JPS62199206A - Sizing rolling method for bar and wire rod - Google Patents
Sizing rolling method for bar and wire rodInfo
- Publication number
- JPS62199206A JPS62199206A JP4032386A JP4032386A JPS62199206A JP S62199206 A JPS62199206 A JP S62199206A JP 4032386 A JP4032386 A JP 4032386A JP 4032386 A JP4032386 A JP 4032386A JP S62199206 A JPS62199206 A JP S62199206A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- diameter
- rolling
- rolls
- sizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 72
- 238000004513 sizing Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 43
- 230000009467 reduction Effects 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 37
- 229910003460 diamond Inorganic materials 0.000 claims 1
- 239000010432 diamond Substances 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
- B21B1/18—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は棒線材のサイジング圧延方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for sizing and rolling rods and wires.
(従来の技術)
板圧延のサイズ替は、ロールの圧下を変更することによ
り容易に実施できるのに対し、棒線圧延のサイズ替は、
その都度専用ロールにロール変更することが必要である
。そのためサイズ替による圧延停止は、作業時間全体の
10%以上にも達し、停止要因の約半分以上を占めてい
るのが実情である。(Prior art) Size change in plate rolling can be easily carried out by changing the rolling reduction of the rolls, whereas size change in bar wire rolling is
It is necessary to change the role to a dedicated role each time. Therefore, the actual situation is that rolling stoppages due to size changes account for more than 10% of the total working time, and account for more than half of the causes of stoppages.
これによる問題は、従来は加熱炉燃料、電力等のコスト
アップ程度のものであったが、最近圧延素材の直送圧延
や、ホットチャージ圧延が実施されるに至り、上工程全
停止させるという重大なものとなってきた。In the past, the problem caused by this was only an increase in the cost of heating furnace fuel, electricity, etc., but recently, direct rolling of rolled materials and hot charge rolling have been implemented, and it has become a serious problem that requires the entire upstream process to be stopped. It has become a thing.
棒線材のサイジング圧延方法の従来技術として知られる
ものに、PCRMによる圧延が挙げられる。A conventional technique known as a method of sizing and rolling rods and wires includes rolling by PCRM.
これは3個のスキューロールの空間で、材料に斜め方向
の回転を加えながら圧延する方法であり、材料に回転が
生じるので連続圧延としては不向きである。又材料に螺
旋状流が発生する問題もあり、丸ビレツト圧延用として
適用されている例があるにすぎない。This is a method in which the material is rolled in the space of three skew rolls while applying diagonal rotation to the material, and because the material rotates, it is not suitable for continuous rolling. There is also the problem that spiral flow occurs in the material, and there are only examples of this method being used for round billet rolling.
又類似技術としてフラットロール圧延があるが、最終数
スタンドは、従来法どおりのカリバー圧延であり、サイ
ズ系列変更の場合、粗、中間スタンンドのロール組替が
解消されるので、時間短縮の効果はあるものの、最も頻
度の多い最終2〜4スタンドのロール組替のケースには
、伺ら効果を発揮しない。以上のように棒線圧延に於て
は、実用に耐えうるサイジング圧延方法がなく、その実
現が待たれていた。Also, flat roll rolling is a similar technology, but the last few stands are caliber rolling as in the conventional method, and when changing the size series, the roll change of the coarse and intermediate stands is eliminated, so the time saving effect is However, it is not effective in the most frequent case of role reshuffling in the final 2 to 4 stands. As mentioned above, in bar rolling, there is no practical sizing rolling method, and its realization has been awaited.
(発明が解決しようとする問題点)
棒線圧延で、現状はぼ100%採用されている圧延方法
は、カリバーる形成する2本のロールで材料全圧延する
方法で、一般には10数台の圧延スタンドで、利料金9
00交互に圧延することにより延伸全行い、最終円形状
ケ得るものである(この圧延方法を以下20−ル圧延法
と呼ぶ)。(Problem to be solved by the invention) The rolling method that is currently used almost 100% of the time in bar rolling is a method in which the entire material is rolled with two rolls forming a caliber, and generally more than 10 rolls are used to roll the material. At the rolling stand, interest rate 9
The final circular shape is obtained by performing the entire stretching by alternating the 00-0 rolling method (hereinafter, this rolling method will be referred to as the 20-rule rolling method).
