JPS62199960A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPS62199960A
JPS62199960A JP4172786A JP4172786A JPS62199960A JP S62199960 A JPS62199960 A JP S62199960A JP 4172786 A JP4172786 A JP 4172786A JP 4172786 A JP4172786 A JP 4172786A JP S62199960 A JPS62199960 A JP S62199960A
Authority
JP
Japan
Prior art keywords
thermal expansion
valve
fuel injection
piezo
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4172786A
Other languages
Japanese (ja)
Inventor
Kazuhisa Hasumi
一久 蓮見
Yoshiko Matsubara
松原 宜子
Kenzo Shioi
塩井 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP4172786A priority Critical patent/JPS62199960A/en
Publication of JPS62199960A publication Critical patent/JPS62199960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To reduce the influence of thermal expansion depending upon temperature and to improve control precision as high speed properties is effectively utilized, by a method wherein a spacer, having a thermal expansion factor to which consideration is paid, is combined with a piezo-electric element which controls opening and closing of a valve. CONSTITUTION:A fuel injection valve opens and closes a nozzle valve 5 through the force of a return spring 4 through expansion and contraction motion of a piezo-electric element 3 situated in a body 2 of an injection body 1. In which case, the piezo-electric element 3 is a ceramic series element having a low thermal expansion factor alpha1, but an iron series metal is generally used as the material of the body 2. The material of the body has a high thermal expansion factor alpha2, and a valve stroke is decreased by means of a difference in thermal expansion. In which case, in order to compensate for the difference in thermal expansion, a spacer 6 having a high thermal expansion factor alpha3 is situated to the piezo-electric element 3. This constitution decreases the influence of thermal expansion of a fuel injection valve body depending upon temperature and enables precision on control of an amount of injected fuel to be excellently held without damaging high speed properties of opening and closing of a valve.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料噴射弁、特に圧電素子を用いた燃料噴射弁
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a fuel injection valve, and particularly to a fuel injection valve using a piezoelectric element.

(従来の技術) 従来の燃料噴射弁は電磁式が一般的であり、この方式は
リターンスプリングの押圧力によってニードルをシート
に押圧して閉弁し、一方、■弁時はリターンスプリング
の抑圧力に抗して電磁力でニードルを吸引するものであ
る。そしてこの種の方式は、電磁力による開閉弁動作で
あるため動作速度が遅く、大形となる欠点がある。
(Prior art) Conventional fuel injection valves are generally electromagnetic type, and this method closes the valve by pressing the needle against the seat using the pressing force of the return spring.On the other hand, when the valve is closed, the suppressing force of the return spring The needle is attracted by electromagnetic force against the This type of system has the drawbacks of slow operation speed and large size because the valve is operated by electromagnetic force.

そこで、近年に至って圧電素子を用いた燃料噴射弁が種
々提案されている。即ち、周知のように圧電素子は小形
経世である上に、高速応答性、エネルギー効率及び発生
力に優れた特性を有しているため、内燃機関用の燃料噴
射弁のバルブ駆動に用いると、高精度な流量制御がなさ
れるからである。
Therefore, in recent years, various fuel injection valves using piezoelectric elements have been proposed. That is, as is well known, piezoelectric elements are small in size and have excellent characteristics such as high-speed response, energy efficiency, and power generation. This is because highly accurate flow rate control is achieved.

(発明が解決しようとする問題点) しかしながら、圧電素子を燃料噴射弁に適用した場合、
以下に示す問題点がある。
(Problems to be solved by the invention) However, when piezoelectric elements are applied to fuel injection valves,
There are problems as shown below.

即ち、圧電素子は前記した特性を有する反面、圧電素子
がセラミック材にて形成されているため、素子自体の内
部要因(温度ヒステリシス、分極劣化等)により変位量
の不安定さは避けられない。
That is, although the piezoelectric element has the above-mentioned characteristics, since the piezoelectric element is formed of a ceramic material, instability in the amount of displacement is inevitable due to internal factors of the element itself (temperature hysteresis, polarization deterioration, etc.).

更に、燃料噴射弁の構成部材は鉄系の金腐等が用いられ
ているために、圧電素子とボディとの温度膨張係数の違
いから、バルブリフト尾が不正確となって流量精度の劣
化を生ずる。
Furthermore, since the components of the fuel injection valve are made of iron-based metal rot, etc., the difference in temperature expansion coefficient between the piezoelectric element and the body causes the valve lift tail to be inaccurate, resulting in deterioration of flow rate accuracy. arise.

本発明は、上記問題点を解決するためになされたもので
あり、温度による熱膨張の影響を少なくし、流母制御精
度を高めるようにした燃料噴射弁を提供することを目的
としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a fuel injection valve that reduces the influence of thermal expansion due to temperature and improves flow mother control accuracy.

