressed with a welding horn, and have an inner diameter of 65.6 mm and a height of
A 104.5 mm cylindrical can body (sample 32) was obtained. After forming flanges on these can bodies according to the method shown in Example 1, a regular aluminum can lid with a diameter of 211 was double-sealed on one end, and beer, transparent carbonated beverages, 50% It was filled with orange drink, coffee drink, tuna pickled in oil, and tuna boiled in water, and the other end was double-sealed with a regular aluminum can lid of 211 diameter to seal the can. Note that the beer and clear carbonated beverages were chilled and filled, and the beer was subjected to heat sterilization treatment at 70°C for 20 minutes. In addition, 50% orange drink and coffee drink were hot filled, and the canned coffee drink was subjected to heat sterilization treatment at 125°C for 20 minutes.
Furthermore, the tuna pickled in oil and the tuna boiled in water were filled and sealed using a vacuum seaming method, and subjected to heat sterilization treatment at 120°C for 60 minutes. After storing these cans for one year at room temperature, we evaluated them and found that there were no major defects such as metal corrosion or hydrogen expansion on the inside of the can, and there were no changes in taste or color of the contents. was also not recognized.
第1図は本発明の複合罐の外観図、第2図は複
合罐胴部の横断面拡大図、第3―A図は合罐の製
造工程で用意される塗装金属箔とプラスチツク層
を貼合わせた積層体、第3―B図は端縁に接着テ
ープが被覆された積層体、第3―C図は積層体を
塗装金属箔が内側となる様に丸めて両端縁を重ね
合わす工程図、第3―D図は積層体の重ね合わさ
れた端縁部を押圧して罐胴形成工程図、第3―E
図はフランジ形成工程図、第3―F図は罐胴の一
端部を二重巻締する工程図、第3―G図は充填工
程図、第3―H図は二重巻締による最後の密封工
程図、第4図は本発明の一形態である重ね合わせ
による加熱押圧罐胴成形概念図、第5図は本発明
の一形態である突き合わせによる超音波加熱罐胴
成形概念図、第6―A図は本発明の一形態である
一端部に金属箔の突出部を有する積層体、第6―
B図は第6―A図積層体より罐胴を形成する工程
図、第7―A図は両端部にハゼ折りを有する積層
体、第7―B図は第7―A図積層体より罐胴を形
成する工程図、第8―A図はマンドレル上に金属
箔乃至塗装金属箔を巻付ける概念図、第8―B図
は第8―A図で得られたマンドレルに巻付けられ
た金属箔上にプラスチツク層をクロスヘツドダイ
内で溶融積層する概念図、第8―C図は第8―A
図及び第8―B図に続く罐胴の形成工程図、第9
図はマンドレル上に金属箔乃至塗装金属箔をスパ
イラル(螺旋)状に巻付ける概念図、第10図は
マンドレルに巻付けられた金属箔上にプラスチツ
クフイルム乃至シートを巻付ける概念図を示す。
1……複合罐、1a……第2図で拡大図示され
る罐胴部断面、2,2′……一対の罐胴部材、3
……保護塗膜、4,4a,4b,4c……金属
箔、5,5a,5b……プラスチツク層、6……
接着層、7……罐胴継目、8,8a,8b……積
層体、9,9′……積層体端縁、10,10′……
接着剤テープ、11……バンパー、12,12a
……罐胴、13,13′……フランジパイロツ
ト、14,14′……ストツプリング、15,1
5′……フランジ、16,16′……罐蓋、17…
…リフタープレート、18……充填内容物、19
……充填ノズル、19,19′……ヒートシール
バー、20,20a……超音波ホーン、21,2
1′,21,21a′……ガイド、22……金属箔
突出部、23,23′……接着剤、24,24′…
…ハゼ折、25……マンドレル、26……接着
剤、27……接着剤塗布ヘツド、28……ストレ
ート継目、29……ガイド、30……ヒートシー
ルロール、31……クロスヘツドダイ、32……
押出機、33……スクリユー、34……アダプタ
ー、35……シエルチツプ、36……シエルチツ
プホルダー、37……筒状の積層体、38……キ
ヤリブレーテイングダイ、39……冷却槽、40
……引取機、41……切断機。
Figure 1 is an external view of the composite can of the present invention, Figure 2 is an enlarged cross-sectional view of the body of the composite can, and Figure 3-A is a composite can with painted metal foil and plastic layer prepared in the can manufacturing process. Figure 3-B shows the combined laminate, with the edges covered with adhesive tape, and Figure 3-C shows the process of rolling the laminate so that the painted metal foil is on the inside and overlapping both edges. , Fig. 3-D is a process diagram of forming a can body by pressing the overlapped edges of the laminate, Fig. 3-E
