JPS62200664A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS62200664A
JPS62200664A JP61040478A JP4047886A JPS62200664A JP S62200664 A JPS62200664 A JP S62200664A JP 61040478 A JP61040478 A JP 61040478A JP 4047886 A JP4047886 A JP 4047886A JP S62200664 A JPS62200664 A JP S62200664A
Authority
JP
Japan
Prior art keywords
fuel
base material
gas
oxidant
electrode base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040478A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61040478A priority Critical patent/JPS62200664A/en
Publication of JPS62200664A publication Critical patent/JPS62200664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to bind a large number of fuel cells while making a manifold or the like needless for being small-sized and light-weighing by setting a channel of reaction gas while separating a peripheral surface from the central part of a spherical fuel cell. CONSTITUTION:Fuel gas is introduced into a fuel chamber 7 from a position of an arrow 13 to reach a fuel electrode catalytic layer 5 passing through a fuel electrode base material 6 spherically surrounding a fuel chamber 7 while surplus fuel gas is exhausted from the position of the arrow 14. On the other hand, oxidant gas is supplied from a circumference of a single cell 1 for being transmitted to an oxidant electrode base material 2 to reach an oxidant electrode catalytic layer 3. In this way, oxidant gas and fuel gas having reached the layers 3 and 5 cause a reaction in these catalytic layers to generate electromotive force. Thereby, while getting small-sized and light-weighing by making a supply mechanism of oxidant gas needless, a large number of the fuel cells are bound to a required shape to obtain high voltage and high current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、球形もしくは多面体形の燃料電池、特に小
型軽量で高電圧が得られる燃料電池に関するものでるる
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a spherical or polyhedral fuel cell, and particularly to a fuel cell that is small and lightweight and can provide high voltage.

〔従来の技術〕[Conventional technology]

周知の通シ、燃料電池は対向して配置された燃料電極と
酸化剤電極の間に電解質を保持した電解質マ) IJラ
ックス介在させ、燃料電極および酸化剤電極にそれぞれ
燃料および酸化剤を供給して運転される一種の発電装置
でるる。
As is well known, a fuel cell uses an electrolyte matrix (IJ) that holds an electrolyte between a fuel electrode and an oxidizer electrode arranged opposite to each other, and supplies fuel and oxidizer to the fuel electrode and the oxidizer electrode, respectively. It is a type of power generation device that is operated by

燃料電池には、■カルノーサイクルの制約がなく高い効
率が期待できる、■電池作動温度に近い比較的高温の有
効利用が容易な廃熱が得られる、@出力を変えても効率
はおまシ変わらない、■負荷変動に対する応答性にすぐ
れているなどの利点がl)、都市内もしくは都市近郊に
配電用変電所の規模で分散配置する、わるいは火力発電
所の代替発電装置とするなどの利用形態が考えられてい
る。
Fuel cells have the following properties: ■ High efficiency can be expected as there are no Carnot cycle constraints; ■ Waste heat can be obtained at a relatively high temperature close to the cell operating temperature and can be easily used effectively; @ Efficiency remains the same even when the output is changed. ■ Advantages such as excellent responsiveness to load fluctuations (l), use for distributed distribution within or near cities on the scale of distribution substations, or as alternative power generation equipment for thermal power plants The form is being considered.

燃料電池は用いられる電解質の種類によって、アルカリ
型、リン酸型、溶融灰rjlI塙型などに分類され、こ
れらは燃料とし゛C水索ヤメタンなどの気体を使用する
が、この他に液体を燃料とするメタノール直接改良型な
どの燃料電池もめる。
Fuel cells are classified into alkaline type, phosphoric acid type, molten ash type, etc. depending on the type of electrolyte used, and these use gas as fuel, but there are also types that use liquid as fuel. We will also develop fuel cells such as direct methanol-improved types.

