JPS62198694A - Purification of oligosaccharide - Google Patents

Purification of oligosaccharide

Info

Publication number
JPS62198694A
JPS62198694A JP4386386A JP4386386A JPS62198694A JP S62198694 A JPS62198694 A JP S62198694A JP 4386386 A JP4386386 A JP 4386386A JP 4386386 A JP4386386 A JP 4386386A JP S62198694 A JPS62198694 A JP S62198694A
Authority
JP
Japan
Prior art keywords
oligosaccharide
soybean
oligosaccharides
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4386386A
Other languages
Japanese (ja)
Inventor
Osamu Kurita
修 栗田
Motohiko Hirotsuka
元彦 広塚
Masahiko Terajima
寺嶋 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP4386386A priority Critical patent/JPS62198694A/en
Publication of JPS62198694A publication Critical patent/JPS62198694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To stably fractionate an oligosaccharide, having good flavors and hardly suffering from occurrence of browing reaction, etc., from a liquid containing the oligosaccharide and protein, ash in addition to the sugar, by using strong acidic cation exchange resins with crosslinking degree within a specific range. CONSTITUTION:A liquid containing an oligosaccharide, proteins, amino-acid and ashes normally at 2-50% conc. (oligosaccharide concentration is preferably 1-15%) is treated with strongly acidic (preferably sulfonic acid type) cation exchange resins under 3-7pH condition normally at about 0.15-0.55 SV liquid velocity to fractionate the oligosaccharide from other components. As for the liquid containing the oligosaccharide, proteins, etc., a soybean whey, an UF- or RO-treated liquid thereof, a hydrous ethanol extraction liquid of de-fatted soybean, an exudate liquid of soybean, an aqueous medium extraction liquid of soybean such as 'YU' is bean curd production, a hydrolyzate of an enzyme part of manner, agar, guar gum, etc., etc., are utilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蛋白、アミノ酸、灰分及び少糖類を含有する液
から少糖類を安定的に分画・精製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for stably fractionating and purifying oligosaccharides from a liquid containing proteins, amino acids, ash, and oligosaccharides.

(従来技術) 糖類の精製法にはイオン交換樹脂を用いたり、電気透析
を用いる方法等が知られている。
(Prior Art) Known methods for purifying saccharides include methods using ion exchange resins and electrodialysis.

例えば、特開昭60−63000にはハロゲン原子の含
有率が3〜50重量%のハロゲン化多孔性合成吸着剤を
用いて、糖類(単糖類、三糖類、オリゴ糖等)を分離・
精製する方法が開示されている。特開昭60−1304
00には架橋度が7%以上のイオン交換樹脂を用いて糖
類を分離・精製する方法が開示されている。特開昭57
−43240には分子排除クロマトグラフィーによる糖
類の分離法が開示されている。
For example, in JP-A-60-63000, saccharides (monosaccharides, trisaccharides, oligosaccharides, etc.) are separated and
A method of purification is disclosed. Japanese Patent Publication No. 1986-1304
No. 00 discloses a method for separating and purifying saccharides using an ion exchange resin with a degree of crosslinking of 7% or more. Japanese Unexamined Patent Publication 1983
-43240 discloses a method for separating sugars by molecular exclusion chromatography.

又、イオン排除法を用いる方法として特開昭55−13
5600には、架橋度4〜6%のNa型強酸性陽イオン
交換樹脂を用い、糖濃度25〜35Bxの糖蜜溶液を、
イオン排除法により蔗糖と還元糖に分離する方法が開示
されている。
In addition, as a method using the ion exclusion method, Japanese Patent Application Laid-Open No. 55-13
5600 uses a Na-type strongly acidic cation exchange resin with a degree of crosslinking of 4 to 6%, and a molasses solution with a sugar concentration of 25 to 35 Bx.
A method of separating sucrose and reducing sugar using an ion exclusion method is disclosed.

