JPS62200196A - Heat transfer tube of heat exchanger - Google Patents

Heat transfer tube of heat exchanger

Info

Publication number
JPS62200196A
JPS62200196A JP4143286A JP4143286A JPS62200196A JP S62200196 A JPS62200196 A JP S62200196A JP 4143286 A JP4143286 A JP 4143286A JP 4143286 A JP4143286 A JP 4143286A JP S62200196 A JPS62200196 A JP S62200196A
Authority
JP
Japan
Prior art keywords
stainless steel
heat exchanger
tubular
heat transfer
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4143286A
Other languages
Japanese (ja)
Inventor
Shosaku Tomota
友田 昌作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4143286A priority Critical patent/JPS62200196A/en
Publication of JPS62200196A publication Critical patent/JPS62200196A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To prevent the titled tube from being subjected to stress corrosion cracking by coating a tubular heat transfer substrate formed from a nickel base alloy with a tubular coat formed from a stainless steel. CONSTITUTION:A heat transfer tube 1 used in a heat exchanger is provided with a tubular substrate 2 made of a nickel base alloy such as inconnel, and tubular coats 3a and 3b consisting of an austenite stainless steel coating both the inner peripheral surface and outer peripheral surface of the substrate 2. The coefficient of thermal expansion of the nickel base alloy differs from that of the stainless steel, and the latter is larger than the former. Accordingly, depending upon the operationed state of the heat exchanger, the expansion of the stainless steel side is limited by the substrate of the nickel base alloy, and as a result, it is subjected to a compression stress. Therefore, the surface of the coat of stainless steel is not sensitive to the stress corrosion cracking and hence prevents the stress corrosion cracking from occurring.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蒸気発生器のような熱交換器に関し、特に、
その内部において高温環境で使用される伝熱管に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger such as a steam generator, and in particular, to a heat exchanger such as a steam generator.
This invention relates to heat exchanger tubes that are used in high-temperature environments.

[従来の技術] 従来、種々の形式の熱交換器が知られているが、一般に
、熱交換器においては、典型的には高温高圧の水である
管側の一次冷却材は、氷室に設けれた入口ノズルから氷
室に入り、伝熱管を経て、氷室の出口ノズルから熱交換
器外に流出し、一方、胴側の二次冷却材である水は、胴
側に設けられた入口ノズルから胴内に入り、伝熱管の外
側を流れて一次冷却水と熱交換を行った後、胴側の出口
ノズル(蒸気発生器の場合は湿分分離器を経て蒸気ノズ
ル)から出てゆく。
[Prior Art] Various types of heat exchangers have been known in the past, but in general, in heat exchangers, the primary coolant on the tube side, which is typically high-temperature, high-pressure water, is provided in an ice chamber. The water enters the ice chamber through the inlet nozzle provided in the shell, passes through the heat transfer tube, and flows out of the heat exchanger from the outlet nozzle of the ice chamber.On the other hand, water, which is the secondary coolant on the shell side, enters the ice chamber through the inlet nozzle provided on the shell side. It enters the shell, flows outside the heat transfer tube, exchanges heat with the primary cooling water, and then exits from the outlet nozzle on the shell side (in the case of a steam generator, it passes through a moisture separator and then the steam nozzle).

このように内部を高温高圧の水が流れる伝熱管の材料と
しては、その使用環境に応じて、当業者周知のような銅
系合金、オーステナイトステンレス鋼、ニッケル基合金
等が適宜選択され採用されてきた。
As the material of the heat transfer tube through which high-temperature, high-pressure water flows, copper-based alloys, austenitic stainless steel, nickel-based alloys, etc., which are well known to those skilled in the art, are appropriately selected and adopted depending on the environment in which they are used. Ta.

