JPS6219959B2 - - Google Patents

Info

Publication number
JPS6219959B2
JPS6219959B2 JP55049566A JP4956680A JPS6219959B2 JP S6219959 B2 JPS6219959 B2 JP S6219959B2 JP 55049566 A JP55049566 A JP 55049566A JP 4956680 A JP4956680 A JP 4956680A JP S6219959 B2 JPS6219959 B2 JP S6219959B2
Authority
JP
Japan
Prior art keywords
wire
welding
less
tio
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55049566A
Other languages
Japanese (ja)
Other versions
JPS56148493A (en
Inventor
Yoshio Kanbe
Kozo Yamashita
Kazuo Nagatomo
Kazushi Suda
Isamu Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4956680A priority Critical patent/JPS56148493A/en
Publication of JPS56148493A publication Critical patent/JPS56148493A/en
Publication of JPS6219959B2 publication Critical patent/JPS6219959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動及び半自動溶接ワイヤに係るもの
で、さらに詳しくは優れた溶接作業性と厚板調質
Cr―Mo鋼に適合した熱処理後でもすぐれた性能
の溶接金属を得ることのできる炭酸ガスアーク溶
接用複合ワイヤに関するものである。 石油精製、化学工業及び高温高圧ボイラーなど
に使用されるCr―Mo鋼の容器は大型化し、経済
性から高温高圧化され、設計強度も上げる傾向に
ある。したがつて容器の板厚は更に厚肉になるも
のと予想される。このように厚肉の容器になるに
つれ溶接後の応力除去焼鈍時間も長時間になる。
このように焼鈍時間が長くなつてくるとCr―Mo
溶接金属の引張強さと衝撃値は次第に低下する傾
向がある。そこで使用される溶接材料も高性能の
ものが要求される。 従来、これら厚肉容器等は通常サブマージアー
ク溶接やエレクトロスラグ溶接が主として用いら
れており、炭酸ガスアーク溶接や被覆アーク溶接
も使用されている。しかしサブマージアーク溶接
やエレクトロスラグ溶接と炭酸ガスアーク溶接を
比較するとサブマージアーク溶接やエレクトロス
ラグ溶接の方が入熱量が極めて大きく、その結果
溶接金属の衝撃値が低くなりやすい。これは溶接
金属のデンドライト成長が大きいためである。ま
た炭酸ガスアーク溶接と被覆アーク溶接とでは溶
接の高能率化、継手品質の安定化の面で炭酸ガス
アーク溶接の方が優れている。また炭酸ガスアー
ク溶接はサブマージアーク溶接、エレクトロスラ
グ溶接及び被覆アーク溶接に比べて低水素の溶接
法で低温割れを防止するために実施される予熱条
件を著しく緩和でき、なおかつ厚肉容器等の溶接
においては狭開先化により溶接時間の短縮と溶接
材料の節減から溶接コストを大幅に下げることが
可能であるという利点が上げられる。 ところで炭酸ガスアーク溶接は使用するワイヤ
により2つに大別出来る。その1つはソリツドワ
イヤによるもので、他は複合ワイヤによるもので
ある。まずソリツドワイヤを使用した場合、ワイ
ヤの溶融速度が速く、溶込みが深い高能率な溶接
が可能である反面、溶接して得られたビード上に
はごくわずかのスラグが点在するのみでビード外
観を美しく、ビード形状をととのえるためのスラ
グがないためビード外観が悪く、ビード形状も凸
状になりがちであるという欠点があつた。 また複合ワイヤを使用した場合、スラグ生成剤
でビードを一様にスラグが覆うのでビード形状と
外観が非常に良好であり、溶接作業性もソリツド
ワイヤに比して優れているが、溶接金属中の酸素
量が多くなるため溶接金属の性能、特に応力除去
焼鈍を実施した後での強度、衝撃値がソリツドワ
イヤに比して劣つているという欠点があつた。こ
のため溶接作業性が良く、なおかつ溶接金属の酸
素量を抑え、耐割れ性及び応力除去焼鈍後でもす
ぐれた機械的性質を有する溶接金属が得られる炭
酸ガスアーク溶接用複合ワイヤの開発が強く望ま
れていた。 すなわち、本発明はワイヤ全重量に対して
TiO21.8〜6.0%、C0.20%以下、Mn1.0〜8.0%、
Cr1.0〜4.0%、Mo0.5〜1.5%、またこれにSi0.3
%以下或いは又さらにN0.015%以下になるよう
に窒化物の形で与えられる金属粉をフラツクス中
に1種以上含み、残部はアーク安定剤を含めた通
常のスラグ生成剤から成るフラツクスが金属外皮
内に充填されていることを特徴とするCr―Mo系
炭酸ガスアーク溶接用複合ワイヤである。 以下に本発明になる炭酸ガスアーク溶接用複合
ワイヤを上記構成とした理由について詳細に説明
する。 まず、TiO2について述べると、充填フラツク
ス中にTiO2を添加するとアークをソフトにし粘
性の大きいスラグを形成するため溶滴は細粒かつ
規則正しい移行形態をとる上、立向や上向など不
自然な姿勢においても溶融メタルは溶け落ち難く
なる。さらにスラグは溶接ビードを平滑にし、た
とえばすみ肉ビードのなじみを改善するため、溶
接部の疲労強度を向上させる効果は大きい。しか
し1.8%未満のTiO2量では溶接作業性が極めて悪
く実用に耐えない。一方6.0%を超えるとスラグ
の粘性が異常に高くなるためスラグのビード被包
性は劣化し、ビード形状が悪化する。したがつて
TiO2はワイヤ全重量に対して1.8%〜6.0%の範囲
に限定する。なお、本発明ワイヤにおけるTiO2
成分は天然ルチールや人造ルチールの如きTiO2
含有鉱物で添加する。さらに本発明ワイヤに添加
するTiO2の粒度範囲はフラツクスの充填に支障
をきたさない最大粒度297μ以下であることが望
ましい。 次にCは溶接金属に引張強さを付与するために
添加するが、0.20%を超えると衝撃値が低下し、
割れ感度を増加させることになるので0.20%以下
の範囲にする。 またMnは溶接部に要求される引張強度、靭性
向上と溶接中に発生する気孔防止のために添加す
るが、8%を超えると焼入れ効果が拡大し溶接割
れを生じやすい。1.0%未満では要求される強
度、靭性を得ることが困難となる。 次にCrとMoはCr―Mo鋼を溶接してその溶接
部に強度を持たせるために添加するがワイヤ全重
量に対してCrはその量が1.0%未満では要求され
た強度が得られず、また4.0%を超えると耐ワレ
性が劣化する。またMoは強度とともに衝撃靭性
をも高めるが、その量が0.5%未満では効果な
く、1.5%を超えると耐ワレ性が劣化する。 Siは主としてX線性能及び作業性を良好にする
目的で添加することが出来るがワイヤ全重量に対
して0.3%を超えると溶接金属の衝撃値が低下す
るので0.3%以下まで許容できるが、実用の観点
からはSi含有量が低い程衝撃値が良好となる。 なお、C、Mn、Cr、Mo、Siについてはそれぞ
れ単体で用いられる他、鉄合金を含む各種合金の
形態でも使用できる。 次に本発明においては、N源として電解金属マ
ンガン窒化物、窒化クロム、窒化アルミニウム、
窒化鉄、窒化チタンの1種以上をワイヤ全重量に
対してNが0.006〜0.015%になるように添加する
ことが出来る。このNの適正添加量を求めるた
め、以下のような実験を行つた。第1図は溶接金
属の衝撃値とフラツクス中のN含有量の関係を示
したものであり、試験に当つてはフラツクス成分
としてTiO22.0%、C0.12%、Mn4.8%、Cr2.0
%、Mo0.82%、SiO20.87%、Al2O31.50%とワイ
ヤ全重量に対する添加量を一定とし且つN源とし
て電解金属マンガン窒化物を用い、その添加量を
種々変えることによりフラツクス中のN含有量を
段階的に変え軟鋼外皮を有するワイヤ(1.6mm
φ)で充填率15%としたものを用いて板厚25mmt
のA387Gr22(21/4Cr―1Mo鋼)鋼板を開先角度
45゜、開先間隙12.5mmのV型開先として、電流
350A、電圧31V、速度27cm/min、100%CO2
(流量25/min)の溶接条件で溶接し、溶接終