し発明の構成] (問題点を解決するための手段) 第1図は本発明の基本概念を示す図である。Structure of the invention] (Means for solving problems) FIG. 1 is a diagram showing the basic concept of the present invention.

第1図において、燃料噴射弁本体ユのボディ2内には圧
電素子3を設け、この圧電素子の伸縮動作を利用してリ
ターンスプリング4を介してノズルバルブ5を動作する
。ここで使用される圧電素子3は、セラミック系の素子
であって熱膨脹係数は小さく、素子の材質によっては温
度上昇と共に、縮む(熱膨脹係数が負の符号)ものもあ
る。
In FIG. 1, a piezoelectric element 3 is provided in a body 2 of a fuel injection valve body, and a nozzle valve 5 is operated via a return spring 4 by utilizing the expansion and contraction movement of this piezoelectric element. The piezoelectric element 3 used here is a ceramic element and has a small coefficient of thermal expansion, and depending on the material of the element, it may shrink as the temperature rises (the coefficient of thermal expansion has a negative sign).

又、この種のボディ材は鉄系金屑等の使用が゛一般的で
あり、熱膨脹係数は大きい。
Further, this type of body material generally uses iron-based metal scraps, etc., and has a large coefficient of thermal expansion.

ここで圧電素子の熱膨張率をα1、ボディ材の熱膨張率
をα2とし、素子長を1とすれば、熱膨張率の差により
、ノズルと素子の接触が出来なくなり、間隙が生じる。
Here, if the thermal expansion coefficient of the piezoelectric element is α1, the thermal expansion coefficient of the body material is α2, and the element length is 1, the nozzle and the element cannot contact each other due to the difference in thermal expansion coefficient, and a gap is created.

その大きさΔlは、ΔJl=<α2−α1 )! 6丁
     ・・・(1)となる。なお、6丁は接触を維
持している温度からの温度上昇分である。ちなみに、α
1=−4x10  /deg 、α2=11xlO/d
eg 、1 =40mm。
Its size Δl is ΔJl=<α2−α1)! 6 guns...(1). Note that 6 points is the temperature increase from the temperature at which contact is maintained. By the way, α
1=-4x10/deg, α2=11xlO/d
eg, 1 = 40 mm.

AT=50℃の場合、Δ1=30μraとなる。When AT=50°C, Δ1=30 μra.

しかし、一般に噴射弁のストロークは30μm〜100
μm程度であるため、前記間隙へ1によるバルブストロ
ークの減少が性能に大きく影響を与えることになる。
However, in general, the stroke of the injection valve is 30 μm to 100 μm.
Since the gap is on the order of μm, a reduction in the valve stroke due to the gap 1 will have a large impact on performance.

従って、本発明では圧電素子3に対して熱膨張率の大き
な材料からなるスペーサ6を設ける構成とした。
Therefore, in the present invention, the piezoelectric element 3 is provided with a spacer 6 made of a material having a large coefficient of thermal expansion.

(作用) 従って、温度上昇による圧電素子3の縮み分をスペーサ
6の膨張分でキャンセルすることが出来る。この場合、
スペーサの熱膨張率をα3、長さを1′とすれば、 J l = (Z 2LLLL二二」上J  ・・・(
2)α3 となる長さのスペーサ6を組込むことにより、間隙を殆
んど生じないように出来る。
(Function) Therefore, the shrinkage of the piezoelectric element 3 due to temperature rise can be canceled by the expansion of the spacer 6. in this case,
If the coefficient of thermal expansion of the spacer is α3 and the length is 1', then J l = (Z 2LLLL22'' upper J ... (
2) By incorporating the spacer 6 having a length of α3, almost no gap can be created.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第2図は、本発明による燃料噴射弁の一実施例の構成図
である。そして第2図はポペット弁型噴射弁の例であり
、ボディ2−1内にある圧電素子3−1を係合子7と温
度補償用のスペーサ6−1にて挾持したものである。係
合子7の移動に応じて作動する保持部9はリターンスプ
リング4によって押圧力を受けており、更に係合子7は
余圧スプリング10によって圧縮力を受け、その結果と
して圧電素子3−1が圧縮力を受けるようになっている
。従って、圧電素子3−1の電圧印加による素子の伸長
をバルブ可動部8で受け、リターンスプリング4に抗し
たバルブ可動部8の移動でノズルバルブ5を開弁する。
FIG. 2 is a configuration diagram of an embodiment of a fuel injection valve according to the present invention. FIG. 2 shows an example of a poppet valve type injection valve, in which a piezoelectric element 3-1 in a body 2-1 is held between an engaging element 7 and a temperature compensation spacer 6-1. The holding part 9, which operates in accordance with the movement of the engaging element 7, is subjected to a pressing force by the return spring 4, and the engaging element 7 is further subjected to a compressive force by the extra pressure spring 10, and as a result, the piezoelectric element 3-1 is compressed. It is designed to receive power. Therefore, the valve movable section 8 receives the expansion of the piezoelectric element 3-1 due to voltage application, and the nozzle valve 5 is opened by the movement of the valve movable section 8 against the return spring 4.