本発明は、糖と糖の分離精製ではなく、糖と糖尿外の蛋
白・(蛋白、アミノ酸、ペプチド類等)や天分を分離精
製する点で従来技術と異なる。
The present invention differs from conventional techniques in that it separates and purifies sugars and non-diabetic proteins (proteins, amino acids, peptides, etc.) and natural substances, rather than separating and purifying sugars.

一方、蛋白、ペプチド類、アミノ酸、灰分及び少糖類を
含有する液、例えば大豆ホエー等の大豆水性媒体抽出液
等から少糖類を精製する方法はあまり知られていない。
On the other hand, methods for purifying oligosaccharides from liquids containing proteins, peptides, amino acids, ash, and oligosaccharides, such as soybean aqueous medium extracts such as soybean whey, are not well known.

糖含量が低く (乾燥固形分換算で、通常的55〜65
%)、蛋白や遊離アミノ酸や灰分等の電解質が比較的多
い為(それぞれ乾燥固形分換算で約、10〜15%、1
〜2%、20〜35%)、糖の分画・精製が困難なうえ
、糖が不安定(蛋白やアミノ酸と褐変反応を起こしたり
、分解したりし易い)なことから、経済的且つ実用的な
糖の分画・精製が困難なことが起因している。
Low sugar content (typically 55-65 on dry solids basis)
%), and relatively high in electrolytes such as protein, free amino acids, and ash (approximately 10-15% and 1%, respectively, in terms of dry solid content).
~2%, 20-35%), it is difficult to fractionate and purify sugars, and sugars are unstable (they easily cause browning reactions with proteins and amino acids and are easily decomposed), making them economical and practical. This is due to the difficulty in fractionating and purifying sugars.

(発明が解決しようとする問題点) 本発明者等は電気透析による大豆ホエーからのへテロ少
糖類の分画・精製を検討するなかで、■大豆ホエー中に
含まれる蛋白(ペプチドを含む)や遊離アミノ酸等とへ
テロ少糖類が褐変反応を起こし、得られる少糖類が褐色
を呈する、■又、通常大豆ホエーは濃度が2.5%程度
の固形分、糖濃度としては1.3%程度と低い為、電気
透析処理のために必要な濃度まで濃縮する必要があり、
該濃縮に膜を用いても少糖類の回収がよくない等の問題
を見出した。又、イオン交換法を用いて大豆ホエーから
のへテロ少糖類を分離しようとすると、■吸着・離脱、
樹脂の再生、中和等に多量の酸又はアルカリを要し、排
水処理の問題等が発生する問題を見出した。そこで、本
発明者等は(al褐変反応等が起こり難く、従って風味
良好、色調良好な少糖類を安定して(褐変したり分解し
たりすることが極めて少なく)分画・精製すること、(
b)樹脂の再生、中和等に酸又はアルカリの必要性を極
めて少なくするような少糖類の分画・精製法を目的とし
た。
(Problems to be Solved by the Invention) While investigating the fractionation and purification of heterooligosaccharides from soybean whey by electrodialysis, the present inventors found that: , free amino acids, etc. and heterooligosaccharides cause a browning reaction, and the resulting oligosaccharides take on a brown color. ■In addition, soybean whey usually has a solid content of about 2.5% and a sugar concentration of 1.3%. Because of its low level, it is necessary to concentrate it to the concentration required for electrodialysis treatment.
We found problems such as poor recovery of oligosaccharides even when membranes were used for the concentration. Also, when trying to separate heterooligosaccharides from soybean whey using ion exchange method, adsorption/desorption,
We have found that a large amount of acid or alkali is required for resin regeneration, neutralization, etc., which causes problems in wastewater treatment. Therefore, the present inventors aimed to stably fractionate and purify oligosaccharides (with very little browning or decomposition) that are unlikely to undergo Al browning reactions and therefore have good flavor and color.
b) The aim was to develop a method for fractionating and purifying oligosaccharides that would minimize the need for acids or alkalis for resin regeneration, neutralization, etc.