燃料電池の基本構成単位は単電池すなわちセルでるるか
、単電池の端子電圧はθ7v程度と小さいため、峨電池
を数十ないし数百セル積層して集合電池を構成する。単
電池および集合電池の構成については米国特許第1I、
27 &、3 j5号において詳細に開示されている。
The basic structural unit of a fuel cell is a unit cell, and since the terminal voltage of a unit cell is as small as about θ7V, an assembled battery is constructed by stacking tens to hundreds of cells. U.S. Pat.
27 &, 3 j5.

近年、燃料電池の利用形態として自動車の動力源など小
規模での実用化も考えられているが、燃料電池は平方セ
ンナメートル[F]たシ数百mAと高い電流が取り出せ
る反面、0?V程度の低い電圧しか取り出せないという
本質的な特徴かめる。これに対して、小規模な用途から
は逆に電流は少なくてよいが、100ないし1.200
ボルト程度の高電圧が必要とされる。従って、従来の燃
料電池でこの様な用途に応じるためには、面債がlO〜
ioθ−程度の単電池をISOないし300セル積層す
る必要がある。
In recent years, fuel cells have been considered for practical use on a small scale, such as as a power source for automobiles, but while fuel cells can draw a high current of several hundred mA per square centimeter [F], they do The essential feature is that it can only extract voltages as low as V. On the other hand, for small-scale applications, the current may be lower, but the current is 100 to 1.200.
A high voltage on the order of volts is required. Therefore, in order to meet such applications with conventional fuel cells, the surface bond must be 1O ~
It is necessary to stack ioθ- or so cells of ISO or 300 cells.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

曇 上記のように従来の燃料電池では、琳セルbたυ最低5
ミリメートル程度の厚さを有するので集合電池は/rr
L以上の高さになシ、また四方にマニホールドを取シ付
けなければならないので、かな9の大きさと重量を伴う
。従って、このような燃料電池の小規膨での実用化は実
現できていないという問題点がめった。
Cloudy As mentioned above, in conventional fuel cells, Rin cell b υ minimum 5
Since it has a thickness of about a millimeter, the assembled battery has a thickness of /rr.
Since it must be at a height greater than L and manifolds must be installed on all sides, it is large and heavy. Therefore, a problem has arisen in that such fuel cells have not been put into practical use on a small scale.

この発明は、かかる問題点を解決するためになされたも
ので、小屋軽量で高電圧が得られる燃料電池を得ること
を目的とする。
The present invention was made to solve these problems, and aims to provide a fuel cell that is lightweight and can provide high voltage.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、酸化剤電極基材、酸化剤電
極触媒層、電解質保持マ) IJラックス燃料電極触媒
層、及び燃料電極基材を重ね合わせて中空球形もしくは
多面体形としたものでろる。。
The fuel cell according to the present invention has an oxidant electrode base material, an oxidant electrode catalyst layer, an electrolyte holding layer, an IJ Lux fuel electrode catalyst layer, and a fuel electrode base material stacked one on top of the other to form a hollow sphere or polyhedral shape. . .

〔作用〕[Effect]