了後温度650℃、保定時間12Hrの応力除去焼鈍を
行ないそれぞれの全溶着金属部からJIS A―4号
シヤルピー衝撃片を採取して行つたものである。
この図から明らかなようにワイヤ全重量に対する
フラツクス中のN含有量が0.006%以上である
と、これ未満の溶接金属に比して低温度(600〜
690℃)応力除去焼鈍後の衝撃値は高い。一方
0.015%を超えると溶接部にブローホールやピツ
トが発生する。したがつてこのような知見に基い
てNはワイヤ全重量に対して0.006〜0.15%の範
囲に限定する。 なお、本発明の複合ワイヤは前記各成分の他に
残部として通常のアーク安定剤を含めたスラグ生
成剤を含むことが出来るものである。ここでいう
スラグ生成剤とはAl2O3、SiO2、ZrO2、FeO、
Na2O、K2Oを指し、1種以上の和が10%以下で
あることが望ましい。これらの添加原料として酸
化鉄、カリ長石、珪砂、ジルコンサンド、アルミ
ナなどを適宜用いることが出来る。 次に、本発明ワイヤの金属外皮材としては、合
金鋼をも使用出来るが、通常は軟鋼を用いる。ま
たワイヤの断面形状については特に定めるもので
はなく、従来のフラツクス入りワイヤ同様、送給
性、アーク安定性にすぐれているものであればい
ずれでもかまわない。すなわち第2図、第3図に
示すように外皮金属1の断面に合せ目があつても
良く、あるいは第4図に示すように合せ目のない
いわゆるシームレスワイヤであつても良い。なお
これらの図において2は充填フラツクスである。 ところでワイヤ内に充填するフラツクスはワイ
ヤ重量比で10〜25%の範囲にコントロールすると
好結果が得られる様である。またワイヤ径は2.0
mmφ未満のものが自動及び半自動溶接用としては
好ましい。 次に実施例を用いて本発明の効果をさらに具体
的に説明する。 実施例 第1表に試作ワイヤの充填フラツクス組成を示
す。なおこのワイヤはいずれも軟鋼外皮を有する
1.6mmφに仕上げ、充填率を15%にした第2図の
単純突合せ断面形状を有するものに仕上げた。板
厚25mmtのA387Gr22(21/4Cr―1Mo鋼)鋼板を
開先角度45゜、開先間隙12.5mmのV型開先とし
て、電流350A、電圧31V、速度27cm/min、100
%CO2(流量25/min)の溶接条件で溶接し、
溶接終了後、温度690℃、保定時間16Hrの応力除
去焼鈍を行ない、それぞれの溶接金属の板厚の板
厚中央部からJIS A―2号引張試験片とA―4号
シヤルピー衝撃片を採取して試験に供した。得ら
れた溶接金属の引張強さと衝撃値を第2表に示
す。 第2表から明らかな如く本発明になるNo.4〜18
のワイヤは溶接作業性、ビード外観が良好なのは
もちろんX線性能にもすぐれ引張強さ、衝撃値と
もすぐれた溶接金属が得られた。 これに対してTiO2が本発明で規定する範囲未
満の参考ワイヤNo.1は溶接作業性が極めて悪く溶
接不能になつた。 またTiO2を本発明に規定する範囲を超えて添
加した参考ワイヤNo.20はスラグ粘性が不当に高く
なり過ぎた結果、作業性の劣化と共にスラグ巻込
み、融合不良の如き内部欠陥が多発し機械的性質
も非常に悪かつた。 参考ワイヤNo.2、3はSiを本発明で規定する範
囲を超えて添加したもので、溶接作業性、ビード
外観およびX線性能は良好であつたが溶接金属の
衝撃値が非常に低い。参考ワイヤNo.19はNを本発
明で規定する範囲を超えて添加したもので、溶接
作業性、ビード外観は良好であつたがX線性能で
ブローホール、融合不良の如き内部欠陥が多発し
機械試験片の採取が不能となつた。 参考ワイヤNo.21はCを本発明で基定する範囲を
超えて添加したもので溶接作業性、ビード外観は
良好であつたがX線性能で割れおよび溶込み不良
の如き内部欠陥が発生しており機械試験片の採取
が不能となつた。参考ワイヤNo.22はMnを本発明
で規定する範囲を超えて添加したもので溶接作業
性、ビード外観は良好であつたがX線性能で割れ
及び溶込み不良の如き内部欠陥が発生しており衝
撃靭性も低かつた。
The present invention relates to automatic and semi-automatic welding wires, and more specifically, to excellent welding workability and thick plate tempering.
The present invention relates to a composite wire for carbon dioxide arc welding that can provide weld metal with excellent performance even after heat treatment that is compatible with Cr-Mo steel. Cr-Mo steel containers used in oil refining, chemical industry, high-temperature, high-pressure boilers, etc. are becoming larger, with higher temperatures and higher pressures being used for economic reasons, and the design strength is also increasing. Therefore, it is expected that the thickness of the container will become even thicker. In this way, as the container becomes thicker, the stress relief annealing time after welding becomes longer.
As the annealing time increases in this way, Cr-Mo
The tensile strength and impact value of weld metal tend to decrease gradually. The welding materials used therein are also required to have high performance. Conventionally, submerged arc welding and electroslag welding have been mainly used for these thick-walled containers, and carbon dioxide arc welding and shielded arc welding have also been used. However, when comparing submerged arc welding, electroslag welding, and carbon dioxide arc welding, submerged arc welding and electroslag welding have an extremely large amount of heat input, and as a result, the impact value of the weld metal tends to be low. This is due to large dendrite growth in the weld metal. Furthermore, between carbon dioxide arc welding and shielded arc welding, carbon dioxide arc welding is superior in terms of high welding efficiency and stable joint quality. In addition, compared to submerged arc welding, electroslag welding, and covered arc welding, carbon dioxide arc welding is a low-hydrogen welding method and can significantly ease the preheating conditions required to prevent cold cracking, and is suitable for welding thick-walled containers. The advantage of this method is that it is