(問題を解決する為の手段) 本発明者等は前記目的を達成すべく鋭意研究を重ね、大
豆ホエーに関して検討を進めるなかで架橋度4〜12%
のイオン排除型の強酸性陽イオン交換樹脂を用いpi(
3〜7の条件にて大豆ホエーを分画すると、少糖類とア
ミノ酸やペプチドとの反応による少糖類の褐変や分解が
抑えられ、安定して分離・精製できる知見を得た。更に
大豆ホエーに限らず他のへテロ少糖類含有液にも応用で
きる知見を得て本発明を完成するに到った。即ち、本発
明は蛋白、アミノ酸、灰分及び少糖類を含有する液から
架橋度4〜12%の強酸性陽イオン交換樹脂を用いて少
糖類を分画することを特徴とする少糖類の精製法である
(Means for Solving the Problem) The present inventors have conducted extensive research to achieve the above-mentioned objective, and while proceeding with studies regarding soybean whey, found that the degree of crosslinking is 4 to 12%.
Pi (
We found that when soybean whey is fractionated under conditions 3 to 7, browning and decomposition of oligosaccharides due to reactions with amino acids and peptides can be suppressed and stable separation and purification can be achieved. Furthermore, we have completed the present invention by obtaining knowledge that can be applied not only to soybean whey but also to other heterooligosaccharide-containing liquids. That is, the present invention provides a method for purifying oligosaccharides, which is characterized by fractionating oligosaccharides from a liquid containing proteins, amino acids, ash, and oligosaccharides using a strongly acidic cation exchange resin with a degree of crosslinking of 4 to 12%. It is.

本発明に用いる蛋白、アミノ酸、灰分及び少糖類を含有
する液は大豆蛋白製造工程等に得られる大豆ホエー、大
豆ホエーのUFSRO処理液、大豆、乳脂大豆の含水エ
タノール抽出液、大豆浸出液、豆腐製造時の所謂「ゆ」
等大豆少糖類を含有するもの、その他へテロ少糖類と蛋
白、灰分等の混合液を含む。例えば、マンナン、寒天、
グアーガム等のへテロ多糖類の酵素部分加水分解物は低
濃度分解・中和による灰分含有へテロ少糖類液であり、
本発明に用いることができる。例えば、コンニャクマン
ナン2%液ヲアスペルギルス・ニガー由来のセルラーゼ
(1,5%対基質)でpH5,0,50℃で15時間水
解し中和した液等も用いることができる。又、大豆ホエ
ーは通常糖分的1.3%程度、粗蛋白約0.5%程度、
灰分約0.6%程度を含み、通常蔗糖約48部、ラフィ
ノース約12部、スタキオース約40部の割合のへテロ
少糖類含有液であり、本発明により少糖類を分離・精製
することができる。
The liquid containing protein, amino acids, ash, and oligosaccharides used in the present invention is soybean whey obtained in the soybean protein manufacturing process, UFSRO treatment liquid of soybean whey, hydrous ethanol extract of soybean, milk fat soybean, soybean infusion liquid, and tofu manufacturing process. The so-called “Yu” of time
Contains soybean oligosaccharides, as well as mixtures of heterooligosaccharides, protein, ash, etc. For example, mannan, agar,
Enzymatic partial hydrolysates of heteropolysaccharides such as guar gum are ash-containing heterooligosaccharide liquids obtained by low concentration decomposition and neutralization.
It can be used in the present invention. For example, a solution obtained by neutralizing a 2% solution of konjac mannan with cellulase derived from Aspergillus niger (1.5% vs. substrate) at pH 5.0 and 50° C. for 15 hours can also be used. In addition, soybean whey usually has a sugar content of about 1.3%, crude protein of about 0.5%,
It is a hetero-oligosaccharide-containing liquid containing about 0.6% ash and usually about 48 parts of sucrose, about 12 parts of raffinose, and about 40 parts of stachyose, and oligosaccharides can be separated and purified by the present invention. .