この発明においては、球形もしくは多面体形でろる燃料
電池の外周面と中心部とを分けて反応ガスの経路とした
ので、マニホールドなどの部品をなくし2て小型軽量化
することができると共に、この燃料電池を多数結合する
ことができる。
In this invention, since the outer circumferential surface and the center of the spherical or polyhedral fuel cell are separated as a path for the reactant gas, parts such as manifolds can be eliminated, making it possible to reduce the size and weight of the fuel cell. Multiple batteries can be combined.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す断面図でろり、(1
)は燃料電池で6る単電池(セル)、(,2)はこの単
電池(1)の最外層に配置され通気・性の良い材料で構
成された酸化剤電極基材、(3)はこの酸化剤電極基材
(2)の内側に隣接]−だ酸化剤電極触媒層、(!I)
はこの酸化剤電極触媒層(3)の内側に隣接した電解質
保持マトリックス、(&)はこの電解質保持マトリック
ス(り)の内側に隣接した燃料電極触媒層、(6)はこ
の燃料電極触媒層(夕)の内側に隣接し、通気性の良い
材料で構成された燃料電極基材である。(り)は酸化剤
電極基材(コ)、酸化剤電極触媒層(3)、電解質保持
マトリックス(4=)、燃料電極触媒層(夕)、及び燃
料電極基材(6)から形成された中空球形の中心部に位
置する燃料室でろる。(ff)及び(?)は単電池(1
)の上端及び下端にそれぞれ空けられた貫通孔、(/の
及び(11)は不透気性且つ導電性の材料で構成され、
貫通孔(ff)及び(テ)に設けられた接合部でめる。
FIG. 1 is a sectional view showing an embodiment of the present invention.
) is a single cell in a fuel cell, (,2) is an oxidizer electrode base material arranged on the outermost layer of this single cell (1) and made of a material with good ventilation and properties, and (3) is an oxidizer electrode base material made of a material with good ventilation and properties. Adjacent to the inside of this oxidant electrode base material (2)] - oxidant electrode catalyst layer (!I)
is the electrolyte retention matrix adjacent to the inside of this oxidizer electrode catalyst layer (3), (&) is the fuel electrode catalyst layer adjacent to the inside of this electrolyte retention matrix (ri), and (6) is the fuel electrode catalyst layer ( The fuel electrode base material is adjacent to the inner side of the fuel electrode and is made of a material with good air permeability. (ri) was formed from an oxidant electrode base material (co), an oxidant electrode catalyst layer (3), an electrolyte retention matrix (4=), a fuel electrode catalyst layer (y), and a fuel electrode base material (6). The fuel chamber is located in the center of the hollow sphere. (ff) and (?) are cell batteries (1
) through-holes formed at the upper and lower ends, (/) and (11) are made of an impermeable and conductive material,
It is attached at the joint provided in the through holes (ff) and (te).

接合部(10)は酸化剤電極基材(λ)に、接合部(/
/)は燃料電極基材(6)にそれぞれ電気的に接続され
ている。(12)は不透気性且つ絶縁性の材料で構成さ
れた接着材料でろシ、この接着材料(lコ)は電極断面
のガスシール並びに酸化剤電極基材(2)、酸化剤電極
触媒層(,7)、電解質保持マトリックス(lI)、燃
料電極触媒層(り、燃料電極基材(&)、及び接合部(
io)、(tt)の接着を行なっている。
The joint (10) is attached to the oxidizer electrode base material (λ), and the joint (10)
/) are electrically connected to the fuel electrode base material (6), respectively. (12) is an adhesive material made of an air-impermeable and insulating material. , 7), electrolyte retention matrix (lI), fuel electrode catalyst layer (i), fuel electrode base material (&), and joint (
io) and (tt) are being bonded.

上記のように構成された燃料電池においては、燃料ガス
は矢印(13)の位置から燃料室(7)に導入され、燃
料室(7)を球状に囲む燃料電極基材(6)を通過し、
燃料電極触媒層(5)へ達する。余剰な燃料ガスは矢印
(ttI)の位置から排出される、一方、酸化剤ガスは
、単電池(1)の周囲から供給され、酸化剤電極基材−
)を透過し、酸化剤電極触媒層Uへ達する。燃料電極触
媒層(5)及び酸化剤電極触媒層(3)に達した燃料ガ
ス及び酸化剤ガスは1表面積を最も大きくとれる球形の
反応面すなわちこれらの触煤層において反応を起こし、
起電力を生じる。なお、酸化剤ガスは上記のように供給
されるので、従来のような酸化剤ガスの供給機構は不要
でるる。
In the fuel cell configured as described above, fuel gas is introduced into the fuel chamber (7) from the position indicated by the arrow (13), and passes through the fuel electrode base material (6) that spherically surrounds the fuel chamber (7). ,
The fuel reaches the electrode catalyst layer (5). Excess fuel gas is discharged from the position indicated by the arrow (ttI), while oxidant gas is supplied from around the unit cell (1), and the oxidant electrode base material -
) and reaches the oxidant electrode catalyst layer U. The fuel gas and oxidant gas that have reached the fuel electrode catalyst layer (5) and the oxidant electrode catalyst layer (3) cause a reaction on the spherical reaction surface that can have the largest surface area, that is, on these soot layers.
Generates an electromotive force. Note that since the oxidant gas is supplied as described above, a conventional oxidant gas supply mechanism is not required.

