JPS62200124A - Air conditioner of heat pump type - Google Patents

Air conditioner of heat pump type

Info

Publication number
JPS62200124A
JPS62200124A JP61039932A JP3993286A JPS62200124A JP S62200124 A JPS62200124 A JP S62200124A JP 61039932 A JP61039932 A JP 61039932A JP 3993286 A JP3993286 A JP 3993286A JP S62200124 A JPS62200124 A JP S62200124A
Authority
JP
Japan
Prior art keywords
blower
indoor
heat exchanger
impeller
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61039932A
Other languages
Japanese (ja)
Inventor
Souzou Suzuki
鈴木 創三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP61039932A priority Critical patent/JPS62200124A/en
Publication of JPS62200124A publication Critical patent/JPS62200124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of blast and circulate cool air in a room in order not to give bad feeling to occupants of the room by using in the reversed direction the multi-vane fan of a blower on the indoor side during defrosting operation. CONSTITUTION:An indoor blower 12 of this heat pump type air conditioner has a multi-vane fan 13 which consists of an impeller 13a and a casing 13b. During room heating operation, the impeller 13a is rotating in the direction shown by a solid line arrow mark in the drawing. When frost is accumulated on a heat exchanger 3 on the outdoor side, a defrosting control device 15 is actuated and the impeller 13a of the blower 12 on the indoor side rotates in the direction shown by the arrow mark in a broken line in the drawing, and as soon as an outdoor blower 7 stops, a four-way change-over valve 2 is changed over to start defrosting operation. When the rotation of the impeller 13a is reversed, the blast of the blower on the indoor side is reduced a great deal in comparison with the blast during the room heating operation. With this arrangement it is possible during the defrosting operation to reduce the amount of blast very much without reducing the rotational speed of the blower 12 on the indoor side and circulate cool air in the room during the defrosting operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプ式空気調和機に関する。[Detailed description of the invention] Industrial applications The present invention relates to a heat pump type air conditioner.

従来の技術 近年、ヒートポンプ式空気調和機は1台で冷暖房運転が
行なえるといった長所があるところから広く普及してい
るが、暖房時においては外気条件により室外側熱交換器
に霜が付着し暖房能力が低下するため、一定量以上の霜
が付着すると除霜運転を行なう必要があり、除霜運転中
は暖房ができなくなるため、従来から除霜運転時間を短
縮するため、除霜運転中に室内側の送風機を運転させる
ことがあった。
Conventional technology In recent years, heat pump air conditioners have become widely popular because they have the advantage of being able to perform heating and cooling operations with a single unit. As the capacity decreases, it is necessary to perform a defrost operation when more than a certain amount of frost adheres, and heating cannot be performed during the defrost operation. Sometimes the blower inside the room was turned on.

以下図面を参照しながら、上述した従来のヒートポンプ
式空気調和機の一例について説明する。
An example of the conventional heat pump type air conditioner mentioned above will be described below with reference to the drawings.

第4図は従来のヒートポンプ式空気調和機の冷凍サイク
ルの模式図を示すものである。第4図において、1は冷
媒を吸入圧縮して吐出する圧縮機で、この圧縮機1の吐
出側には四方切換弁2.室外側熱交換器3.減圧装置と
しての毛細管4、および室内側熱交換器6が順次連通さ
れている。さらに、室内側熱交換器5は前記四方切換弁
2を直列に介して圧縮機1の吸込側に連通されていてヒ
ートポンプ式の冷凍サイクル6を構成している。
FIG. 4 shows a schematic diagram of a refrigeration cycle of a conventional heat pump type air conditioner. In FIG. 4, reference numeral 1 denotes a compressor that sucks in, compresses, and discharges refrigerant. On the discharge side of the compressor 1, there is a four-way switching valve 2. Outdoor heat exchanger 3. A capillary tube 4 as a pressure reducing device and an indoor heat exchanger 6 are sequentially connected. Further, the indoor heat exchanger 5 is connected to the suction side of the compressor 1 via the four-way switching valve 2 in series, and constitutes a heat pump type refrigeration cycle 6.