本発明に用いる強酸性陽イオン交換樹脂は公知の強酸性
陽イオン交換樹脂を用いることができるが、特にスルホ
ン酸型強酸性陽イオン交換樹脂等が適当であり、例えば
ダイヤイオンMK−31S、ダイヤイオン5K−102
(三菱化成側部)等を挙げることができる。
As the strong acidic cation exchange resin used in the present invention, known strong acidic cation exchange resins can be used, but sulfonic acid type strong acid cation exchange resins are particularly suitable, such as Diaion MK-31S, Diamond Aeon 5K-102
(Mitsubishi Kasei side part), etc.

又、強酸性陽イオン交換樹脂の架橋度は4〜12%、好
ましくは4〜10%が適当である。架橋度が4%未満で
は樹脂の膨潤・収縮が起こりやすく分離が不安定となる
。架橋度が12%を越えると少糖類と他の電解質との分
離が悪くなる。かかる強酸性陽イオン交換樹脂をカラム
又はベッド等に利用してイオン排除型クロマトグラフィ
ー等として、ドナン効果を利用して少糖類を分離・精製
することができる。
Further, the degree of crosslinking of the strongly acidic cation exchange resin is suitably 4 to 12%, preferably 4 to 10%. If the degree of crosslinking is less than 4%, the resin tends to swell and contract, making separation unstable. If the degree of crosslinking exceeds 12%, separation of oligosaccharides from other electrolytes becomes poor. Using such a strongly acidic cation exchange resin as a column or bed, oligosaccharides can be separated and purified using the Donnan effect in ion exclusion chromatography or the like.

又、本発明において大豆少糖類含有液等のフラクトース
を構成糖とする少糖類の場合、pH3〜7、好ましくは
4〜6の条件にて分画することが重要である。pHが3
未満では少糖類の分解が起こりやすく、又pHが7を越
えると少糖類の異性化や分解が起こりやすく、安定した
少糖類の分画が困難である。例えば、大豆ホエーの場合
は前述したように蛋白、遊離アミノ酸、天分その他の微
量成分を含み大豆少糖類を安定して分画することが困難
なものを、pH3〜7の条件にて架橋度4〜12の強酸
性陽イオン交換樹脂を用いて分画することにより安定し
て精製できるものである。尚、フラクトースを含まない
少糖類の場合はpH3〜8.5でも少糖類の異性化や分
解が起こりに<<pH3〜8.5の条件を利用すること
ができる。
Furthermore, in the present invention, in the case of oligosaccharides containing fructose such as a soybean oligosaccharide-containing solution, it is important to fractionate under conditions of pH 3 to 7, preferably 4 to 6. pH is 3
If the pH is less than 7, decomposition of oligosaccharides tends to occur, and if the pH exceeds 7, isomerization and decomposition of oligosaccharides tend to occur, making it difficult to stably fractionate oligosaccharides. For example, in the case of soybean whey, which contains proteins, free amino acids, natural substances, and other trace components and makes it difficult to stably fractionate soybean oligosaccharides, the degree of crosslinking is determined under conditions of pH 3 to 7. It can be stably purified by fractionation using a strongly acidic cation exchange resin of 4 to 12. In the case of oligosaccharides that do not contain fructose, isomerization and decomposition of oligosaccharides occur even at pH 3 to 8.5, so conditions of << pH 3 to 8.5 can be used.

又、分画に供する少糖類含有液の濃度は通常2〜50%
(内、少糖類濃度は通常1〜25%)、温度は通常10
0℃以下が適当である。少糖類濃度が高くなると、分離
がわるくなり、少糖類濃度が低くなると、少糖類の分解
、褐変が起こり好ましくない。従って、少糖類の濃度と
しては1〜25%、好ましくは1〜15%が適当である
In addition, the concentration of the oligosaccharide-containing solution used for fractionation is usually 2 to 50%.
(of which, the oligosaccharide concentration is usually 1-25%), the temperature is usually 10%
A temperature of 0°C or lower is suitable. If the oligosaccharide concentration is high, separation becomes poor, and if the oligosaccharide concentration is low, oligosaccharide decomposition and browning occur, which is undesirable. Therefore, the appropriate concentration of oligosaccharides is 1 to 25%, preferably 1 to 15%.