possible to significantly reduce welding costs by shortening welding time and saving welding materials by narrowing the groove. By the way, carbon dioxide arc welding can be roughly divided into two types depending on the wire used. One is by solid wire and the other is by composite wire. First, when solid wire is used, the melting speed of the wire is fast and high-efficiency welding with deep penetration is possible, but on the other hand, only a small amount of slag is scattered on the bead obtained by welding, and the bead appearance Because there is no slag to maintain the beautiful bead shape, the bead appearance is poor and the bead shape tends to be convex. In addition, when composite wire is used, the bead is uniformly covered with slag due to the slag forming agent, so the bead shape and appearance are very good, and the welding workability is also superior to solid wire. Due to the large amount of oxygen, the performance of the weld metal, especially the strength and impact value after stress relief annealing, was inferior to that of solid wire. Therefore, it is strongly desired to develop a composite wire for carbon dioxide arc welding that has good welding workability, suppresses the amount of oxygen in the weld metal, and provides a weld metal that has excellent crack resistance and mechanical properties even after stress relief annealing. was. In other words, the present invention reduces the total weight of the wire to
TiO2 1.8~6.0%, C0.20% or less, Mn1.0~8.0%,
Cr1.0~4.0%, Mo0.5~1.5%, and Si0.3
% or even less than 0.015% in the flux, in the form of nitrides, and the remainder consists of ordinary slag forming agents including arc stabilizers. This is a Cr-Mo based composite wire for carbon dioxide arc welding, characterized by the fact that the outer sheath is filled. The reason why the composite wire for carbon dioxide arc welding according to the present invention has the above structure will be explained in detail below. First, regarding TiO 2 , when TiO 2 is added to the filling flux, it softens the arc and forms a highly viscous slag, so the droplets take on a fine and regular transition shape, as well as unnatural vertical or upward orientation. Even in this position, the molten metal becomes difficult to melt down. Furthermore, since slag smoothes the weld bead and improves the conformability of fillet beads, for example, it is highly effective in improving the fatigue strength of the weld. However, if the amount of TiO 2 is less than 1.8%, welding workability is extremely poor and it is not practical. On the other hand, if it exceeds 6.0%, the viscosity of the slag becomes abnormally high, which deteriorates the bead encapsulation of the slag and deteriorates the bead shape. Therefore
TiO 2 is limited to a range of 1.8% to 6.0% based on the total weight of the wire. Note that TiO 2 in the wire of the present invention
Ingredients are TiO 2 like natural rutile and artificial rutile.
Added by containing minerals. Further, it is desirable that the particle size range of TiO 2 added to the wire of the present invention is a maximum particle size of 297 μm or less that does not interfere with flux filling. Next, C is added to give the weld metal tensile strength, but if it exceeds 0.20%, the impact value decreases.