このようにして単電池(1)に生じた起電力は、接合部
(lO)及び(11)によって集電され、他の単電池へ
受は継がれる。また、反応によって生じた水などは、蒸
発により単電池(1)の周囲や矢印(lII)の位置か
ら排出される。
The electromotive force thus generated in the unit cell (1) is collected by the junctions (lO) and (11), and is passed on to other unit cells. In addition, water generated by the reaction is evaporated and discharged from around the cell (1) and from the position indicated by the arrow (lII).

第2図は一個の辱電池が結合された集合電池を示す概略
断面図で1)、(13)は酸化剤側の部材のみを示した
単電池、(16)は燃料側の部材のみを示した単電池で
あυ、これらの単電池(lり及び(16)は接合部(l
O)及び(/l)によ多結合されている。これらの接合
部(lの及びOt)は、単電池(lりの酸化剤電極基材
(−)及び酸化剤電極触媒層(j)をni電池(16)
の燃料電極触媒層(り)及び燃料電極基材(6)に電気
的に接続する。また、これらの接合部(10)及び(1
1)は単電池(lり)から単電池(16)へ燃料ガスを
受は渡す経路ともなっている。
Figure 2 is a schematic cross-sectional view showing an assembled battery in which one oxidizing cell is combined. 1) and (13) are unit cells showing only the oxidizer side members, and (16) is showing only the fuel side members. These cells (l and (16)
O) and (/l) are polybonded. These joints (l and Ot) connect the oxidizer electrode base material (-) and oxidizer electrode catalyst layer (j) of the unit cell (l) to the ni battery (16).
It is electrically connected to the fuel electrode catalyst layer (ri) and the fuel electrode base material (6). In addition, these joint parts (10) and (1
1) also serves as a path for receiving and passing fuel gas from the unit cell (1) to the unit cell (16).

第3図は第2図の集合電池を模式的に示した図であシ、
第9図は第3図の模式図を用いて単電池5個を集合して
構成した集合電池の模式図である。
Figure 3 is a diagram schematically showing the assembled battery in Figure 2.
FIG. 9 is a schematic diagram of an assembled battery constructed by assembling five single cells using the schematic diagram of FIG. 3.

第9図に)いて、(lり)は集合電池の上端部、にg)
は集合電池の下端部である。この上端部(lり)には、
第5図に示す燃料ガスの供給と集電の役割りを兼ね備え
た器具(19)が取付けられる。
(in Figure 9), (l) is the upper end of the assembled battery, (g)
is the lower end of the battery assembly. At this upper end,
A device (19) shown in FIG. 5 that has both the role of supplying fuel gas and collecting current is attached.

同様に下端部(7g)には、gb図に示す燃料ガスの排
出と集電の役割)を兼ね備えた器具(20)が取付けら
れる。これらの器具(19)及び(−〇)は。
Similarly, a device (20) having both the role of discharging fuel gas and collecting current shown in Fig. gb is attached to the lower end (7g). These instruments (19) and (-〇) are.