また上記室外側熱交換器3に対応して室外側送風機7が
、前記室内側熱交換器6に対応して室内側送風機8がそ
れぞれ配設されている。室内側送風機8はファン本体と
回転数切替タップ付の単相モータにより構成されている
。さらに、前記室外側熱交換器3の近傍に検知部9を設
置した着霜検知器1oが配設されている。また、この着
霜検知器10は前記室内側送風機7および室外側送風機
7、四方切換弁2と連通して暖房運転除謂時の制御を行
なう除霜制御装置11を構成している。
Further, an outdoor fan 7 is provided corresponding to the outdoor heat exchanger 3, and an indoor fan 8 is provided corresponding to the indoor heat exchanger 6. The indoor blower 8 is composed of a fan body and a single-phase motor with a rotation speed switching tap. Further, a frosting detector 1o including a detection section 9 is provided near the outdoor heat exchanger 3. The frost detector 10 also communicates with the indoor blower 7, the outdoor blower 7, and the four-way switching valve 2, and constitutes a defrost control device 11 that controls the heating operation.

以上のように構成されたヒートポンプ式空気調和機につ
いて、以下その動作について説明する。
The operation of the heat pump air conditioner configured as above will be described below.

まず、暖房運転時には圧縮機1から吐出された高温高圧
のガス冷媒を室内側熱交換器5側に導通するよう、すな
わち実線矢印で示す方向に循環する。そして、室内側熱
交換器6での冷媒の顕熱および凝縮潜熱により、室内側
送風機8によって循環される室内空気を暖めることにな
る。一方、このとき室外側熱交換器3では室外側送風機
7によって循環される外気と熱交換して蒸発作用がなさ
れるため、室外側交換器3il−j:液冷媒の蒸発潜熱
によって冷却され、表面に外気中の湿気が凍結して堆積
するいわゆる霜付現象が生じる。つぎに、この霜付現象
が経時的に増大して熱交換を妨げるようになると着霜検
知器10がこれを検知し、この検知動作に連動して除霜
制御装置11が作動する。
First, during heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is circulated to the indoor heat exchanger 5 side, that is, in the direction shown by the solid arrow. The indoor air circulated by the indoor blower 8 is then warmed by the sensible heat and latent heat of condensation of the refrigerant in the indoor heat exchanger 6. On the other hand, at this time, the outdoor heat exchanger 3 performs an evaporation action by exchanging heat with the outside air circulated by the outdoor fan 7. A so-called frosting phenomenon occurs in which moisture in the outside air freezes and accumulates. Next, when this frosting phenomenon increases over time and becomes a hindrance to heat exchange, the frosting detector 10 detects this, and the defrosting control device 11 is activated in conjunction with this detection operation.

除霜制御装置が作動すると室内側送風機8のモータの回
転速度切替用タップを切替え、室内側送風機8の回転数
を下げて室内側風量を減少させると共に、室外側送風機
7が停止し、同時に四方切換弁2が切換わり、圧縮機1
から吐出された高温高圧のガス冷媒を室外側熱交換器3
側に導通するよう、すなわち破線矢印で示す冷房運転時
と同じ方向に循環される。このとき、室内側熱交換器6
では室内側送風機8によって循環される室内空気と熱交
換して蒸発作用がなされ、室外側熱交換器3では冷媒の
顕熱および凝縮潜熱によって付着した霜が除霜される。
When the defrosting control device is activated, the tap for switching the rotational speed of the motor of the indoor fan 8 is switched, and the rotation speed of the indoor fan 8 is lowered to reduce the indoor air volume, and at the same time, the outdoor fan 7 is stopped, and at the same time The switching valve 2 switches, and the compressor 1
The high temperature and high pressure gas refrigerant discharged from the outdoor heat exchanger 3
In other words, the air is circulated in the same direction as during cooling operation as indicated by the broken line arrow. At this time, the indoor heat exchanger 6
In this case, heat is exchanged with indoor air circulated by the indoor blower 8 to effect evaporation, and in the outdoor heat exchanger 3, adhering frost is defrosted by the sensible heat and latent heat of condensation of the refrigerant.