一方、電圧印加がなくなった場合はリターンスプリング
4と余圧スプリング10によって圧電素子3−1が縮小
し、その結果、ノズルバルブ5を閉弁する。この際、ス
ペーサ6−1は圧電素子3−1とボディ2−1との熱膨
張の差をキャンセルする。
On the other hand, when the voltage is no longer applied, the piezoelectric element 3-1 is contracted by the return spring 4 and the extra pressure spring 10, and as a result, the nozzle valve 5 is closed. At this time, the spacer 6-1 cancels the difference in thermal expansion between the piezoelectric element 3-1 and the body 2-1.

第3図は他の実施例の構成図である。FIG. 3 is a block diagram of another embodiment.

本実施例では、温度補償用のスペーサと圧電素子とをボ
ルトによって固定したものである。
In this embodiment, a spacer for temperature compensation and a piezoelectric element are fixed with bolts.

ボディ2内には温度補償用のスペーサ6−2を固定し、
円筒形の圧電素子3−2をボルト11によって、前記ス
ペーサに取付けたものである。圧電素子3−2に対する
余圧は、ボルト11の締付けによって行なう。
A spacer 6-2 for temperature compensation is fixed inside the body 2,
A cylindrical piezoelectric element 3-2 is attached to the spacer with bolts 11. Extra pressure is applied to the piezoelectric element 3-2 by tightening the bolt 11.

なお、リターンスプリング4はバルブ可動部8と一体に
なった保持部12によって支持されている。
Note that the return spring 4 is supported by a holding section 12 that is integrated with the valve movable section 8.

13はボルトの締付は部である。この結果、圧電素子3
−2に電圧が印加さ・れると、圧電素子3−2は沖長し
、それに伴なってボルト11も伸び、ボルトの先端がノ
ズルバルブ5を開弁する。閉弁時は前記動作の逆であり
省略する。
13 is the bolt tightening section. As a result, piezoelectric element 3
When a voltage is applied to -2, the piezoelectric element 3-2 extends, the bolt 11 also extends, and the tip of the bolt opens the nozzle valve 5. When the valve is closed, the operation is the reverse of the above, and will be omitted.

この場合、スペーサ6−2に熱膨張率の大きな材料を使
用することにより、熱の影響を少なく出来る。
In this case, by using a material with a large coefficient of thermal expansion for the spacer 6-2, the influence of heat can be reduced.

第4図は更に他の実施例である。FIG. 4 shows yet another embodiment.

本実施例では圧電素子の伸び縮みによってニードルバル
ブを動かし、弁の開閉を行なうようにしたものである。
In this embodiment, the needle valve is moved by the expansion and contraction of the piezoelectric element to open and close the valve.

第4図において、圧電素子3−3は係合子7−1とスペ
ーサ6−3によって支持され、スペーサ6−3としては
熱膨張の大きな材料を用いて温度特性を向上させている
。14はニードルバルブであり、動作説明は省略する。
In FIG. 4, a piezoelectric element 3-3 is supported by an engaging element 7-1 and a spacer 6-3, and the spacer 6-3 is made of a material with large thermal expansion to improve temperature characteristics. 14 is a needle valve, and the explanation of its operation will be omitted.

第5図は更に他の実施例である。FIG. 5 shows yet another embodiment.

本実施例では温度補償用のスペーサを省略し、その代わ
りにボディ2−1.2−2に圧電素子と同じ材料を用い
るか、又は熱膨脹係数の小さいセラミック系の材料を用
いるようにしたものである。この場合、シート部15の
材質を金属にするなどして考慮する必要がある。その他
の構成及び動作は省略する。
In this embodiment, the spacer for temperature compensation is omitted, and instead, the same material as the piezoelectric element is used for the body 2-1, 2-2, or a ceramic material with a small coefficient of thermal expansion is used. be. In this case, consideration must be given to making the material of the seat portion 15 metal. Other configurations and operations will be omitted.