導電性材料によって構成され、外部負荷に接続するため
の電流端子としてリード線(21)及び(ココ)がそれ
ぞれ接続されている。また、第9図に示す集合電池は、
例えば大気中に配置することによって酸化剤ガスが集合
電池の周囲から容易に供給されることができ、反応によ
って生じた熱の放出も容易である。このように、単電池
を多数接続することによって、原料ガスの供給、排出が
容易で且つ高電圧を供給できる燃料電池が得られる。
It is made of a conductive material, and lead wires (21) and (here) are connected as current terminals for connecting to an external load. In addition, the assembled battery shown in Fig. 9 is
For example, by placing the battery in the atmosphere, oxidant gas can be easily supplied from around the battery assembly, and heat generated by the reaction can be easily released. In this way, by connecting a large number of single cells, a fuel cell can be obtained which can easily supply and discharge raw material gas and can supply high voltage.

第7図は第3図と同じ模式図でろるが、接合部の位置を
変えた集合電池を示し、第に図は第7図及び第3図の集
合電池を多数結合したものである。
FIG. 7 is the same schematic diagram as FIG. 3, but shows an assembled battery with the joints in different positions, and the third figure shows a combination of a large number of the assembled batteries of FIGS. 7 and 3.

第8図の集合電池では、集合電池を直線状に配置した第
9図の場合とは異なり、任意のジグザグ状に集合電池を
結合することができる。
In the assembled battery of FIG. 8, unlike the case of FIG. 9 in which the assembled batteries are arranged in a straight line, the assembled batteries can be combined in an arbitrary zigzag shape.

第を図は第3図と同様な模式図であり、接合部を3個に
増やした集合電池を示し、第1Q図は接合部をそれぞれ
2個、3個及び弘個有する単電池゛ を多数結合した集
合電池を示す。また、第1/図は接合部に柔軟性のめる
材料を使河した変形自在の集合電池を示したものである
。このように、単電池の接合部の数や位置、又は材料を
変えることによって、単電池を並列に接続したシ、単電
池を立体的に並列化した集合電池や、所望によシ自在に
変形することができる集合電池が得ら扛る。従って、賜
金電池を所望の形状にすることがでさると共に、単電池
の接続の仕方を変えることによって、所望の電流、電圧
を出力する集合電池が得られる。
Figure 1 is a schematic diagram similar to Figure 3, showing an assembled battery with three joints, and Figure 1Q shows a large number of single cells with two, three, and a large number of joints, respectively. A combined battery assembly is shown. Further, Fig. 1 shows a deformable battery assembly in which a flexible material is used in the joints. In this way, by changing the number, position, or material of the joints of the cells, it is possible to create a battery in which cells are connected in parallel, an aggregate battery in which cells are arranged in parallel three-dimensionally, or a battery that can be freely transformed as desired. A battery assembly that can be used can be obtained. Therefore, by making the metal battery into a desired shape and by changing the way the cells are connected, an assembled battery that outputs the desired current and voltage can be obtained.

従来の単電池の厚さは、酸化剤電極基材から酸化剤電極
触媒層、電解質保持マトリックス、燃料電極触媒層、及
び燃料電極基材までがユ朋程度である。また、酸化ガス
流路には厚さ−n程度の酸化剤電極基材及び酸化剤電極
触媒が配置され、燃料ガス流路には厚さ2111程度の
燃料電極基材及び燃14?[極触煤層が配置さ・れてい
る。従って、第1図の単電池は直径101411程度で
造ることができ、この単電池を700−200個集合し
ても非常にコンパクトでsb、また、従来のようにマニ
ホールドなどの余分な部品が不要なので軽量でろる。
The thickness of a conventional unit cell from the oxidant electrode base material to the oxidant electrode catalyst layer, the electrolyte retention matrix, the fuel electrode catalyst layer, and the fuel electrode base material is about 100 yen. Further, an oxidant electrode base material and an oxidant electrode catalyst having a thickness of approximately -n are arranged in the oxidizing gas flow path, and a fuel electrode base material having a thickness of approximately 2111 cm and a fuel electrode base material having a thickness of approximately 14 mm are disposed in the fuel gas flow path. [A polar soot layer is placed. Therefore, the cell shown in Figure 1 can be made with a diameter of about 101,411 mm, and even if 700 to 200 cells are assembled, it is very compact and requires no extra parts such as a manifold as in the conventional case. So it's lightweight.