発明が解決しようとする問題点 しかしながら上記のような構成では、除霜運転時に室内
側送風機8を運転するため、室内側熱交換器5は室内空
気と熱交換して室内側に冷気を吹出すことになる。その
ため、除霜運転時には室内側送風機8の風量を極力少な
く(暖房運転時の%以下程度)設定し、冷気の到達距離
を小さくして室内の居住者に不快感を与えないようにす
る必要がある。ところで、室内側送風機8は単相モータ
のタップ切替方式でモータ回転数を低下させる方法とし
て主巻線側でタップ切替する方法と補助巻線側でタップ
切替する方法があるが、両方法とも回転数の低下率には
限度がある。主巻線側のタップ切替法ではステータコア
のスロット部への巻線占有率という点で低回転化の下限
があり、補助巻線側でのタップ切替法では低回転条件で
は巻線に過大な電流が流れ巻線が異常な温度上昇をする
ため低回転化には限度がある。仁のため、従来、除霜時
において室内側送風機の風量を十分に減少させることが
できず、室内に冷却された空気が循環し快適性を損なう
ことがあった。
Problems to be Solved by the Invention However, in the above configuration, since the indoor fan 8 is operated during the defrosting operation, the indoor heat exchanger 5 exchanges heat with indoor air and blows cold air indoors. It turns out. Therefore, during defrosting operation, it is necessary to set the air volume of the indoor fan 8 as low as possible (approximately less than % of heating operation) to reduce the distance that the cold air reaches so as not to cause discomfort to the occupants in the room. be. By the way, the indoor blower 8 uses a single-phase motor tap switching method, and there are two ways to reduce the motor rotation speed: one is to switch the taps on the main winding side, and the other is to switch the taps on the auxiliary winding side. There is a limit to the rate of decline in numbers. In the tap switching method on the main winding side, there is a lower limit to low rotation in terms of the winding occupancy rate in the slot section of the stator core, and in the tap switching method on the auxiliary winding side, there is an excessive current in the winding under low rotation conditions. There is a limit to how low the rotation speed can be reduced because the windings experience an abnormal temperature rise. Conventionally, the air volume of the indoor blower could not be sufficiently reduced during defrosting, and cooled air would circulate indoors, impairing comfort.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
気調和機は、圧縮機、四方切換弁と室外(llI熱交換
器、減圧装置、および室内側熱交換器等を順次連通し、
上記室外側熱交換器に対応して配設された室外側送風機
、および上記室内側熱交換器に対応して単相モータと多
翼ファンにより構成された室内側送風機を配設し、上記
室外側熱交換器の近傍に検知部を臨ませた着霜検知器を
有すると共に、上記着霜検知器の検知動作に連動して上
記室外側送風機の停止、上記室内側送風機の回転方向の
逆転および上記四方切換弁の切換えを行なう除霜制御装
置を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention has a compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, etc. sequentially communicate,
An outdoor blower is installed corresponding to the outdoor heat exchanger, and an indoor blower consisting of a single-phase motor and a multi-blade fan is installed corresponding to the indoor heat exchanger. It has a frost detector with a detection part facing the vicinity of the outside heat exchanger, and in conjunction with the detection operation of the frost detector, stops the outdoor fan, reverses the rotational direction of the indoor fan, and It is equipped with a defrosting control device that switches the four-way switching valve.

作  用 本発明は、上記した構成によって暖房運転時には室内側
送風機の多翼ファンを正方向回転で使用することにより
所要風量を得ると共に、除霜運転時には室内側送風機の
多翼ファンを逆方向回転で使用することにより、室内側
送風機の空力性能を低下させモータ回転数を下げること
なく風量を低下させるものである。
Effect: With the above-described configuration, the present invention obtains the required air volume by rotating the multi-blade fan of the indoor blower in the forward direction during heating operation, and rotates the multi-blade fan of the indoor blower in the reverse direction during defrosting operation. By using this system, the air volume can be reduced without reducing the aerodynamic performance of the indoor blower and reducing the motor rotation speed.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて、図面を参照しながら説明する。尚、従来例と同一
部分については同一符号を付し説明を省略する。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings. Incidentally, the same parts as those in the conventional example are given the same reference numerals, and the description thereof will be omitted.

第1図は本発明の実施例における冷凍サイクルの模式図
を示すものであり、12はインペラ13a。
FIG. 1 shows a schematic diagram of a refrigeration cycle in an embodiment of the present invention, and 12 is an impeller 13a.