[発明が解決しようとする問題点] しかし、オーステナイトステンレス鋼やニッケル基合金
等を使用した伝熱管では、該伝熱管の環境条件を改善し
ても応力1g食割れが生じることがあり、この防止対策
に苦慮していた。また、応力腐食割れを防止するには、
環境条件の改善の他に、材料の改良、内部応力の低減等
を図ることも考えられるが、上述した材料を使用する伝
熱管の場合、期待した程には応力rIxk割れを防止す
ることができなかった。
[Problems to be Solved by the Invention] However, in heat exchanger tubes made of austenitic stainless steel, nickel-based alloys, etc., even if the environmental conditions of the heat exchanger tubes are improved, 1g stress corrosion cracking may occur. I was having trouble finding countermeasures. In addition, to prevent stress corrosion cracking,
In addition to improving environmental conditions, it is also possible to improve materials and reduce internal stress, but in the case of heat exchanger tubes using the above-mentioned materials, stress rIxk cracking cannot be prevented to the extent expected. There wasn't.

従って、本発明の目的は、応力腐食割れを確実に防止す
ることができる熱交換器の伝熱管を提供することである
Therefore, an object of the present invention is to provide a heat exchanger tube for a heat exchanger that can reliably prevent stress corrosion cracking.

[問題点を解決するための手[qコ この1]的から本発明は、ニッケル基合金から形成され
た管状の伝熱基体と、該基体の内周面及び外周面の少な
くとも一方を被覆する、ステンレス鋼から形成された管
状の被覆体とから構成され、該被覆体が前記伝熱基体に
固着されている、熱交換器の伝熱管に在る。
[Measures to Solve the Problems] The present invention provides a tubular heat transfer base made of a nickel-based alloy, and at least one of the inner peripheral surface and outer peripheral surface of the base is coated. , a tubular covering made of stainless steel, and the covering is fixed to the heat transfer base.

[作用] ニッケル基合金とステンレス鋼とは熱膨張率が異なり、
ステンレス鋼の方が大きい、従って、ニッケル基合金の
基体とステンレス鋼の被覆体との境界面に着目してみる
と、熱交換器の運転状態においては、熱膨張率の差のた
めにステンレス鋼側の膨張量の方が大きい筈であるが、
両者は境界面で固着されているので、ステンレス鋼側の
膨張はニッケル基合金の基体によって制限され、結果的
に圧縮応力を受ける。そのため、ステンレス鋼の被覆体
の表面は応力腐食割れに対して感受性が鈍くなり、所期
の目的が達成される。
[Function] Nickel-based alloys and stainless steel have different coefficients of thermal expansion.
Stainless steel is larger. Therefore, if we focus on the interface between the nickel-based alloy base and the stainless steel cladding, stainless steel The amount of expansion on the side should be larger, but
Since the two are fixed at the interface, expansion on the stainless steel side is limited by the nickel-based alloy substrate, resulting in compressive stress. Therefore, the surface of the stainless steel cladding becomes less susceptible to stress corrosion cracking, achieving the intended purpose.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明する。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図は、熱交換器内において使用される伝熱管1の横断面
を示すものであり、該伝熱管1は、例えばインコネルの
ようなニッケル基合金からなる管状の基体2と、該基体
2の内周面及び外周面の双方を被覆する、例えばSUS
 316Lのようなオーステナイトステンレス鋼からな
る管状の被覆体3a、3bとを備えている。この基体2
への被覆体3a、31+の付着は溶着ないしは蒸着のよ
うな周知の手段により行なわれ、基体2及び被覆体3a
、3bはそれ等の境界面4a、4bにおいて互いに強固
に固着されている。
The figure shows a cross section of a heat exchanger tube 1 used in a heat exchanger. Covering both the circumferential surface and the outer circumferential surface, for example, SUS
It includes tubular coverings 3a and 3b made of austenitic stainless steel such as 316L. This base 2
The coatings 3a, 31+ are attached to the base 2 and the coating 3a by a known means such as welding or vapor deposition.
, 3b are firmly fixed to each other at their interfaces 4a, 4b.