なお、上記実施例では球形の単電池内部に燃料ガスを導
入した場合について示したが、燃料は液体であってもよ
い。また、単電池の酸化剤電極と燃料電極の配置を入れ
換えて、単電池内部に酸化剤ガスを導入し、単電池周囲
に燃料ガスを流してもよい。また、上記実施例では球形
の単電池を示したが、多面体形の単電池であってもよく
、同様の効果を奏する。
In the above embodiment, a case where fuel gas was introduced into a spherical unit cell was shown, but the fuel may be liquid. Alternatively, the arrangement of the oxidizing agent electrode and the fuel electrode of the unit cell may be exchanged, and the oxidizing agent gas may be introduced into the unit cell, and the fuel gas may be caused to flow around the unit cell. Furthermore, although the above embodiments show spherical single cells, polyhedral single cells may also be used and the same effects can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、球形もしくは多O11
体形の燃料電池でろって、この燃料1!池の最外層に配
置された酸化剤電極基材もしくは燃料電極基材と、この
基材の内側に隣接して配置された酸化剤電極触媒層もし
くは燃料電極触媒層と、この触媒層の内側に隣接して配
置された電解質保持マトリックスと、この電解質保持マ
トリックスの内側に隣接して配置された燃料電極触媒層
もしくは酸化剤電極触媒層と、この触媒層の内側に隣接
して配置された燃料電極基材もしくは酸化剤電極基材と
、この基材の内側に設けられて燃料もしくは酸化剤を通
過させるための室と、この室に燃料もしくは酸化剤を供
給及び排出するための少くとも2個以上の貫通孔と、こ
の貫通孔に設けられ且つ上記燃料電極基材もしくは酸化
剤電極基材に電気的に接続している接合部とから構成さ
れたことによシ、燃料電池が小型軽量化され、この燃料
電池を所望の形状に多数結合することができるので高電
圧、高電流が得られる効果がるる。また、燃料電池が複
数個結合されて構成した集合電池の内部に燃料を流す場
合、集合電池を大気中に放置すれば、酸化剤ガスの供給
や集合電池の反応にょって生じた熱の放出も容易でるり
、従来のような酸化剤の供給機構が不要となシ、集合電
池がよシ一層コンパクト化できる効果がめる。
As explained above, this invention has a spherical or multi-O11
This fuel 1 is a body-shaped fuel cell! An oxidizer electrode base material or a fuel electrode base material disposed in the outermost layer of the pond, an oxidizer electrode catalyst layer or a fuel electrode catalyst layer disposed adjacent to the inside of this base material, and an oxidizer electrode base material or a fuel electrode base material disposed in the outermost layer of the pond; an electrolyte retention matrix disposed adjacent to each other; a fuel electrocatalyst layer or an oxidizer electrocatalyst layer disposed adjacent to the inside of the electrolyte retention matrix; and a fuel electrode disposed adjacent to the inside of the catalyst layer. A base material or oxidizer electrode base material, a chamber provided inside this base material for passing fuel or oxidant, and at least two or more chambers for supplying and discharging fuel or oxidant to this chamber. The fuel cell is made smaller and lighter by being composed of a through hole and a joint portion provided in the through hole and electrically connected to the fuel electrode base material or the oxidizer electrode base material. Since a large number of fuel cells can be combined into a desired shape, high voltage and high current can be obtained. In addition, when fuel is flowing inside a battery assembly made up of multiple fuel cells combined, if the battery assembly is left in the atmosphere, the heat generated by the supply of oxidant gas and the reaction of the battery assembly can be released. It also eliminates the need for a conventional oxidizing agent supply mechanism, and has the effect of making the battery pack even more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は第