ケーシング13bから成る多翼ファン13及び単相モー
タ14(図示せず)より構成された室内側送風機である
。16は着霜検知器10の検知動作に連動して室外側送
風機7の停止、上記室内側送風機120回転方向の逆転
および四方切換弁2の切換えを行なう除霜制御装置(詳
図せず)である。
This is an indoor blower composed of a multi-blade fan 13 made up of a casing 13b and a single-phase motor 14 (not shown). Reference numeral 16 denotes a defrosting control device (not shown in detail) which stops the outdoor fan 7, reverses the rotational direction of the indoor fan 120, and switches the four-way switching valve 2 in conjunction with the detection operation of the frost detector 10. be.

以上のように構成されたヒートポンプ式空気調和機につ
いて以下に第1図〜第3図を用いてその動作を説明する
The operation of the heat pump air conditioner configured as described above will be explained below using FIGS. 1 to 3.

丑ず、暖房運転時には室内側送風機12の単相モータに
より多翼ファン13はインペラ13aが第2図中実線矢
印の方向すなわち多翼ファンとして正方向に回転してい
る。つぎに、室外側熱交換器3に霜が堆積して熱交換を
防げるようになると着λ゛i検知器10がこれを検知し
、この検知動作に連動して除霜制御装置16が作動する
。除霜制御装置15が作動すると上記室内側送風機12
の単相モータの回転方向が逆転し多翼ファン13はイン
ペラ13aが第2図破線矢印の方向すなわち多翼ファン
として逆方向に回転する。同時に室外送風機7が停止す
ると共に四方切換弁2が切換わり除霜運転に入る。第3
図は、多翼ファン13の空力特性を示したもので、16
は暖房運転時正方向に回転させた場合の特性、16は除
霜運転時逆方向に回転させた場合の特性、18は室内側
熱交換器3の通風抵抗曲線である。多翼ファン13のイ
ンペラ13bを逆方向に回転させた場合、インペラ13
aは後退翼となるため、正方向に回転させたすなわち前
進翼と、して作用させる場合に比べ内部気流のインペラ
出口速度が大巾に低下する。しかも、インペラ13aを
逆回転させた場合、内部気流のインペラ出口方向は、ケ
ーシング13bの拡大方向と逆向するため、インペラ出
口気流の動圧成分を静圧成分への変換効率が低下するた
め大巾に空力性能が低下する。このため、除霜運転時の
室内側送風機の風量Bは暖房運転時の風量Aに比べ犬[
1]に低下する。
During heating operation, the impeller 13a of the multi-blade fan 13 is rotated by the single-phase motor of the indoor blower 12 in the direction of the solid line arrow in FIG. 2, that is, in the positive direction as a multi-blade fan. Next, when frost accumulates on the outdoor heat exchanger 3 to prevent heat exchange, the arrival λi detector 10 detects this, and the defrost control device 16 operates in conjunction with this detection operation. . When the defrosting control device 15 operates, the indoor blower 12
The direction of rotation of the single-phase motor is reversed, and the impeller 13a of the multi-blade fan 13 rotates in the direction of the dashed arrow in FIG. 2, that is, in the opposite direction as a multi-blade fan. At the same time, the outdoor blower 7 is stopped and the four-way switching valve 2 is switched to enter defrosting operation. Third
The figure shows the aerodynamic characteristics of the multi-blade fan 13.
16 is the characteristic when rotating in the forward direction during heating operation, 16 is the characteristic when rotating in the reverse direction during defrosting operation, and 18 is the ventilation resistance curve of the indoor heat exchanger 3. When the impeller 13b of the multi-blade fan 13 is rotated in the opposite direction, the impeller 13
Since a is a swept-back blade, the impeller exit speed of the internal airflow is greatly reduced compared to when the blade is rotated in the forward direction, that is, acts as a forward-moving blade. Moreover, when the impeller 13a is rotated in the opposite direction, the direction of the impeller exit of the internal airflow is opposite to the expansion direction of the casing 13b, which reduces the efficiency of converting the dynamic pressure component of the impeller exit airflow into a static pressure component. Aerodynamic performance deteriorates. Therefore, the air volume B of the indoor fan during defrosting operation is smaller than the air volume A during heating operation.
1].