The figure is a flange forming process diagram, Figure 3-F is a process diagram for double seaming one end of the can body, Figure 3-G is a filling process diagram, and Figure 3-H is a process diagram for double seaming. Sealing process diagram, FIG. 4 is a conceptual diagram of heating and pressing can body forming by overlapping which is one form of the present invention, FIG. 5 is a conceptual diagram of ultrasonic heating can body forming by butting which is one form of the present invention, and FIG. - Figure A shows a laminate having a metal foil protrusion at one end, which is one form of the present invention, No. 6 -
Figure B is a process diagram for forming a can body from the laminate shown in Figure 6-A, Figure 7-A is a laminate with half-folds at both ends, and Figure 7-B is a process diagram for forming a can body from the laminate shown in Figure 7-A. Figure 8-A is a conceptual diagram of winding metal foil or painted metal foil on a mandrel, and Figure 8-B is a diagram of the process for forming the shell. Figure 8-B is a diagram of the metal wrapped around the mandrel obtained in Figure 8-A. Conceptual diagram of melt laminating a plastic layer on a foil in a crosshead die, Figure 8-C is similar to Figure 8-A.
Figure 9 and can body formation process diagram following Figure 8-B.
The figure shows a conceptual diagram of spirally winding metal foil or painted metal foil on a mandrel, and FIG. 10 shows a conceptual diagram of winding a plastic film or sheet on the metal foil wound around the mandrel. DESCRIPTION OF SYMBOLS 1...Composite can, 1a...Can body cross section shown in enlarged view in FIG. 2, 2, 2'...Pair of can body members, 3
...Protective coating film, 4, 4a, 4b, 4c...Metal foil, 5, 5a, 5b...Plastic layer, 6...
Adhesive layer, 7...can body joint, 8, 8a, 8b... laminate, 9, 9'... laminate edge, 10, 10'...
Adhesive tape, 11... Bumper, 12, 12a
... Can body, 13, 13'... Flange pilot, 14, 14'... Stop ring, 15, 1
5'...flange, 16, 16'...can lid, 17...
... Lifter plate, 18 ... Filling contents, 19
...Filling nozzle, 19,19'...Heat seal bar, 20,20a...Ultrasonic horn, 21,2
1', 21, 21a'... Guide, 22... Metal foil protrusion, 23, 23'... Adhesive, 24, 24'...
...Folding, 25...Mandrel, 26...Adhesive, 27...Adhesive application head, 28...Straight seam, 29...Guide, 30...Heat seal roll, 31...Cross head die, 32... …
Extruder, 33... Screw, 34... Adapter, 35... Shell chip, 36... Shell chip holder, 37... Cylindrical laminate, 38... Calibrating die, 39... Cooling tank, 40
...Taking machine, 41...Cutting machine.