又、架橋度に応じて少糖類含を液の濃度、供給液量、温
度を調製することが好ましい。例えば架橋度が比較的低
い4程度の場合、大豆少糖類含有液の濃度は2%(白糖
1.2%)と低く、供給液量は樹脂当たり20%(V 
/V%)と高くし、温度は15℃程度と低いほうが好ま
しく、逆に架橋度が比較的高い8程度の場合、少糖類含
有液の濃度は10%(白糖約6%)と高く、供給液量は
樹脂当たり8%と低くし、温度は約80℃程度と高いほ
うが好ましい。樹脂耐性、糖安定性の観点より温度は1
゜0℃を越えないほうが好ましい。尚、流速は遅いほう
が好ましく、通常通液速度としてS、V、約o、15〜
0.55程度が適当である。
Further, it is preferable to adjust the concentration of the oligosaccharide-containing solution, the amount of the supplied solution, and the temperature depending on the degree of crosslinking. For example, when the degree of crosslinking is relatively low, about 4, the concentration of the soybean oligosaccharide-containing solution is as low as 2% (white sugar 1.2%), and the amount of supplied solution is 20% (V
/V%), and the temperature is preferably as low as about 15°C.On the other hand, when the degree of crosslinking is relatively high, about 8, the concentration of the oligosaccharide-containing liquid is as high as 10% (approximately 6% white sugar), and the temperature is as low as about 15°C. It is preferable that the liquid amount is as low as 8% per resin and the temperature as high as about 80°C. From the viewpoint of resin resistance and sugar stability, the temperature is 1.
It is preferable not to exceed 0°C. Incidentally, the flow rate is preferably slow, and the usual liquid flow rate is S, V, about o, 15~
Approximately 0.55 is appropriate.

又、通液は前記pHの水若しくは湯或いはエタノール等
の有機溶剤を用いることができる。尚、流出液フラクシ
ョンの分取により分子量分画もある程度可能である。
In addition, water or hot water having the above-mentioned pH or an organic solvent such as ethanol can be used for passing the liquid. Incidentally, molecular weight fractionation is also possible to some extent by fractionating the effluent fraction.

本発明に用いる強酸性陽イオン交換樹脂は連続リサイク
ルして少糖類の分画・精製に用いることができ、再生す
る場合は希アルカリ溶液(例えば5%NaOH熔液)を
用いることができる。
The strongly acidic cation exchange resin used in the present invention can be continuously recycled and used for fractionation and purification of oligosaccharides, and when regenerating it, a dilute alkaline solution (for example, 5% NaOH solution) can be used.

以上のようにして分画された少糖類含有液は糖濃度が低
い(通常的0.5〜2%程度)ので濃縮或いは乾燥した
ほうがよい。濃縮は加熱濃縮、膜濃縮等公知の手段を用
いることができる。用途にもよるが通常75%以上濃縮
が適当である。電気透析他の従来法に比べ本発明の方法
で分画した少糖類含有液は板金加熱濃縮等の苛酷な条件
でも褐変したり分解したりすることが極めて少なく、優
れた風味、色調を有する少糖類とすることができる。
Since the oligosaccharide-containing liquid fractionated as described above has a low sugar concentration (usually about 0.5 to 2%), it is better to concentrate or dry it. For concentration, known means such as heating concentration and membrane concentration can be used. Although it depends on the intended use, it is usually appropriate to concentrate it to 75% or more. Compared to electrodialysis and other conventional methods, the oligosaccharide-containing liquid fractionated by the method of the present invention is extremely unlikely to brown or decompose even under severe conditions such as sheet metal heating concentration, and has excellent flavor and color. It can be a sugar.