第8図は20−ル圧延法の説明図で、最終ロールに用い
られるラウンド孔型全表わし、ロール1への入側材料は
縦長のオーバル形状である。図中の逃17部3からカリ
バー底7に沿っては、目的とする成品直径を得るための
真円が形成され、理想的にはこの部分丁度に、オーバル
が圧延され充満し、逃し部3か52本のロールの隙間に
沿ったフリー面部5は、材料自体の幅広がりによって、
真円に近い形状が得られることケ、期待するものである
。FIG. 8 is an explanatory view of the 20-roll rolling method, in which the round hole type used for the final roll is fully shown, and the material entering the roll 1 has a vertically elongated oval shape. A perfect circle is formed along the caliber bottom 7 from the relief 17 part 3 in the figure to obtain the desired product diameter, and ideally, an oval is rolled and filled exactly in this part, and the relief part 3 The free surface portion 5 along the gap between the 52 rolls is widened due to the widening of the material itself.
It is expected that a shape close to a perfect circle will be obtained.
今20−ル圧延法によるサイジングを考えた場合、真円
全形成するロール隙の状態から、ロール隙全1羽縮めた
場合、カリバー底7では直径が1m1I+減少するのに
対し、逃し部3では、逃し角度4を15°とすれば、直
径は027mIIIしか減少せず、この間の偏径差は0
.73 mNとなる。フリー面50部分の直径は、入側
オーバルの短径を操作することにより調整可能なので、
この0.73mmの偏径差が、成品全周での最大値とな
る。Now, when considering sizing by the 20-roll rolling method, if the roll gap is reduced by one roll from a fully circular roll gap, the diameter of the caliber bottom 7 will decrease by 1 m1I, while the diameter of the relief part 3 will decrease by 1 m1. , if the relief angle 4 is 15°, the diameter will decrease by only 027 mIII, and the difference in deviation during this time will be 0.
.. It becomes 73 mN. The diameter of the free surface 50 can be adjusted by manipulating the short diameter of the entrance oval.
This radial difference of 0.73 mm is the maximum value over the entire circumference of the finished product.
今寸法公差1JIsの±1.5%、偏径差全、2.1係
とした場合の20−ル圧延法によるサイジング可能範囲
の計算値は、逃し角度150でロール真円径の+2.3
%、−22%と極めて小さく実用には耐えられない。The calculated value of the possible sizing range by the 20-roll rolling method, assuming a dimensional tolerance of 1JIs of ±1.5%, a total diameter difference, and a factor of 2.1, is +2.3 of the roll true circular diameter at a relief angle of 150.
%, -22%, which is extremely small and cannot withstand practical use.
(問題点全解決するための手段)
本発明は従来法の20−ル圧延法の係る問題に鑑み、4
0−ル圧延法をサイジング圧延法として採用した。40
−ル圧延法は、例えば特開昭50−140354号公報
又は特開昭58−1703号公報で開示されている通り
、精密圧延や、高減面圧延を目的とすることは周知であ
るが、本発明では、40−ル圧延法の幅広がりが、小さ
いという圧延特性に加え、逃し角度が大きいため、ロー
ルの圧下操作による真円度低下が、極めて小さいという
性質に着目した。(Means for solving all problems) In view of the problems related to the conventional 20-roll rolling method, the present invention
The 0-roll rolling method was adopted as the sizing rolling method. 40
It is well known that the rolling method is aimed at precision rolling and high area reduction rolling, as disclosed in, for example, JP-A-50-140354 or JP-A-58-1703. In the present invention, we focused on the property that in addition to the rolling characteristic of the 40-rule rolling method that the width spread is small, the reduction in roundness due to the rolling operation of the rolls is extremely small due to the large relief angle.
本発明は円形素材を、第1図に示すように、ロール角度
が450異なる同図と、同図tBJの2台の4ロール圧
延機を通して、サイジングするものである。In the present invention, a circular material is sized by passing it through two four-roll rolling mills, tBJ and tBJ, which have roll angles of 450 degrees different from each other, as shown in FIG.