[発明の効果] 以上説明した如く、本発明によれば圧電素子に対して熱
膨脹係数の大きなスペーサを挿入するよう構成したので
、温度による熱膨張の影響を少なくし、高速性を生かし
つつ、かつ制御精度の良好な燃料噴射弁を提供できる。
[Effects of the Invention] As explained above, according to the present invention, since a spacer having a large coefficient of thermal expansion is inserted into the piezoelectric element, the influence of thermal expansion due to temperature can be reduced, high speed performance can be utilized, and A fuel injection valve with good control accuracy can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料噴射弁の原理を説明する図、第2
図は本発明の燃料噴射弁の一実施例の構成図、第3図は
他の実施例の構成図、第4図は更に他の実施例の構成図
、第5図は更に他の実施例の構成図である。 1・・・燃料噴射弁本体   2.2−1.2−2・・
・ボディ3.3−1〜3−4・・・圧電素子 4・・・リターンスプリング 5・・・ノズルバルブ6
.6−1〜6−3・・・スペーサ 7.7−1・・・係
合子8・・・バルブ可動部    9.12・・・保持
部10・・・余圧スプリング   11・・・ボルト1
3・・・締付は部      14・・・ニードルバル
ブ15・・・シート部
Figure 1 is a diagram explaining the principle of the fuel injection valve of the present invention, Figure 2 is a diagram explaining the principle of the fuel injection valve of the present invention.
The figure is a configuration diagram of one embodiment of the fuel injection valve of the present invention, FIG. 3 is a configuration diagram of another embodiment, FIG. 4 is a configuration diagram of still another embodiment, and FIG. 5 is a configuration diagram of still another embodiment. FIG. 1...Fuel injection valve body 2.2-1.2-2...
・Body 3.3-1 to 3-4...Piezoelectric element 4...Return spring 5...Nozzle valve 6
.. 6-1 to 6-3...Spacer 7.7-1...Engager 8...Valve movable part 9.12...Holding part 10...Extra pressure spring 11...Bolt 1
3...Tightening part 14...Needle valve 15...Seat part

Claims (1)

【特許請求の範囲】[Claims]  圧電素子を駆動源としてバルブを開閉制御することに
より、燃料の噴射量を制御する燃料噴射弁において、圧
電素子に対して熱膨脹係数を考慮したスペーサを組合せ
たことを特徴とする燃料噴射弁。
A fuel injection valve that controls the amount of fuel injected by controlling the opening and closing of a valve using a piezoelectric element as a driving source, characterized in that the piezoelectric element is combined with a spacer that takes into account a coefficient of thermal expansion.
JP4172786A 1986-02-28 1986-02-28 Fuel injection valve Pending JPS62199960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172786A JPS62199960A (en) 1986-02-28 1986-02-28 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172786A JPS62199960A (en) 1986-02-28 1986-02-28 Fuel injection valve

Publications (1)

Publication Number Publication Date
JPS62199960A true JPS62199960A (en) 1987-09-03

Family

ID=12616452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172786A Pending JPS62199960A (en) 1986-02-28 1986-02-28 Fuel injection valve

Country Status (1)

Country Link
JP (1) JPS62199960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229322U (en) * 1988-08-11 1990-02-26
JPH02297604A (en) * 1989-04-26 1990-12-10 Uk Government Adaptive control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229322U (en) * 1988-08-11 1990-02-26
JPH02297604A (en) * 1989-04-26 1990-12-10 Uk Government Adaptive control system

Similar Documents

Publication Publication Date Title
EP1907687B1 (en) Fuel injector with piezoelectric actuator preload
US6685105B1 (en) Fuel injection valve
EP1381772B1 (en) Magneto-hydraulic compensator for a fuel injector
EP1707797B1 (en) Adjustable metering servovalve for a fuel injector
US4995587A (en) Motion amplifier employing a dual piston arrangement
US6570474B2 (en) Magnetostrictive electronic valve timing actuator
US7255074B2 (en) Linear EMV actuator using permanent magnet and electromagnet
EP0328192A1 (en) Repulsion actuated potential energy driven valve mechanism
JPH04224269A (en) Valve with piezoelectric drive
US9382885B2 (en) Fuel injection valve for an internal combustion engine
US6953158B2 (en) Fuel injection valve
ITTO950600A1 (en) IMPROVEMENTS TO AN ELECTROMAGNETICALLY OPERATED DOSING VALVE, FOR A FUEL INJECTOR.
EP1167748B1 (en) A self-compensating piezoelectric actuator for a control valve
JPH109084A (en) Piezoelectric fuel injection valve
US6932278B2 (en) Fuel injection valve
JPS62199960A (en) Fuel injection valve
US6626373B1 (en) Fuel injection valve
US6766964B1 (en) Fuel injector
JPH09324723A (en) Fuel injection valve
JPS62283274A (en) Valve using electrostrictive element
CN103221677B (en) Fuel injector
US6394416B2 (en) Device for operating a gas exchange valve
JPS62199962A (en) Fuel injection valve
JPH02142979A (en) Valve on-off mechanism
JP4464372B2 (en) Fuel injection valve