Claims (1)
締して成る罐において、 前記罐胴部材は内面側に位置し且つ内表面に保
護塗膜を有する金属箔と外面側に位置するプラス
チツク層との積層体から形成され、該積層体中の
少なくとも金属箔は罐胴の一端から他端へと延び
ている継目を有し、 前記保護塗膜はカルボニル基、水酸基、エーテ
ル基及びエポキシ基から成る群より選ばれた極性
基を10乃至2000ミリモル/100g樹脂の濃度で含
有する樹脂乃至は樹脂組成物から成り、前記プラ
スチツク層は少くとも85Kg/mm2以上の弾性係数を
有し且つ罐胴部材に自己保持性を与えるに十分な
厚みを有する事を特徴とする複合罐。 2 前記プラスチツク層がオレフイン系樹脂、塩
化ビニル系樹脂、スチレン系樹脂、ポリエステル
系樹脂、ポリカーボネート系樹脂或いはポリアミ
ド系樹脂から選ばれた熱可塑性樹脂或いは該熱可
塑性樹脂のブレンド物或いは複合体である特許請
求の範囲第1項記載の複合罐。 3 前記プラスチツク層が前記熱可塑性樹脂と該
樹脂100重量部当り5乃至500重量部の無機充填剤
乃至は補強剤とのブレンド物である特許請求の範
囲第1項記載の複合罐。 4 前記無機充填剤乃至は補強剤が、炭酸塩、ケ
イ素酸化物、金属酸化物、金属水酸化物、硫酸
塩、ケイ酸塩、アルミノケイ酸塩、カーボンブラ
ツク、炭素繊維或いはガラス繊維である特許請求
の範囲第3項記載の複合罐。 5 前記プラスチツク層が前記熱可塑性樹脂と該
樹脂100重量部当り5乃至500重量部の有機充填剤
とのブレンド物である特許請求の範囲第1項記載
の複合罐。 6 前記有機充填剤乃至は補強剤が、木粉、パル
プ、殻繊維、木綿或いは芳香族ポリアミド繊維で
ある特許請求の範囲第5項記載の複合罐。 7 前記複合罐は、金属箔とプラスチツク層との
厚み比が1:3乃至1:300の範囲内にあるもの
である特許請求の範囲第1項記載の複合罐。 8 前記金属箔とプラスチツク層とはホツトメル
ト接着剤、イソシアネート系接着剤、酸変性熱可
塑性樹脂、酸無水物変性熱可塑性樹脂或いはアン
カー剤を介して接合されている特許請求の範囲第
1項記載の複合罐。 9 前記保護塗膜は1.1乃至1.4g/c.c.の密度を有
する特許請求の範囲第1項記載の複合罐。 10 前記保護塗膜は、熱硬化性樹脂乃至は熱硬
化性樹脂組成物から成る特許請求の範囲第1項記
載の複合罐。 11 前記保護塗膜は、60℃のクロロホルム中で
60分間抽出することにより求めたゲル分率50乃至
100%の範囲にある特許請求の範囲第10項記載
の複合罐。 12 前記保護塗膜はエポキシ樹脂成分と他の樹
脂成分とを95:5乃至1:99の重量比で含む組成
物である特許請求の範囲第10項記載の複合罐。 13 プラスチツク層と金属箔とを貼合せた積層
体を、前記金属箔が内側となるように丸めて側面
継目を有する罐胴に成形する工程と、前記罐胴成
形工程の前或いは後に金属箔の内表面に保護塗膜
を形成する工程と、罐胴部材の両端部を塑性加工
してフランジ付罐胴に成形する工程と、フランジ
付罐胴と一対の罐端部材とを天地で二重巻締する
工程とから成る複合罐の製造法。 14 前記プラスチツク層がオレフイン系樹脂、
塩化ビニル系樹脂、スチレン系樹脂、ポリエステ
ル系樹脂、ポリカーボネート系樹脂或いはポリア
ミド系樹脂から選ばれた熱可塑性樹脂或いは該熱
可塑性樹脂のブレンド物或いは複合体である特許
請求の範囲第13項記載の方法。 15 前記プラスチツク層が前記熱可塑性樹脂と
該樹脂100重量部当り5乃至500重量部の無機充填
剤とのブレンド物である特許請求の範囲第13項
記載の方法。 16 前記プラスチツク層が前記熱可塑性樹脂と
該樹脂100重量部当り5乃至500重量部の有機充填
剤とのブレンド物である特許請求の範囲第13項
記載の方法。 17 プラスチツク層を予じめシートに形成し、
該シートと金属箔とを接着剤で接合して積層体と
する特許請求の範囲第13項記載の方法。 18 プラスチツク層を、所望により接着剤或い
はアンカー剤が施された金属箔上に押出コートし
て積層体に成形する特許請求の範囲第13項記載
の方法。 19 金属箔上にプラスチツク層と接着層とを共
押出コートとして積層体に成形する特許請求の範
囲第13項記載の方法。 20 予じめ形成されたプラスチツク層と金属箔
の中間に接着層をサンドイツチ押出して積層体を
成形する特許請求の範囲第13項記載の方法。 21 端縁に接着剤テープ乃至被覆を施こした積
層体を丸めて、該端縁部を重ね合わせて接着し
て、罐胴を形成する特許請求の範囲第13項記載
の方法。 22 積層体の両端縁部を重ね合わせ、該両端縁
部を加熱下に押圧接着して、罐胴を成形する特許
請求の範囲第13項記載の方法。 23 積層体の両端縁部を突き合せ、該両端縁部
を加熱融着して、罐胴を成形する特許請求の範囲
第13項記載の方法。 24 積層体の一端部に金属箔の突出部を形成さ
せ、該突出部の罐胴外側となるべき面に接着剤層
を設けると共に所望により他端部の金属箔上にも
接着剤層を設け、次いで金属箔突出部と他端の金
属箔とを接着剤を介して重ね合わせ接合すると共
に、プラスチツク層の両端部を突き合わせ接合し
て、罐胴を成形する特許請求の範囲第13項記載
の方法。 25 積層体の一端部にハゼ折り、及び他端部に
逆向きのハゼ折りを形成させ、次いでこれらハゼ
折りを接着剤を介して係合して、罐胴を形成する
特許請求の範囲第13項記載の方法。 26 マンドレル上に金属箔を巻付け、この金属
箔の周囲にプラスチツクを被覆し、形成される積
層体をマンドレルから引出して罐胴に成形する工
程と、前記罐胴成形工程の前或いは後に金属箔の
内表面に保護塗膜を形成する工程と、罐胴部材の
両端部を塑性加工してフランジ付罐胴に成形する
工程と、フランジ付罐胴と一対の罐端部材とを天
地で二重巻締する工程とから成る複合罐の製造
法。 27 前記プラスチツク層がオレフイン系樹脂、
塩化ビニル系樹脂、スチレン系樹脂、ポリエステ
ル系樹脂、ポリカーボネート系樹脂或いはポリア
ミド系樹脂から選ばれた熱可塑性樹脂或いは該熱
可塑性樹脂のブレンド物或いは複合体である特許
請求の範囲第26項記載の方法。 28 前記プラスチツク層が前記熱可塑性樹脂と
該樹脂100重量部当り5乃至500重量部の無機充填
剤とのブレンド物である特許請求の範囲第26項
記載の方法。 29 前記プラスチツク層が前記熱可塑性樹脂と
該樹脂100重量部当り5乃至500重量部の有機充填
剤とのブレンド物である特許請求の範囲第26項
記載の方法。 30 金属箔をマンドレル上に巻付け、次いで該
金属箔筒の周囲にプラスチツクを筒状に溶融塗布
して、罐胴を成形する特許請求の範囲第26項記
載の方法。 31 金属箔をマンドレル上に巻付け、次いで該
金属箔筒の周囲にプラスチツクを押出機ダイス内
にて塗布後、切断を行い罐胴を成形する特許請求
の範囲第26項記載の方法。 32 金属箔をマンドレル上に巻付け、次いで該
金属箔の筒の周囲に予じめ形成されたプラスチツ
クのシートを巻付けて、罐胴を成形する特許請求