本発明の構成は、素材を第1図体)図中の一点鎖線円で
示す円形素材6とし、8本のロール1のカリバー7を、
素材の円に対し、同一ないし120%の直径の円弧と適
当な逃し部3を配した形状とし、ロールの圧下を任意に
選択することにより、素材を素材直径ないし、素材直径
の80%の広範囲で、サイジング可能とするものである
。第11EI(B1図中の点線図形は、同図+A+の4
0−ルで整形した圧延祠8である。The structure of the present invention is that the material is a circular material 6 shown by a dashed-dotted circle in the first figure, and the caliber 7 of the eight rolls 1 is
The material is shaped to have a circular arc with a diameter of the same to 120% and an appropriate relief part 3 relative to the circle of the material, and by arbitrarily selecting the roll reduction, the material can be spread over a wide range from the material diameter to 80% of the material diameter. This allows for sizing. 11th EI (The dotted line figure in figure B1 is 4 in the same figure +A+)
This is a rolling mill 8 shaped with a 0-roll.
一般的な40−ル圧延の最終3パスのロール孔型配列は
、角−角一丸であるのに対し、本発明では丸−丸一丸で
あり、これは本発明の特徴である。The roll hole pattern arrangement in the final three passes of general 40-rule rolling is corner-to-corner, but in the present invention it is round-to-round, which is a feature of the present invention.
これは最終パスから2パス前の丸によって成形された円
形素材で、その後の2パスの丸孔型によって円形素材そ
のままから、円形素材の直径の80嘱までの範囲の、い
ずれの円形成品にもサイジングするために適した孔型配
列である。This is a circular material that is formed by a circle two passes before the final pass, and can be made into any circular shaped product by the round hole molding in the subsequent two passes, ranging from the circular material as it is to 80 mm of the diameter of the circular material. It is also a suitable pore array for sizing.
一般的なロール孔型配列が、最終パス以外が角となって
いるのは、大きな減面率をとることができるのと、ロー
ルへの噛込み性が良く、材料の捻れに対しても有利なた
めである。ちなみに角孔型の場合、1パス当りの最大減
面率は、理論的には50%であるのに対し、丸孔型の場
合は15%程度である。The reason why the general roll hole arrangement has corners except for the final pass is that it can achieve a large reduction in area, has good bite into the roll, and is advantageous against twisting of the material. This is for a reason. Incidentally, in the case of a square hole type, the maximum area reduction rate per pass is theoretically 50%, whereas in the case of a round hole type, it is about 15%.
又最終2パスの8本のロールに設けた円弧の直径は、全
て素材の円の直径に対し、同一ないし120%の直径で
あるのも特徴である。これはサイジングによる偏径差発
生を最も小さくし、サイジング可能範囲を犬きぐとるた
めには、素材の円と同一直径であることが最良であるが
、ロールの共用を考えた場合、120%寸では、本発明
の意因するサイジングは”J能である。Another feature is that the diameters of the arcs provided on the eight rolls in the final two passes are all the same or 120% of the diameter of the circle of the material. In order to minimize the occurrence of deviation in diameter due to sizing and to narrow down the possible sizing range, it is best to have the same diameter as the circle of the material, but when considering the sharing of rolls, 120% Then, the sizing according to the present invention is "J".
特に素材の円より小さな直径にすることは、偏径差の問
題の外に、折込み疵発生の1)′J能性があり好ましく
ない。なお、−貫圧延ラインに於ける圧延ロールは、本
発明の最終2バスJ2+、外は、必ずしも40−ル圧延
法に限定していない。In particular, it is undesirable to make the diameter smaller than the circle of the material because of the problem of deviation in diameter and the possibility of occurrence of folding flaws. Note that the rolling rolls in the through-through rolling line are not necessarily limited to the final 2 bus J2+ of the present invention, and the rolling method other than the 40-rule rolling method.
さて本発明のサイジング方法の根拠は、ロール圧下によ
る真円度低下が小さい点と、40−ル1パス目で圧延し
て整形した部分が、2パス1」の圧延でほとんど幅変化
しない点にあり、す、下この2点について詳細に説明す
る。Now, the basis of the sizing method of the present invention is that the deterioration in roundness due to roll reduction is small, and that the width of the part rolled and shaped in the 1st pass of the 40-roll hardly changes in width in the 2nd pass and 1". Yes, Yes, Below I will explain these two points in detail.