1図の燃料電池を一個結合した集合電池の概略断面図、
第3図は第一図の集合電池の模式図、第9図は第3図の
集合電池を結合した集合電池の模式図、第S図は第9図
の集合電池の上端部に取付けられた器具の断面図、第6
図は第9図の集合電池の下端部に取付けられた器具の断
面図、第7図は結合部の位置を変えた第3図と同様な集
合電池の模式図、第を図は第3図及び第7図の集合電池
を多数結合した集合電池の模式図、第9図は接合部を3
個有する第3図と同様な集合電池の模式図、第70図は
接合部をλ個、3個、弘個有する単電池を多数結合した
集合電池の模式図、第1/図は変形自在の集合電池の模
式図でるる。 図において、(1)は単電池、(コ)は酸化剤電極基材
、(3)は酸化剤電極触媒層、(り)は電解質保持マト
リックス、(5)は燃料電極触媒層、(6)は燃料電極
基材、(7)は燃料室、(ざ)、(り)は貫通孔、Oo
)、Ot)は接合部、(/2)は接着材料、(lt)、
(tb)は単電池、(17)は上端部、(lざ)は下端
部、(lq)、(2o)は器具である。 なお、各図中、同一符号は同−又は相当部分を示す。 1 、学電!ヒ 4 : 電N囁1釆4f1トリククス     10.
+1    欅冶I弔5 ・ 四料電権割婦1    
 12  吟肩材枡6゛ 7E許電檜暮材 7 、垣faF! 尾2図 15.16 :単室± 尾3図    犀4図 +X−14 PIF)11図 導
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a schematic sectional view of an assembled battery in which one fuel cell of FIG. 1 is combined,
Figure 3 is a schematic diagram of the assembled battery shown in Figure 1, Figure 9 is a schematic diagram of an assembled battery that combines the assembled batteries shown in Figure 3, and Figure S is a schematic diagram of the assembled battery shown in Figure 9 attached to the upper end. Sectional view of the device, No. 6
The figure is a cross-sectional view of the device attached to the lower end of the battery assembly in Figure 9, Figure 7 is a schematic diagram of the battery assembly similar to Figure 3 with the joints changed in position, and the figure is Figure 3. 7 is a schematic diagram of an assembled battery in which a large number of assembled batteries are connected, and FIG.
Fig. 70 is a schematic diagram of an assembled battery in which a large number of unit cells having λ, 3, and 1000 joints are combined, and Fig. 1/Fig. A schematic diagram of a battery assembly. In the figure, (1) is a single cell, (C) is an oxidizer electrode base material, (3) is an oxidizer electrode catalyst layer, (R) is an electrolyte retention matrix, (5) is a fuel electrode catalyst layer, (6) is is the fuel electrode base material, (7) is the fuel chamber, (za) and (ri) are the through holes, Oo
), Ot) is the joint, (/2) is the adhesive material, (lt),
(tb) is a cell, (17) is an upper end, (lza) is a lower end, (lq) and (2o) are instruments. In each figure, the same reference numerals indicate the same or corresponding parts. 1. Gakuden! Hi4: Den N whisper 1 4f1 Trix 10.
+1 Keyakiji I Condolence 5 / Shiryo Dengon Waribu 1
12 Gin Shoulder Material Masu 6゛ 7E Kyoden Higure Material 7, Kaki faF! Tail 2 figure 15.16: Single chamber ± Tail 3 figure Rhinoceros 4 figure + X-14 PIF) 11 figure guide