の範囲第26項記載の方法。[Scope of Claims] 1. A can formed by double-sealing a can body member and a pair of can end members vertically, wherein the can body member is located on the inner side and is made of metal having a protective coating on the inner surface. formed from a laminate of a foil and an outer plastic layer, at least the metal foil in the laminate having a seam extending from one end of the can body to the other, the protective coating having a carbonyl group. , hydroxyl group, ether group, and epoxy group at a concentration of 10 to 2000 mmol/100 g of resin, and the plastic layer has a polar group of at least 85 kg/mm 2 or more. What is claimed is: 1. A composite can having a modulus of elasticity and a thickness sufficient to provide self-retention to a can body member. 2. A patent in which the plastic layer is a thermoplastic resin selected from olefin resin, vinyl chloride resin, styrene resin, polyester resin, polycarbonate resin, or polyamide resin, or a blend or composite of the thermoplastic resins. A composite can according to claim 1. 3. The composite can according to claim 1, wherein the plastic layer is a blend of the thermoplastic resin and an inorganic filler or reinforcing agent in an amount of 5 to 500 parts by weight per 100 parts by weight of the resin. 4. A patent claim in which the inorganic filler or reinforcing agent is carbonate, silicon oxide, metal oxide, metal hydroxide, sulfate, silicate, aluminosilicate, carbon black, carbon fiber, or glass fiber. Composite cans as described in item 3 of the scope. 5. A composite can according to claim 1, wherein said plastic layer is a blend of said thermoplastic resin and 5 to 500 parts by weight of organic filler per 100 parts by weight of said resin. 6. The composite can according to claim 5, wherein the organic filler or reinforcing agent is wood flour, pulp, shell fiber, cotton, or aromatic polyamide fiber. 7. The composite can according to claim 1, wherein the thickness ratio of the metal foil to the plastic layer is in the range of 1:3 to 1:300. 8. The metal foil and the plastic layer are bonded via a hot melt adhesive, an isocyanate adhesive, an acid-modified thermoplastic resin, an acid anhydride-modified thermoplastic resin, or an anchor agent. Composite can. 9. The composite can according to claim 1, wherein the protective coating has a density of 1.1 to 1.4 g/cc. 10. The composite can according to claim 1, wherein the protective coating film is made of a thermosetting resin or a thermosetting resin composition. 11 The protective coating film was prepared in chloroform at 60°C.
Gel fraction 50 to 50 determined by extraction for 60 minutes
10. A composite can according to claim 10 in the range of 100%. 12. The composite can according to claim 10, wherein the protective coating is a composition containing an epoxy resin component and other resin components in a weight ratio of 95:5 to 1:99. 13 A step of rolling a laminate in which a plastic layer and a metal foil are laminated together so that the metal foil is on the inside to form a can body having a side seam, and a step of forming a laminate of the metal foil before or after the can body forming step. A process of forming a protective coating on the inner surface, a process of plastically working both ends of the can body member to form a flanged can body, and a process of double wrapping the flanged can body and a pair of can end members vertically. A manufacturing method for composite cans, which consists of a tightening process. 14 The plastic layer is made of olefin resin,