Since it increases cracking sensitivity, it should be within the range of 0.20% or less. Mn is added to improve the tensile strength and toughness required for welded parts and to prevent pores generated during welding, but if it exceeds 8%, the quenching effect increases and weld cracking is likely to occur. If it is less than 1.0%, it will be difficult to obtain the required strength and toughness. Next, Cr and Mo are added to weld Cr-Mo steel to give strength to the welded part, but if the amount of Cr is less than 1.0% of the total weight of the wire, the required strength cannot be obtained. , and when it exceeds 4.0%, crack resistance deteriorates. Mo also increases impact toughness as well as strength, but if the amount is less than 0.5%, it is ineffective, and if it exceeds 1.5%, cracking resistance deteriorates. Si can be added mainly for the purpose of improving X-ray performance and workability, but if it exceeds 0.3% of the total weight of the wire, the impact value of the weld metal will decrease, so it is permissible up to 0.3% or less, but in practical use. From this point of view, the lower the Si content, the better the impact value. Note that C, Mn, Cr, Mo, and Si can be used alone or in the form of various alloys including iron alloys. Next, in the present invention, electrolytic metal manganese nitride, chromium nitride, aluminum nitride,
One or more of iron nitride and titanium nitride can be added such that N is 0.006 to 0.015% based on the total weight of the wire. In order to determine the appropriate amount of N to be added, the following experiment was conducted. Figure 1 shows the relationship between the impact value of the weld metal and the N content in the flux. In the test, the flux components were TiO 2 2.0%, C 0.12%, Mn 4.8%, Cr2. 0
%, Mo 0.82%, SiO 2 0.87%, Al 2 O 3 1.50%, the amount added to the total weight of the wire was kept constant, and electrolytic metal manganese nitride was used as the N source, and the amount added was varied. A wire with a mild steel outer skin (1.6mm
φ) with a filling rate of 15% and a plate thickness of 25 mm.
Bevel angle of A387Gr22 (21/4Cr-1Mo steel) steel plate
45°, a V-shaped groove with a groove gap of 12.5 mm, and the current
350A, voltage 31V, speed 27cm/min, 100% CO 2
Welding was carried out under the welding conditions of (flow rate 25/min), and after welding was completed, stress relief annealing was performed at a temperature of 650°C and a holding time of 12 hours, and JIS A-4 Sharpie impact pieces were collected from all welded metal parts. It is something.
As is clear from this figure, when the N content in the flux is 0.006% or more based on the total weight of the wire, the temperature is lower (600 to
690℃) The impact value after stress relief annealing is high. on the other hand
If it exceeds 0.015%, blowholes and pits will occur in the weld. Therefore, based on this knowledge, N is limited to a range of 0.006 to 0.15% based on the total weight of the wire. In addition to the above-mentioned components, the composite wire of the present invention can contain a slag forming agent including a conventional arc stabilizer as the remainder. The slag forming agents mentioned here include Al 2 O 3 , SiO 2 , ZrO 2 , FeO,
Refers to Na 2 O and K 2 O, and it is desirable that the sum of one or more types is 10% or less. As these additive raw materials, iron oxide, potassium feldspar, silica sand, zircon sand, alumina, etc. can be used as appropriate. Next, although alloy steel can also be used as the metal sheath material of the wire of the present invention, mild steel is usually used. Further, the cross-sectional shape of the wire is not particularly determined, and any wire may be used as long as it has excellent feedability and arc stability, similar to conventional flux-cored wires. That is, as shown in FIGS. 2 and 3, the cross section of the outer metal 1 may have a seam, or as shown in FIG. 4, it may be a so-called seamless wire without a seam. Note that in these figures, 2 is a filling flux. By the way, good results seem to be obtained if the flux filled into the wire is controlled within the range of 10 to 25% by weight of the wire. Also, the wire diameter is 2.0