以上のように、本発明は、除霜運転時においては室内側
送風機12の単相モータ14’i逆転させ、多翼77ン
13のインペラ13aを多翼ファンとしては逆方向に回
転させることにより、単相モータ14の回転数を低下さ
せることなく風量を大巾に減少でき、除霜運転中に室内
に冷気を循環させ居住者に不快感を与えることがない。
As described above, the present invention rotates the single-phase motor 14'i of the indoor blower 12 in the opposite direction during defrosting operation, and rotates the impeller 13a of the multi-blade fan 13 in the opposite direction. The air volume can be greatly reduced without lowering the rotational speed of the single-phase motor 14, and cold air will not be circulated indoors during defrosting operation to cause discomfort to the occupants.

しかも、単相モータのタップ切換えをして低回転化した
場合のように巻線に過大外電流が流れて過熱することが
なく、これに起因する焼付等の事故の心配もない。
Moreover, unlike when the taps of a single-phase motor are changed to lower the rotation speed, an excessive external current does not flow through the windings and cause overheating, and there is no fear of accidents such as seizure caused by this.

発明の効果 以上のように本発明は、圧縮機、四方切換弁と室外側熱
交換器、減圧装置、および室内側熱交換器等を順次連通
し、上記室外側熱交換器に対応して配設された室外側送
風機、および上記室内側熱交換器に対応して単相モータ
と多翼ファンにより構成された室内側送風機を配設し、
上記室外側熱変換器の近傍に検知部を臨ませた着霜検知
器を有すると共に、上記着霜検知器の検知動作に連動し
て上記室外側送風機の停止、上記室内lll11送風機
の回転方向の逆転および上記四方切換弁の切換えを行な
う除霜制御装置を設けることにより、除霜運転時におい
て室内側送風機の単相モータを逆転させ、多翼ファンの
インペラを多翼ファンとしては逆方向に回転させること
により、単相モータの回転数を低下させることなく風量
を大巾に減少でき、除霜運転中に室内に冷気を循環させ
居住者に不快感を与えることがない。しかも、単相モー
タのタップ切換えをして低回転化した場合のように巻線
に過大な電流が流れ過熱することがなく、これに起因す
る焼付等の事故を防止することができる。
Effects of the Invention As described above, the present invention sequentially connects a compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, etc., and arranges them in correspondence with the outdoor heat exchanger. An indoor blower consisting of a single-phase motor and a multi-blade fan is installed in correspondence with the installed outdoor blower and the indoor heat exchanger,
A frost detector is provided with a detection unit facing near the outdoor heat converter, and in conjunction with the detection operation of the frost detector, the outdoor fan is stopped and the indoor fan is rotated in the direction of rotation. By providing a defrost control device that performs reverse rotation and switching of the four-way switching valve described above, the single-phase motor of the indoor blower is reversed during defrosting operation, and the impeller of the multi-blade fan is rotated in the opposite direction as the multi-blade fan. By doing so, the air volume can be significantly reduced without lowering the rotational speed of the single-phase motor, and cold air will not be circulated indoors during defrosting operation and will not cause discomfort to the occupants. Moreover, unlike when the taps of a single-phase motor are changed to lower the rotation speed, an excessive current does not flow through the windings and cause overheating, and accidents such as seizure caused by this can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるヒートポンプ式空気調
和機の冷凍サイクルを示す模式図、第2図は第1図の室
内側送風機に用いられる多翼ファンの断面図、第3因は
第1図の室内側送風機の空力性能を示す特性図、第4図
は従来のヒートポンプ式空気調和機の冷凍サイクルを示
す模式図である。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室外側熱交換器、4・・・・・・減圧装置
(毛細管)、6・・・・・・室内側熱交換器、7・・・
・・・室外側送風機、9・・・・・・着霜検知部、10
・・・・・・着霜−検知器、12・・・・・・室内側送
風機、13・・・・・・多翼ファン、14・・・・・・
単相モータ、16・・・・・・除霜制御装置。
Fig. 1 is a schematic diagram showing the refrigeration cycle of a heat pump type air conditioner in an embodiment of the present invention, Fig. 2 is a sectional view of a multi-blade fan used in the indoor blower of Fig. 1, and the third factor is FIG. 4 is a characteristic diagram showing the aerodynamic performance of the indoor blower, and FIG. 4 is a schematic diagram showing the refrigeration cycle of a conventional heat pump air conditioner. 1... Compressor, 2... Four-way switching valve, 3
... Outdoor heat exchanger, 4 ... Pressure reducing device (capillary tube), 6 ... Indoor heat exchanger, 7 ...
... Outdoor blower, 9... Frost detection section, 10
...Frost formation detector, 12...Indoor blower, 13...Multi-blade fan, 14...
Single phase motor, 16...Defrosting control device.