第2図の(Al、(Bl及びtC1図は、ロールの圧下
操作による真円度低下が、極めて小さい性質を20−ル
圧延法との比較で表わしたものである。The (Al, (Bl and tC1) diagrams in FIG. 2 show the extremely small deterioration in roundness due to roll rolling operation in comparison with the 20-roll rolling method.
ロールの圧下によシ、成品鋼で偏径差が最大となるのは
前述のとおり、カリバー底7と逃し部6の間である。第
2図のtC1図は、ロールを1 mm圧丁した場合の最
大偏径差全、ロールの逃し角度4との関係で示した。最
大偏径差は、逃し角度4の減少と共に急激に増加するの
で、逃し角度4が67.5°前後である40−ル圧延法
は、15°前後である20−ル圧延法に比べ、極めて良
い性質を示すことがわかる。As mentioned above, the maximum deviation in diameter of the finished steel due to the reduction of the rolls occurs between the caliber bottom 7 and the relief portion 6. The tC1 diagram in FIG. 2 shows the relationship between the total maximum deviation diameter difference and the release angle 4 of the roll when the roll is pressed by 1 mm. The maximum radius difference increases rapidly as the relief angle 4 decreases, so the 40-hole rolling method in which the relief angle 4 is around 67.5° is significantly lower than the 20-hole rolling method in which the relief angle 4 is around 15°. It can be seen that it shows good qualities.
第3図は80φ基円の孔型を有するロール全圧下した場
合の天地径11と、逃し部の寸法である周径12の変化
を示すものである。天地径11と周径12の差が、前述
のとおり最大偏径差となり、10 mm のロール圧下
により、最大偏径差は20−ル圧延法では7.3tn、
m 発生するのに対し、40−ル圧延法では0−Bmm
と極めて下さい。FIG. 3 shows changes in the top and bottom diameter 11 and the circumferential diameter 12, which is the dimension of the relief part, when a roll having a hole shape of 80φ base circle is fully rolled down. As mentioned above, the difference between the top and bottom diameters 11 and the circumferential diameter 12 is the maximum deviation difference, and with a roll reduction of 10 mm, the maximum deviation difference is 7.3 tn in the 20-roll rolling method.
m, whereas in the 40-rule rolling method, 0-Bmm
Please thoroughly understand this.
次に第4図は、幅広が9が小さい性質を、20−ル圧延
法との比較で表わしたものである。40−ル圧延法は、
20−ル圧延法に比べて幅広がりカ小すく、又比ロール
径による影響も小さい良い性質ケ有することがわかる。Next, FIG. 4 shows the characteristics of a small width spread 9 in comparison with the 20-rule rolling method. The 40-rule rolling method is
It can be seen that compared to the 20-roll rolling method, it has good properties such as a smaller width spread and less influence by the specific roll diameter.
次に本発明による場合のサイジング可能範囲について説
明する。Next, the possible sizing range according to the present invention will be explained.
第5図は、ロールカリバーが素材の円と同一直径で、1
0−ル当りの成品断面の受持ち角度90゜のうち、内部
45° (図中のb)を真円形成部、両端22.5°(
図中のa)k逃し部とし、逃し量を真円からの接線とな
る90° (図中のC)とし、逃し角度4を67.5°
とした基本孔型の場合全示す。Figure 5 shows that the roll caliber has the same diameter as the material circle and 1
Of the 90° holding angle of the cross section of the product per 0-ru, the inner 45° (b in the figure) is the perfect circle forming part, and the both ends are 22.5° (
In the diagram, a) K is the relief part, and the relief amount is 90° (C in the figure), which is the tangent from the perfect circle, and the relief angle 4 is 67.5°.
All cases of basic hole type are shown.