又、本発明の少糖類は甘味が低(、色調も白く種々の食
品、飲料等に用いることができる。例えば、甘味の少な
い菓子類(チョコレート菓子、ケーキ等)、飲料等健康
食品と称されるもの等へ幅広い用途がある。又、少糖類
の種類によってはビフィダス因子として有効である。
In addition, the oligosaccharide of the present invention has a low sweetness (and is white in color) and can be used in various foods and drinks. It has a wide range of uses, such as in various types of oligosaccharides.Also, depending on the type of oligosaccharide, it is effective as a bifidus factor.

尚、本発明の少tFj類を公知の糖類の分画・精製法を
用いて更に各成分の少糖類に分画精製することもできる
In addition, the low tFj of the present invention can be further fractionated and purified into each component oligosaccharide using a known saccharide fractionation and purification method.

(実施例) 以下実施例により本発明の実施態様を説明する。(Example) Embodiments of the present invention will be described below with reference to Examples.

実施例1 脱脂大豆を水抽出し、オカラを除いた豆乳を等電沈澱し
た上澄みの大豆ホエー(濃度2.5%、pH5、白糖頻
1.3%、蛋白0.6%、灰分0.6%)250II1
)を温度50℃に調整し架橋度4%のスルホン酸型強酸
性陽イオン交換樹脂(ダイヤイオン5K−102、三菱
化成側基)を径4cfflφ、充填層高138cmに充
填したカラムに供給し、温度50℃の水を用い流速8f
fIl/分で展開し糖と電解質(蛋白、灰分を主成分と
する)に分画した。このときの溶出パターンを第1図に
示す。縦軸を糖濃度及び電気伝導度とした。但し糖濃度
はフェノール硫酸法を用い485nmの吸光度を測定し
、グルコース換算で示した。又、電気伝導度は電解質の
濃度の指標としmの吸収・吸光度を指標とした。吸光度
の測定は分光光度計(島原@製uv−260)を用いた
Example 1 Soybean whey (concentration 2.5%, pH 5, white sugar content 1.3%, protein 0.6%, ash 0.6 %)250II1
) was adjusted to a temperature of 50°C and supplied to a column packed with a sulfonic acid type strongly acidic cation exchange resin (Diaion 5K-102, Mitsubishi Kasei side group) with a degree of crosslinking of 4% to a diameter of 4 cfflφ and a packed bed height of 138 cm. Using water at a temperature of 50°C, flow rate is 8f.
It was developed at fIl/min and fractionated into sugar and electrolyte (mainly consisting of protein and ash). The elution pattern at this time is shown in FIG. The vertical axis represents sugar concentration and electrical conductivity. However, the sugar concentration was determined by measuring the absorbance at 485 nm using the phenol-sulfuric acid method, and was expressed in terms of glucose. Further, electric conductivity was used as an index of electrolyte concentration, and m absorption/absorbance was used as an index. The absorbance was measured using a spectrophotometer (UV-260 manufactured by Shimabara@).

第1図の各フラクションを表−1に示すように分取して
、その糖組成を高速液体クロマトグラフィー(ウォータ
ーズ社製)を用いて同定・定量した。結果を表−1に示
す。尚、カラムはμBOND PへCK CHを用い、
溶媒はアセトニトリル:純水=70コ30を用いた。
Each fraction shown in FIG. 1 was fractionated as shown in Table 1, and its sugar composition was identified and quantified using high performance liquid chromatography (manufactured by Waters). The results are shown in Table-1. In addition, the column uses CK CH for μBOND P,
The solvent used was acetonitrile:pure water=70×30.

(以下余白) 表−1 通液量    糖の種類     割合%1200〜1
400 m j!  スタキオース   70ラフイノ
ース   5 シュークロース  25 1400〜1600n+42  スタキオース   4
9ラフイノース   l シュークロース  50 1600〜1800m1  シュークロース  95フ
ラクトース   5 フラクションの分取の仕方により少糖類含量の高い糖液
を得ることができる。尚、フラクトースは大豆少糖類の
分解により生成したものと思われる。
(Left below) Table-1 Amount of liquid passed Type of sugar Ratio% 1200 to 1
400mj! Stachyose 70 Roughinose 5 Sucrose 25 1400-1600n+42 Stachyose 4
9 Raffinose 1 Sucrose 50 1600-1800 ml Sucrose 95 Fructose 5 A sugar solution with a high oligosaccharide content can be obtained depending on how the fractions are separated. Note that fructose is thought to be produced by decomposition of soybean oligosaccharides.