Those less than mmφ are preferable for automatic and semi-automatic welding. Next, the effects of the present invention will be explained in more detail using Examples. Example Table 1 shows the filling flux composition of the prototype wire. Note that both of these wires have a mild steel outer shell.
It was finished to a diameter of 1.6 mm and had a simple butt cross-sectional shape as shown in Figure 2 with a filling rate of 15%. A387Gr22 (21/4Cr-1Mo steel) steel plate with a thickness of 25 mm is used as a V-shaped groove with a groove angle of 45 degrees and a groove gap of 12.5 mm. Current is 350 A, voltage is 31 V, speed is 27 cm/min, 100 mm.
Welded under the welding conditions of %CO 2 (flow rate 25/min),
After welding, stress relief annealing was performed at a temperature of 690°C and a holding time of 16 hours, and JIS No. A-2 tensile test pieces and A-4 Sharpie impact pieces were collected from the center of the thickness of each weld metal plate. was used for testing. Table 2 shows the tensile strength and impact value of the obtained weld metal. As is clear from Table 2, Nos. 4 to 18 according to the present invention
This wire not only has good welding workability and bead appearance, but also has excellent X-ray performance, and a weld metal with excellent tensile strength and impact value was obtained. On the other hand, reference wire No. 1, in which TiO 2 was less than the range specified by the present invention, had extremely poor welding workability and became impossible to weld. In addition, reference wire No. 20, in which TiO 2 was added in an amount exceeding the range stipulated in the present invention, had an unreasonably high slag viscosity, resulting in deterioration of workability and frequent internal defects such as slag entrainment and poor fusion. The mechanical properties were also very poor. Reference wires Nos. 2 and 3 had Si added in an amount exceeding the range specified by the present invention, and although the welding workability, bead appearance, and X-ray performance were good, the impact value of the weld metal was very low. Reference wire No. 19 had N added beyond the range specified by the present invention, and although the welding workability and bead appearance were good, the X-ray performance showed that there were many internal defects such as blowholes and poor fusion. It became impossible to collect mechanical test pieces. Reference wire No. 21 had C added beyond the range specified by the present invention, and had good welding workability and bead appearance, but internal defects such as cracks and poor penetration occurred in X-ray performance. It became impossible to collect mechanical test pieces. Reference wire No. 22 had Mn added beyond the range stipulated in the present invention, and had good welding workability and bead appearance, but internal defects such as cracks and poor penetration occurred in X-ray performance. The impact toughness was also low.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上に詳記したように本発明は特に優れた溶接
作業性と厚板調質Cr―Mo鋼に適合した熱処理後
でもすぐれた性能の溶接金属を得ることができる
ので、各種溶接分野での適用範囲が拡大され、そ
の工業価置はきわめて大きい。
[Table] As detailed above, the present invention has particularly excellent welding workability and can provide weld metal with excellent performance even after heat treatment that is suitable for thick plate tempered Cr-Mo steel, so it can be used in various welding fields. The scope of application has been expanded, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接金属の衝撃値とワイヤ全重量に対
するフラツクス中のN含有量の関係を表わす図、
第2図、第3図、第4図はワイヤ断面形状の例を
示す図である。 1:外皮金属、2:充填フラツクス。
Figure 1 is a diagram showing the relationship between the impact value of the weld metal and the N content in the flux with respect to the total weight of the wire.
FIG. 2, FIG. 3, and FIG. 4 are diagrams showing examples of wire cross-sectional shapes. 1: shell metal, 2: filling flux.