この場合のサイジング可能範囲は、計算値でロール真円
径の+0%、−8゜2%で、最大偏径差は0.6%であ
る。ロールカリバーの直径が素材の円の120%の直径
とした場合、同一サイジング範囲で最大偏径差は、JI
S許容限界の2.1%となシ、120%が使用ロール径
の限界である。なお、第5図及び以下に説明する第6図
、第7図の図中の一点鎖線円は円形素材6を、又点線は
圧下前のカリバー位置9を示す。In this case, the possible sizing range is calculated values of +0% and -8°2% of the roll diameter, and the maximum deviation of the diameter is 0.6%. If the diameter of the roll caliber is 120% of the diameter of the material circle, the maximum deviation in diameter within the same sizing range is JI
2.1% and 120% of the allowable limit of S are the limits of the roll diameter that can be used. Incidentally, in FIG. 5 and FIGS. 6 and 7 described below, the dot-dashed circle indicates the circular material 6, and the dotted line indicates the caliber position 9 before rolling.
第6図はサイジング可能範囲を大きくするため逃し量を
105°(図中のD)とし、他は第5図と同一条件の場
合で、この時のサイジング可能範囲は、計算値でロール
真円径の十係、−17,4%で、最大偏径差は1.3%
である。Figure 6 shows the case where the relief amount is set to 105° (D in the figure) to increase the possible sizing range, and the other conditions are the same as in Figure 5.The possible sizing range at this time is the calculated value of the roll perfect circle. The tenth factor of the diameter is -17.4%, and the maximum deviation in diameter is 1.3%.
It is.
逃し量が大きい程孔型形状が不自然となり、シワ疵等の
品質面での心配が生じるが、疵発生のない範囲で、でき
るだけ大きな値が望ましい。多少の安全をみても、ロー
ル真円径の一10%までのサイジングは可能である。The larger the amount of relief, the more unnatural the hole shape becomes, leading to quality concerns such as wrinkles, but it is desirable to set the value as large as possible without causing any defects. Even with some safety considerations, sizing up to 10% of the roll diameter is possible.
サイジング可能範囲を大きくする方法として、第7図に
示すように、1パス目のロール孔型の真円形成部の角度
を小さクシ(第7図では300、図中のE)、両端の逃
し部の角度を大きくする(第7図では各30°、図中の
F)ことも可能である。As shown in Fig. 7, as a method to increase the possible sizing range, the angle of the perfect circle forming part of the roll hole type in the first pass is reduced (300 in Fig. 7, E in the figure), and the angle at both ends is made small. It is also possible to increase the angles of the sections (30 degrees each in FIG. 7, F in the figure).
但しこの場合、2パス目のロールでは、逆に真円形成部
の角度は大きく(第7図は60°)、両端の逃し角度は
小さくなり(第7図は15°)、最大偏差は第5図の場
合に比べ、大きくなる欠点を有する。この様なことを考
慮すると、サイジングの最大量はロール真円径の一20
%、即ち、素材直径ないし素材直径の80%の範囲内で
サイジソゲすることが望ましい。However, in this case, in the second roll, the angle of the perfect circle forming part is large (60° in Fig. 7), the relief angle at both ends is small (15° in Fig. 7), and the maximum deviation is This has the disadvantage of being larger than the case shown in FIG. Taking these things into consideration, the maximum amount of sizing is 20% of the roll diameter.
%, that is, it is desirable to perform sizing within the range of the material diameter to 80% of the material diameter.
(発明の効果)
22−120φの成品を圧延する工場の例で、従来の2
0−ル圧延法では、約100回の仕−I−げ2スタンド
のロール組替えを実施していたが、本発明の40−ル圧
延法では9回で済み、本発明の効果の及ばないサイズ系
列変更時の粗、中間スタンドのロール組替えや、特殊サ
イズのロール組替等、全ての組替時間をプールしたトー
タルの組替時間は、従来の約3分の1に減少した。(Effect of the invention) This is an example of a factory that rolls products of 22-120φ.
In the 0-roll rolling method, roll rearranging of the two finishing stands was carried out approximately 100 times, but in the 40-rule rolling method of the present invention, only 9 times were required, and the roll change was carried out approximately 100 times. The total changeover time, which is the pooling of all changeover times such as roll changeovers for coarse and intermediate stands when changing trains, and roll changeovers for special sizes, has been reduced to approximately one-third of the conventional time.
これは単に作業率の向」−によるコストメリットにとど
まらず、直送圧延や、ホットチャージ圧延を成立させる
ための不可欠の技術として、その効果は非常に大きい。This is not only a cost advantage due to an improvement in work rate, but is also extremely effective as an indispensable technology for establishing direct rolling and hot charge rolling.