Claims (1)

【特許請求の範囲】[Claims] 球形もしくは多面体形の燃料電池であつて、該燃料電池
の最外層に配置された酸化剤電極基材もしくは燃料電極
基材と、該基材の内側に隣接して配置された酸化剤電極
触媒層もしくは燃料電極触媒層と、該触媒層の内側に隣
接して配置された電解質保持マトリックスと、該電解質
保持マトリックスの内側に隣接して配置された燃料電極
触媒層もしくは酸化剤電極触媒層と、該触媒層の内側に
隣接して配置された燃料電極基材もしくは酸化剤電極基
材と、該基材の内側に設けられて燃料もしくは酸化剤を
通過させるための室と、該室に燃料もしくは酸化剤を供
給及び排出するための少くとも2個以上の貫通孔と、該
貫通孔に設けられ且つ上記燃料電極基材もしくは酸化剤
電極基材に電気的に接続している接合部とを備えたこと
を特徴とする燃料電池。
A spherical or polyhedral fuel cell, comprising an oxidizer electrode base material or a fuel electrode base material disposed in the outermost layer of the fuel cell, and an oxidizer electrode catalyst layer disposed adjacent to the inside of the base material. or a fuel electrode catalyst layer, an electrolyte retention matrix disposed adjacent to the inside of the catalyst layer, and a fuel electrode catalyst layer or an oxidizer electrode catalyst layer disposed adjacent to the inside of the electrolyte retention matrix; A fuel electrode base material or an oxidizer electrode base material disposed adjacent to the inside of the catalyst layer; a chamber provided inside the base material for passing the fuel or oxidant; At least two or more through holes for supplying and discharging the agent, and a joint provided in the through holes and electrically connected to the fuel electrode base material or the oxidizer electrode base material. A fuel cell characterized by:
JP61040478A 1986-02-27 1986-02-27 Fuel cell Pending JPS62200664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040478A JPS62200664A (en) 1986-02-27 1986-02-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040478A JPS62200664A (en) 1986-02-27 1986-02-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS62200664A true JPS62200664A (en) 1987-09-04

Family

ID=12581722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040478A Pending JPS62200664A (en) 1986-02-27 1986-02-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS62200664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206751A (en) * 2017-06-01 2018-12-27 全南大学校産学協力団 Three-dimensional membrane electrode assembly, fuel cell provided with the same, and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206751A (en) * 2017-06-01 2018-12-27 全南大学校産学協力団 Three-dimensional membrane electrode assembly, fuel cell provided with the same, and fabrication method thereof

Similar Documents

Publication Publication Date Title
US4666798A (en) Serially connected solid oxide fuel cells having monolithic cores
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
US4510212A (en) Solid oxide fuel cell having compound cross flow gas patterns
US5770326A (en) Monolithic mass and energy transfer cell
US4761349A (en) Solid oxide fuel cell with monolithic core
EP0264688B1 (en) Fuel cell generator containing self-supporting high gas flow solid oxide electrolyte fuel cells
US7718295B2 (en) Method for preparing an interconnect
JP4397886B2 (en) Multi-layer circular pipe type solid oxide fuel cell module
JPS61121268A (en) High temperature solid electrolytic fuel battery unit
JPH03241670A (en) Solid electrolyte type fuel cell
WO2002037589A3 (en) Solid oxide fuel cell stack
JPS62200666A (en) Fuel cell
JPS62200664A (en) Fuel cell
JPH0367468A (en) Solid electrolyte fuel cell
JPH03238760A (en) Fuel cell of solid electrolyte type
JPH05266914A (en) Solid oxide fuel cell power generating device
JPH0359956A (en) Fuel battery generator
JPS632264A (en) Fuel cell
US20060292430A1 (en) Fuel cell and fuel cell module therefor
JPH02288072A (en) Solid electrolyte fuel cell module
JPS63166154A (en) Flat plate type solid electrolyte fuel cell
JPH02309565A (en) Solid electrolyte type fuel cell module
CN103828106B (en) Fuel cell stack with thin endplate with integrated gas distribution tubes
Herceg Serially connected solid oxide fuel cells having monolithic cores