Claims (1)

【特許請求の範囲】 1 ワイヤ全重量に対してTiO21.8〜6.0%、
C0.20%以下、Mn1.0〜8.0%、Cr1.0〜4.0%、
Mo0.5〜1.5%、残部はアーク安定剤を含めた通
常のスラグ生成剤から成るフラツクスが金属外皮
内に充填されていることを特徴とするCr―Mo系
炭酸ガスアーク溶接用複合ワイヤ。 2 ワイヤ全重量に対してTiO21.8〜6.0%、
C0.20%以下、Mn1.0〜8.0%、Cr1.0〜4.0%、
Mo0.5〜1.5%、Si0.3%以下、残部はアーク安定
剤を含めた通常のスラグ生成剤から成るフラツク
スが金属外皮内に充填されていることを特徴とす
るCr―Mo系炭酸ガスアーク溶接用複合ワイヤ。 3 ワイヤ全重量に対してN0.006〜0.015%にな
るように窒化物の形で与えられる金属粉をフラツ
クス中に1種以上含み、TiO21.8〜6.0%、C0.20
%以下、Mn1.0〜8.0%、Cr1.0〜4.0%、Mo0.5〜
1.5%、残部はアーク安定剤を含めた通常のスラ
グ生成剤から成るフラツクスが金属外皮内に充填
されていることを特徴とするCr―Mo系炭酸ガス
アーク溶接用複合ワイヤ。 4 ワイヤ全重量に対してN0.006〜0.015%にな
るように窒化物の形で与えられる金属粉をフラツ
クス中に1種以上含み、TiO21.8〜6.0%、C0.20
%以下、Mn1.0〜8.0%、Cr1.0〜4.0%、Mo0.5〜
1.5%、Si0.3%以下、残部はアーク安定剤を含め
た通常のスラグ生成剤から成るフラツクスが金属
外皮内に充填されていることを特徴とするCr―
Mo系炭酸ガスアーク溶接用複合ワイヤ。
[Claims] 1. TiO 2 1.8 to 6.0% based on the total weight of the wire,
C0.20% or less, Mn1.0~8.0%, Cr1.0~4.0%,
A Cr-Mo carbon dioxide gas arc welding composite wire characterized by having a metal sheath filled with a flux consisting of 0.5 to 1.5% Mo and the remainder being a normal slag forming agent including an arc stabilizer. 2 TiO 2 1.8-6.0% based on the total weight of the wire,
C0.20% or less, Mn1.0~8.0%, Cr1.0~4.0%,
Cr-Mo carbon dioxide gas arc welding characterized by the fact that the metal shell is filled with a flux consisting of 0.5 to 1.5% Mo, 0.3% or less Si, and the remainder is a normal slag forming agent including an arc stabilizer. composite wire. 3. The flux contains one or more types of metal powder in the form of nitride such that N0.006 to 0.015% based on the total weight of the wire, TiO 2 1.8 to 6.0%, C0.20
% or less, Mn1.0~8.0%, Cr1.0~4.0%, Mo0.5~
A Cr-Mo carbon dioxide gas arc welding composite wire characterized by having a metal sheath filled with a flux consisting of 1.5% and the remainder a normal slag forming agent including an arc stabilizer. 4. The flux contains one or more types of metal powder in the form of nitride such that N0.006 to 0.015% based on the total weight of the wire, TiO 2 1.8 to 6.0%, C0.20
% or less, Mn1.0~8.0%, Cr1.0~4.0%, Mo0.5~
1.5% Si, 0.3% or less Si, and the remainder is a slag forming agent containing an arc stabilizer.
Mo-based composite wire for carbon dioxide arc welding.
JP4956680A 1980-04-17 1980-04-17 Composite wire for arc welding of cr-mo system carbon dioxide gas Granted JPS56148493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4956680A JPS56148493A (en) 1980-04-17 1980-04-17 Composite wire for arc welding of cr-mo system carbon dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4956680A JPS56148493A (en) 1980-04-17 1980-04-17 Composite wire for arc welding of cr-mo system carbon dioxide gas