第1図+AJ、FB+は本発明の40−ル圧延方法の説
明図、第2図(Al、(Blはロール圧下による真円度
低下の20−ル圧延法と40−ル圧延法の比較説明図、
第2図teaは最大偏径差と逃し角との図表、第6図囚
)、(Blは80φ基円のロールを圧下した場合の天地
径と周径変化の20−ル圧延法と40−ル圧延法の比較
説明図、第6図(C1は周径と天地径との図表、第4図
は幅広がり特性の20−ル圧延法と40−ル圧延法の比
較図表、第5図、第6図及び第7図は、本発明によるサ
イジング可能範囲の説明図、第8図は従来の20−ル圧
延法の説明図である。
1:ロール 2:圧延材
3:逃し部 4:逃し角度
5:フリー面 6:円形素材
7:カリバー又はカリバー底
8:正方型40−ルで整形した圧延材
9:圧下前のカリバー位置
11:天地径 12:周径
代理人 弁理士 茶野木 立 夫
(A) 6日)
(C)
天他掻(rHrφ)
手続補正書(自発)
昭和61年5月22■Figure 1 +AJ, FB+ is an explanatory diagram of the 40-rule rolling method of the present invention, Figure 2 (Al, (Bl is a comparative explanation of the 20-rule rolling method and 40-rule rolling method in which the roundness decreases due to roll reduction) figure,
Figure 2 (tea) is a diagram of the maximum eccentric diameter difference and clearance angle, (Figure 6 (Fig. Figure 6 is a comparative diagram of the 20-ru rolling method and 40-ru rolling method (C1 is a diagram of the circumferential diameter and top and bottom diameter, Figure 4 is a comparison diagram of the width spread characteristics of the 20-ru rolling method and the 40-ru rolling method, Figure 5 is 6 and 7 are explanatory diagrams of the possible sizing range according to the present invention, and FIG. 8 is an explanatory diagram of the conventional 20-roll rolling method. 1: Roll 2: Rolled material 3: Relief portion 4: Relief Angle 5: Free surface 6: Circular material 7: Caliber or caliber bottom 8: Rolled material shaped with a square 40-rule 9: Caliber position before rolling 11: Top and bottom diameter 12: Circumference Agent Patent attorney Tatsuo Chanoki (A) 6th) (C) Amendation (rHrφ) Procedural amendment (voluntary) May 22, 1985 ■
Claims (1)
交して、正方形を成す如く配置させた4ロール圧延機と
、ダイヤ型を成す如く配置させた4ロール圧延機の2台
による圧延方法に於いて、素材を円形、8本のロールの
カリバーを、素材の円の直径に対し、同一ないし120
%の直径の円弧と適当な逃しを配した形状とし、ロール
の圧下を任意に選択して、素材を素材直径ないし素材直
径の80%の範囲内で、サイジングすることを特徴とす
る棒線材のサイジング圧延方法。Rolling using two machines: a 4-roll rolling mill in which four rolls are arranged so that the extensions of the roll axes are perpendicular to each other in the same vertical plane to form a square, and a 4-roll rolling mill in which the four rolls are arranged to form a diamond shape. In the method, the material is circular, and the caliber of 8 rolls is the same to 120 mm with respect to the diameter of the circle of the material.