The method according to claim 13, which is a thermoplastic resin selected from vinyl chloride resin, styrene resin, polyester resin, polycarbonate resin, or polyamide resin, or a blend or composite of the thermoplastic resin. . 15. The method of claim 13, wherein said plastic layer is a blend of said thermoplastic resin and from 5 to 500 parts by weight of inorganic filler per 100 parts by weight of said resin. 16. The method of claim 13, wherein said plastic layer is a blend of said thermoplastic resin and from 5 to 500 parts by weight of organic filler per 100 parts by weight of said resin. 17 Preforming the plastic layer into a sheet,
14. The method according to claim 13, wherein the sheet and metal foil are bonded with an adhesive to form a laminate. 18. The method of claim 13, wherein the plastic layer is extrusion coated onto a metal foil optionally provided with an adhesive or an anchoring agent to form a laminate. 19. The method according to claim 13, wherein a plastic layer and an adhesive layer are co-extruded onto a metal foil and formed into a laminate. 20. The method according to claim 13, wherein the laminate is formed by sandwich-extruding an adhesive layer between a preformed plastic layer and a metal foil. 21. The method according to claim 13, wherein a laminate whose edges are coated with adhesive tape or a coating is rolled up, and the edge portions are overlapped and bonded to form a can body. 22. The method according to claim 13, wherein both end edges of the laminate are overlapped, and the both end edges are pressed and bonded under heat to form a can body. 23. The method according to claim 13, wherein both end edges of the laminate are butted together and the both end edges are heated and fused to form a can body. 24 A protrusion of metal foil is formed at one end of the laminate, and an adhesive layer is provided on the surface of the protrusion that is to become the outside of the can body, and if desired, an adhesive layer is also provided on the metal foil at the other end. Then, the metal foil protruding portion and the metal foil at the other end are overlapped and bonded via an adhesive, and both ends of the plastic layer are butt bonded to form a can body. Method. 25 Claim 13, in which a can body is formed by forming a cross-fold at one end of the laminate and a reverse cross-fold at the other end, and then engaging these cross-folds through an adhesive. The method described in section. 26 A step of winding a metal foil on a mandrel, covering the periphery of the metal foil with plastic, and pulling out the formed laminate from the mandrel to form a can body, and a step of wrapping the metal foil before or after the can body forming step. a step of forming a protective coating film on the inner surface of the can body, a step of plastically working both ends of the can body member to form a flanged can body, and a step of forming a flanged can body and a pair of can end members vertically. A manufacturing method for composite cans, which includes the process of seaming. 27 The plastic layer is made of olefin resin,