Claims (1)

【特許請求の範囲】 圧縮機、四方切換弁、室外側熱交換器、減圧装置、およ
び室内側熱交換器等を順次連通し、上記室外側熱交換器
に対応して配設された室外側送風機、および上記室内側
熱交換器に対応して単相モータと多翼ファンにより構成
された室内側送風機を配設し、上記室外側熱交換器の近
傍に検知部を設置した着霜検知器を有すると共に、上記
着検知器の検知動作に連動して上記室外側送風機の停止
、上記室内側送風機の回転方向の逆転および 上記四方切換弁の切換えを行なう除霜制御 装置とを具備してなるヒートポンプ式空気 調和機。
[Claims] A compressor, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, etc. are connected in sequence, and an outdoor heat exchanger is provided corresponding to the outdoor heat exchanger. A frosting detector in which an indoor blower composed of a single-phase motor and a multi-blade fan is installed in correspondence with a blower and the indoor heat exchanger, and a detection unit is installed near the outdoor heat exchanger. and a defrosting control device that stops the outdoor blower, reverses the rotational direction of the indoor blower, and switches the four-way switching valve in conjunction with the detection operation of the arrival detector. Heat pump air conditioner.
JP61039932A 1986-02-25 1986-02-25 Air conditioner of heat pump type Pending JPS62200124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039932A JPS62200124A (en) 1986-02-25 1986-02-25 Air conditioner of heat pump type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039932A JPS62200124A (en) 1986-02-25 1986-02-25 Air conditioner of heat pump type

Publications (1)

Publication Number Publication Date
JPS62200124A true JPS62200124A (en) 1987-09-03

Family

ID=12566716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039932A Pending JPS62200124A (en) 1986-02-25 1986-02-25 Air conditioner of heat pump type

Country Status (1)

Country Link
JP (1) JPS62200124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833092B1 (en) * 2020-06-24 2021-02-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2022006650A (en) * 2020-06-24 2022-01-13 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833092B1 (en) * 2020-06-24 2021-02-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN113834124A (en) * 2020-06-24 2021-12-24 日立江森自控空调有限公司 Air conditioner
JP2022006650A (en) * 2020-06-24 2022-01-13 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US6354097B1 (en) Method and apparatus for limiting refrigerant pressure in heating mode
JP3080558B2 (en) Heat pump air conditioners for cold regions
KR900007205B1 (en) Air conditioner with heat regeneration cycle
KR20070065824A (en) Multi-range indoor air-conditioning heating system and ventilation control system and the energy-efficient control method of the same
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2010139097A (en) Air conditioner
JP2012013363A (en) Air conditioner
JPH07310964A (en) Air conditioner
JPH11287538A (en) Air-conditioner
JPH04110576A (en) Heat pump type air conditioner
JPS62200124A (en) Air conditioner of heat pump type
JP3330100B2 (en) Heat pump air conditioner for cold regions
JP4074422B2 (en) Air conditioner and its control method
KR100469793B1 (en) Method for controlling over-load on heating mode of air-conditioner used both cooler and heater
JP4396141B2 (en) Air conditioner
JPH06337176A (en) Air-conditioner
JPH0233106Y2 (en)
JPS60259848A (en) Ventilating device
US20230107874A1 (en) Air conditioner
JPS61256162A (en) Air heat-source heat pump device
JPS6317970Y2 (en)
JPH0636440Y2 (en) Air conditioner
JPH03105129A (en) Heat pump type air conditioner
JP2001330347A (en) Air-conditioner
JPH06101891A (en) Method for controlling outdoor air intake type air-conditioner