Publications (2)

Publication Number Publication Date
JPS56148493A JPS56148493A (en) 1981-11-17
JPS6219959B2 true JPS6219959B2 (en) 1987-05-01

Family

ID=12834743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4956680A Granted JPS56148493A (en) 1980-04-17 1980-04-17 Composite wire for arc welding of cr-mo system carbon dioxide gas

Country Status (1)

Country Link
JP (1) JPS56148493A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171457A (en) * 2018-03-29 2019-10-10 株式会社神戸製鋼所 Flux-cored wire for high speed welding and high speed arc welding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115143A (en) * 1974-02-21 1975-09-09
JPS50116351A (en) * 1974-02-27 1975-09-11
JPS52144343A (en) * 1976-05-27 1977-12-01 Nippon Steel Corp Flux cored wires for co2 gas shielded arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115143A (en) * 1974-02-21 1975-09-09
JPS50116351A (en) * 1974-02-27 1975-09-11
JPS52144343A (en) * 1976-05-27 1977-12-01 Nippon Steel Corp Flux cored wires for co2 gas shielded arc welding

Also Published As

Publication number Publication date
JPS56148493A (en) 1981-11-17

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
JP3747237B2 (en) Flux-cored wire for gas shielded arc welding for heat-resistant steel
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
NO343875B1 (en) Core thread for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6385846B2 (en) 9% Ni steel welding flux cored wire
JP5400461B2 (en) Flux cored wire
JP6794295B2 (en) Flux-cored wire for 9% Ni steel welding
JP2001300764A (en) Metal-cored wire for gas shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6502887B2 (en) Flux-cored wire for gas shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JPH09277087A (en) Flux cored wire for arc welding
JP6437420B2 (en) Firing flux for submerged arc welding of high strength steel
JPS6219959B2 (en)
KR101760828B1 (en) Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JPS591518B2 (en) Cr-Mo based composite wire for carbon dioxide arc welding
KR102114091B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
JPH0545360B2 (en)