分画した糖液(第1図の1200〜1800 mβフラ
クション)を100℃で加熱濃縮(75%濃度まで)し
て大豆少糖類シロップを得た。色調は淡黄色で、風味は
良好なものであった。又、大豆少糖類シロップを凍結乾
燥して淡黄色の結晶状の大豆少糖類を得た。乾燥固形分
の糖分90%、粗蛋白3%、天分7%であった。
The fractionated sugar solution (1200-1800 mβ fraction in Figure 1) was heated and concentrated at 100°C (up to 75% concentration) to obtain soybean oligosaccharide syrup. The color was pale yellow and the flavor was good. Further, soybean oligosaccharide syrup was freeze-dried to obtain pale yellow crystalline soybean oligosaccharide. The dry solid content was 90% sugar, 3% crude protein, and 7% natural.

実施例2 実施例1と同様にして、大豆ホエーのスルホン酸型強酸
性陽イオン交換樹脂にかける温度及びスルホン酸型強酸
性陽イオン交換樹脂の架橋度を変えて大豆少糖類を分画
した。得られた溶出パターンのうち、第2図に架橋度4
%、温度15℃の結果を例示し、第3図に架橋度8%、
温度80°Cの結果を例示する。
Example 2 In the same manner as in Example 1, soybean oligosaccharides were fractionated by changing the temperature at which soybean whey was applied to a sulfonic acid type strongly acidic cation exchange resin and the degree of crosslinking of the sulfonic acid type strongly acidic cation exchange resin. Of the elution patterns obtained, Figure 2 shows the crosslinking degree of 4.
%, the results at a temperature of 15°C are shown in Figure 3, with a degree of crosslinking of 8%,
The results at a temperature of 80°C are illustrated.

架橋度4〜6%では温度15〜50℃が大豆少糖類の分
画に適当であり、架橋度7〜12%では温度50〜80
°Cが大豆少糖類の分画に適当であった。
A temperature of 15 to 50°C is suitable for fractionation of soybean oligosaccharides when the degree of crosslinking is 4 to 6%, and a temperature of 50 to 80°C is suitable for a degree of crosslinking of 7 to 12%.
°C was suitable for fractionation of soybean oligosaccharides.

実施例3 実施例2と同様にして、大豆ホエーのスルホン酸型強酸
性陽イオン交換樹脂にかける濃度を2〜10%に変えて
大豆少糖類を分画した。但し大豆ホエーの濃縮は褐変や
糖分解を抑える為低温濃縮した。
Example 3 In the same manner as in Example 2, soybean oligosaccharides were fractionated by changing the concentration of soybean whey applied to a sulfonic acid type strongly acidic cation exchange resin from 2 to 10%. However, soybean whey was concentrated at a low temperature to prevent browning and sugar decomposition.

得られた溶出パターンのうち、第4図に架橋度4%、濃
度2%及び4%の結果を例示し、第5図に架橋度8%、
濃度5%及び10%の結果を例示する。
Among the elution patterns obtained, Fig. 4 shows the results with a degree of crosslinking of 4% and a concentration of 2% and 4%, and Fig. 5 shows the results with a degree of crosslinking of 8% and a concentration of 2% and 4%.
The results at concentrations of 5% and 10% are illustrated.

架橋度4〜6%では大豆ホエーの濃度は2〜3%が大豆
少糖類の分画に適当であり、架橋度7〜12%では大豆
ホエー濃度5〜10%が大豆少糖類の分画に適当であっ
た。
At a cross-linking degree of 4-6%, a soybean whey concentration of 2-3% is suitable for the fractionation of soybean oligosaccharides, and at a cross-linking degree of 7-12%, a soybean whey concentration of 5-10% is suitable for the fractionation of soybean oligosaccharides. It was appropriate.