The method according to claim 26, which is a thermoplastic resin selected from vinyl chloride resin, styrene resin, polyester resin, polycarbonate resin, or polyamide resin, or a blend or composite of the thermoplastic resin. . 28. The method of claim 26, wherein said plastic layer is a blend of said thermoplastic resin and from 5 to 500 parts by weight of inorganic filler per 100 parts by weight of said resin. 29. The method of claim 26, wherein said plastic layer is a blend of said thermoplastic resin and from 5 to 500 parts by weight of organic filler per 100 parts by weight of said resin. 30. The method according to claim 26, wherein a metal foil is wound on a mandrel, and then plastic is melt-coated around the metal foil tube in a cylindrical shape to form a can body. 31. The method according to claim 26, wherein the metal foil is wound on a mandrel, and then plastic is applied around the metal foil tube in an extruder die, and then cut to form a can body. 32. The method of claim 26, wherein the can body is formed by wrapping a metal foil onto a mandrel and then wrapping a preformed sheet of plastic around the tube of the metal foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9655281A JPS581643A (en) | 1981-06-24 | 1981-06-24 | Composite can and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9655281A JPS581643A (en) | 1981-06-24 | 1981-06-24 | Composite can and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS581643A JPS581643A (en) | 1983-01-07 |
JPS6220101B2 true JPS6220101B2 (en) | 1987-05-02 |
Family
ID=14168232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9655281A Granted JPS581643A (en) | 1981-06-24 | 1981-06-24 | Composite can and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS581643A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357227A (en) * | 1986-08-28 | 1988-03-11 | 日本鋼管株式会社 | Resin laminated steel plate |
DE102005010639A1 (en) * | 2005-03-08 | 2006-09-14 | Huhtamaki Ronsberg, Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Packaging container, in particular can-like container |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57178744A (en) * | 1981-04-27 | 1982-11-04 | Kishimoto Akira | Composite can and its manufacture |
-
1981
- 1981-06-24 JP JP9655281A patent/JPS581643A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57178744A (en) * | 1981-04-27 | 1982-11-04 | Kishimoto Akira | Composite can and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS581643A (en) | 1983-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4501375A (en) | Easily-openable heat-seal lid | |
US4533576A (en) | Composite material for packaging containers | |
US4403710A (en) | Easily-openable heat seal lid | |
US4948006A (en) | Container with metallic cover and method of manufacturing the same | |
JPH05246446A (en) | Packaging tube | |
US7364779B2 (en) | Easy-opening high barrier plastic closure and method therefor | |
JPS6220101B2 (en) | ||
KR890001587B1 (en) | Atal vessel having circumferential side seam and process for production thereof | |
CN214649652U (en) | Cup-shaped container | |
JPS5852032A (en) | Composite-structure vessel | |
JPS6149113B2 (en) | ||
JPS6159216B2 (en) | ||
JPH0160310B2 (en) | ||
JPH0139936B2 (en) | ||
WO2000000400A1 (en) | Composite container | |
KR200348800Y1 (en) | Method to manufacture flexible tube sheet for ultrasonic welding | |
JPS6158294B2 (en) | ||
JPS60110657A (en) | Sealed vessel | |
JP2022102170A (en) | Cup container | |
JP2021109672A (en) | Cup-like container | |
JPS58187342A (en) | Plastic can drum which can be sterilized by retort and its manufacture | |
JPS591355A (en) | Plastic and metallic foil composite can | |
JPS61178840A (en) | Plastic-metal foil composite vessel | |
JPS6135943B2 (en) | ||
EP0518411A1 (en) | Container sealing |