% of the diameter and an appropriate relief, and the material is sized within the range of the material diameter or 80% of the material diameter by arbitrarily selecting the rolling reduction of the rolls. Sizing rolling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032386A JPS62199206A (en) | 1986-02-27 | 1986-02-27 | Sizing rolling method for bar and wire rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032386A JPS62199206A (en) | 1986-02-27 | 1986-02-27 | Sizing rolling method for bar and wire rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62199206A true JPS62199206A (en) | 1987-09-02 |
JPH036841B2 JPH036841B2 (en) | 1991-01-31 |
Family
ID=12577397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4032386A Granted JPS62199206A (en) | 1986-02-27 | 1986-02-27 | Sizing rolling method for bar and wire rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62199206A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186232A (en) * | 1988-01-19 | 1989-07-25 | Sumitomo Metal Ind Ltd | Manufacture of superconducting wire rod |
JPH0538501A (en) * | 1991-07-31 | 1993-02-19 | Kawasaki Steel Corp | Rolling method for sizing round steel bar |
US5363682A (en) * | 1991-11-29 | 1994-11-15 | Kawasaki Steel Corporation | Four-roller type sizing mill apparatus for producing round steel rods |
EP0776709A1 (en) * | 1995-11-30 | 1997-06-04 | Daido Steel Company Limited | Eight-roller type rolling mill and method of rolling using the mill |
EP1123756A1 (en) * | 1999-08-19 | 2001-08-16 | Kawasaki Steel Corporation | Wire sizing-rolling method |
JP2007229787A (en) * | 2006-03-02 | 2007-09-13 | Kobe Steel Ltd | Sizing and rolling method of bar steel |
EA032251B1 (en) * | 2016-08-29 | 2019-04-30 | Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") | System of passes for a continuous tube-rolling mill |
-
1986
- 1986-02-27 JP JP4032386A patent/JPS62199206A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186232A (en) * | 1988-01-19 | 1989-07-25 | Sumitomo Metal Ind Ltd | Manufacture of superconducting wire rod |
JPH0538501A (en) * | 1991-07-31 | 1993-02-19 | Kawasaki Steel Corp | Rolling method for sizing round steel bar |
US5363682A (en) * | 1991-11-29 | 1994-11-15 | Kawasaki Steel Corporation | Four-roller type sizing mill apparatus for producing round steel rods |
EP0776709A1 (en) * | 1995-11-30 | 1997-06-04 | Daido Steel Company Limited | Eight-roller type rolling mill and method of rolling using the mill |
EP1123756A1 (en) * | 1999-08-19 | 2001-08-16 | Kawasaki Steel Corporation | Wire sizing-rolling method |
EP1123756A4 (en) * | 1999-08-19 | 2005-07-06 | Jfe Steel Corp | Wire sizing-rolling method |
JP2007229787A (en) * | 2006-03-02 | 2007-09-13 | Kobe Steel Ltd | Sizing and rolling method of bar steel |
EA032251B1 (en) * | 2016-08-29 | 2019-04-30 | Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") | System of passes for a continuous tube-rolling mill |
Also Published As
Publication number | Publication date |
---|---|
JPH036841B2 (en) | 1991-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2712846B2 (en) | Rolling method and rolling device for section steel | |
JP2529704B2 (en) | Reversible tandem roll stands for rolling continuously cast profiles | |
JPS62199206A (en) | Sizing rolling method for bar and wire rod | |
JPS59133902A (en) | Hot rolling method of h-beam | |
US3729973A (en) | Roll passes for rolling a bar of continuously cast non-ferrous metal and the method improving the metal structure | |
JP3260640B2 (en) | Rolling equipment and method for rolling round bars and wires | |
JPS61135404A (en) | Hot rolling method of h-beam | |
JP2795588B2 (en) | Rolling equipment for round bars and wires | |
JPH07164003A (en) | Manufacture of rough shape slab | |
JPH0350601B2 (en) | ||
JP3365348B2 (en) | Rolling method of metal tube | |
JP2908456B2 (en) | Rolling method for section steel | |
JP3211331B2 (en) | Hot rolling method for H-section steel | |
JPH044902A (en) | Hot rolling method of h-shape steel | |
KR100437636B1 (en) | Folding defects removal method of sheet surface | |
JP2900971B2 (en) | Sizing rolling method for round steel bars | |
JPS6082201A (en) | Hot rolling method of h-beam | |
JPS5961501A (en) | Rolling method and rolling mill with width adjustment | |
JPH0596304A (en) | Method for rolling angle steel having unequal side and unequal thickness | |
JPH02112801A (en) | Universal rolling method and rolling machine for flanged shape steel | |
JP2541327B2 (en) | Shaped steel rolling method and rolling equipment train | |
JPS61119302A (en) | Hot rough rolling method of billet for h-beam | |
JP3266062B2 (en) | Method and apparatus for manufacturing metal material having circular cross section | |
JP2900973B2 (en) | Sizing and rolling method for steel bars | |
JPH04258302A (en) | Sizing rolling method of bar and wire rod |