このように、ニッケル基合金をオーステナイトステンレ
ス鋼で被覆すると、175°Cにおいて、オーステナイ
トステンレス鋼の熱膨張率を17.75X10””m+
*/am’c、ニッケル基合金の熱膨張率を14.42
X 10””mm/mm’cとすれば、運転状態で20
0°Cの温度上昇があると仮定したとき、両材料の間に
は、(17,)5×10−6−14.42×10−’)
×200°C=6.66xlO−’am/+ms+の膨
張差が生ずる筈である。しかし、前述したように、基体
2と被覆体3a、3bとは境界面4a、4hで固着され
ているので、熱膨張率の大きいオーステナイトステンレ
ス鋼の被覆体3a、3bの膨張は、齢1げ張車の小さい
ニッケル基合金の基体2によって抑制される。従って、
被覆体3a、3bは、実際には前述した値6.66x 
10−’mm/mm程膨張することができないので、被
覆体3a、3bの表面には、その分に縦弾性係数を乗じ
て得られる圧縮応力が存在することになる。
In this way, when a nickel-based alloy is coated with austenitic stainless steel, the coefficient of thermal expansion of the austenitic stainless steel at 175°C is 17.75
*/am'c, the coefficient of thermal expansion of nickel-based alloy is 14.42
If X 10""mm/mm'c, then 20 in operating condition
Assuming that there is a temperature increase of 0°C, the relationship between the two materials is (17,)5×10−6−14.42×10′)
An expansion difference of x200°C=6.66xlO-'am/+ms+ should occur. However, as mentioned above, since the base 2 and the coverings 3a, 3b are fixed at the interfaces 4a, 4h, the expansion of the coverings 3a, 3b made of austenitic stainless steel, which has a large coefficient of thermal expansion, is limited by age 1. It is restrained by a small nickel-based alloy base body 2 of the tension wheel. Therefore,
The coverings 3a and 3b actually have the above-mentioned value of 6.66x.
Since it cannot expand by about 10 mm/mm, a compressive stress obtained by multiplying the expansion by the longitudinal elastic modulus exists on the surfaces of the coverings 3a and 3b.

尚、図は本発明の理解を容易にするために、伝熱管の横
断面を拡大して示しており、基体及び被覆体の実際の寸
法関係を示すものではなく、実際の伝熱管寸法は種々の
条件に基づいて決定される。
Note that the figure shows an enlarged cross section of the heat exchanger tube in order to facilitate understanding of the present invention, and does not show the actual dimensional relationship between the base body and the covering body, and the actual dimensions of the heat exchanger tube may vary. determined based on the conditions of

また、好適な実施例においては、基体2の内周面及び外
周面の双方に被覆体3a、3bを溶着ないしは蒸着する
ものとしたが、勿論、伝熱管の内面及び外面の環境に応
じて、どちらか一方の周面にのみ被覆体を施すだけでも
よい。
Further, in the preferred embodiment, the coverings 3a and 3b are welded or vapor deposited on both the inner and outer peripheral surfaces of the base body 2, but of course, depending on the environment of the inner and outer surfaces of the heat exchanger tube, It is also possible to apply the coating only to one of the circumferential surfaces.

[発明の効果] 以上のように圧縮応力が表面に存在すると、伝熱管の使
用環境がIK*環境であっても、応力腐食割れに対する
伝熱管の感受性は大きく低減し、応力腐食割れを防止す
ることができる。しかも、応力腐食割れになり易い高温
度条件はど圧縮応力が大きく作用し、応力腐食割れの防
止効果が高くなる。
[Effect of the invention] As described above, when compressive stress exists on the surface, even if the heat exchanger tube is used in an IK* environment, the susceptibility of the heat exchanger tube to stress corrosion cracking is greatly reduced, and stress corrosion cracking is prevented. be able to. Furthermore, under high temperature conditions where stress corrosion cracking is likely to occur, compressive stress acts to a large extent, increasing the effect of preventing stress corrosion cracking.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明による熱交換器の伝熱管と示す断面図であ
る。
The figure is a sectional view showing a heat exchanger tube of a heat exchanger according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] ニッケル基合金から形成された管状の伝熱基体と、該基
体の内周面及び外周面の少なくとも一方を被覆する、ス
テンレス鋼から形成された管状の被覆体とから構成され
、該被覆体が前記伝熱基体に固着されている、熱交換器
の伝熱管。
It is composed of a tubular heat transfer base made of a nickel-based alloy, and a tubular covering made of stainless steel that covers at least one of the inner peripheral surface and the outer peripheral surface of the base, and the covering is A heat transfer tube of a heat exchanger that is fixed to a heat transfer base.
JP4143286A 1986-02-28 1986-02-28 Heat transfer tube of heat exchanger Pending JPS62200196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143286A JPS62200196A (en) 1986-02-28 1986-02-28 Heat transfer tube of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143286A JPS62200196A (en) 1986-02-28 1986-02-28 Heat transfer tube of heat exchanger

Publications (1)

Publication Number Publication Date
JPS62200196A true JPS62200196A (en) 1987-09-03

Family

ID=12608202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143286A Pending JPS62200196A (en) 1986-02-28 1986-02-28 Heat transfer tube of heat exchanger

Country Status (1)

Country Link
JP (1) JPS62200196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123888A1 (en) * 2009-04-20 2010-10-28 Research Cottrell Dry Cooling, Inc. Turbine exhaust condenser
EP2320139A1 (en) * 2008-09-17 2011-05-11 Korea Atomic Energy Research Institute Heat transfer tube of a steam generator for sodium cooled fast reactor
JP2014202409A (en) * 2013-04-04 2014-10-27 株式会社東芝 High intensity thin wall heat transfer pipe, process of manufacturing the same and heat transfer pipe manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2320139A1 (en) * 2008-09-17 2011-05-11 Korea Atomic Energy Research Institute Heat transfer tube of a steam generator for sodium cooled fast reactor
WO2010123888A1 (en) * 2009-04-20 2010-10-28 Research Cottrell Dry Cooling, Inc. Turbine exhaust condenser
JP2014202409A (en) * 2013-04-04 2014-10-27 株式会社東芝 High intensity thin wall heat transfer pipe, process of manufacturing the same and heat transfer pipe manufacturing device

Similar Documents

Publication Publication Date Title
EP0632224B1 (en) Shape memory alloy pipe coupling for underwater pipes
US20030041857A1 (en) Thin wall header for use in molten salt solar absorption panels
US7185698B1 (en) Thermal shield for heat exchangers
JP4276382B2 (en) Heat exchanger tube, heat exchanger tube manufacturing method and condenser
JPS62200196A (en) Heat transfer tube of heat exchanger
JP3512477B2 (en) Heat exchanger
JP2009257608A (en) Fin tube, heat exchanger, and manufacturing method of fin tube
JPS5928576A (en) Prevention of stress corrosion cracking
JP3309573B2 (en) Shape memory alloy pipe fittings and underwater pipes
JP3294035B2 (en) Heat transfer tube wear prevention method for fluidized bed boiler.
JPH07180793A (en) Covered pipe
RU2214920C2 (en) Multi-layer material
Banker Commercial applications of zirconium explosion clad
JPH08226601A (en) Abrasion-resistant device for inner water tube of fluidized bed
JPH07159056A (en) Condenser
US20140216590A1 (en) Duct element for the exhaust system of a motor vehicle
JPS55115941A (en) Chromium alloy type coating material with high corrosion resistance at high temperature
JPH08313192A (en) Spray coating film for heat resistant member
JPS57119228A (en) Method of manufacturing protective tube for thermocouple
Pint OVERVIEW OF RECENT COMPATIBILITY ASSESSMENTS IN FLOWING EXPERIMENTS: Sn, Li, Pb-Li AND MOLTEN SALTS
JPS62252894A (en) Heat pipe
JPH04335997A (en) Boiler tube for city refuse incinerator
JPH02211324A (en) Thermostat
Todhunter Sea Wafer Exposure off 70–30 Cupro Nickel Surface Condensers
RU50U1 (en) Heat exchanger