実施例4 実施例1と同様にして、大豆ホエーのスルホン酸型強酸
性陽イオン交換樹脂にかけるp8を3.5゜7に変えて
大豆少糖類を分画した。
Example 4 In the same manner as in Example 1, soybean oligosaccharides were fractionated by changing the p8 applied to a sulfonic acid-type strongly acidic cation exchange resin of soybean whey to 3.5°7.

結果を第6図に示す。The results are shown in Figure 6.

大豆ホエー濃度2.5%、温度15℃、架橋度4%のと
き、p1)5が最も大豆少糖類の分画に適当であった。
When the soybean whey concentration was 2.5%, the temperature was 15°C, and the degree of crosslinking was 4%, p1)5 was most suitable for fractionation of soybean oligosaccharides.

実施例5 市販コンニャク粉末2%液をアスペルギルス属由来市販
セルラーゼ(1,5%対コンニャク粉末)を用いてpH
5,0,50℃で15時間水解した後pH7に中和した
水解糖液を50℃とし、実施例1で用いたと同様のイオ
ン排除型スルホン酸型強酸性陽イオン交換樹脂カラム(
イオン交換樹脂の架橋度は8%)にアプライし糖両分と
電解質画分に分画した。
Example 5 A 2% solution of commercially available konjac powder was adjusted to pH using a commercially available cellulase derived from Aspergillus (1.5% vs. konjac powder).
After hydrolyzing at 5, 0, and 50°C for 15 hours, the hydrolyzed solution was neutralized to pH 7 and heated to 50°C, and the same ion-excluding sulfonic acid type strong acid cation exchange resin column used in Example 1 (
The mixture was applied to an ion exchange resin (the degree of cross-linking was 8%) and fractionated into a sugar fraction and an electrolyte fraction.

(効果) 以上詳述したように本発明により少糖類、蛋白(アミノ
酸、ペプチドも含む)及び灰分等の含有液から少糖類を
安定的に分画・精製することが可能になったものであり
産業の発達に寄与するものである。
(Effects) As detailed above, the present invention has made it possible to stably fractionate and purify oligosaccharides from a liquid containing oligosaccharides, proteins (including amino acids and peptides), ash, etc. It contributes to the development of industry.

【図面の簡単な説明】 第1図は2.5%大豆ホエーのカラム溶出パターンを示
す図面である。 1□は糖の溶出曲線、 2・・・・は電解質の溶出曲線、 3−・−・は蛋白質の溶出曲線を示す。 第2図は2.5%大豆ホエーの温度15℃、イオン交換
樹脂の架橋度4%のカラム溶出パターンを示す図面であ
る。 1□は糖の溶出曲線、 2・・・・は電解質の溶出曲線、 3−・−・は蛋白質の溶出曲線を示す。 第3図は2.5%大豆ホエーの温度80℃、イオン交換
樹脂の架橋度8%のカラム溶出パターンを示す図面であ
る。 1□は糖の溶出曲線、 2・・・・は電解質の溶出曲線、 3−・−・は蛋白質の溶出曲線を示す。 第4図は濃度2%及び4%の大豆ホエーのイオン交換樹
脂の架橋度4%のカラム溶出パターンを示す図面である
。 1□は大豆ホエー濃度2%及び4%の 糖の溶出曲線、 2・・・・は大豆ホエー濃度2%の電解質の溶出曲線を
示す。 3・・・・は大豆ホエー濃度4%の電解質の溶出曲線を
示す。 4−・−・は大豆ホエー濃度2%の蛋白質の溶出曲線を
示す。 5−・−・は大豆ホエー濃度4%の蛋白質の溶出曲線を
示す。 第5図は濃度5%及び10%の大豆ホエーのイオン交換
樹脂の架橋度8%のカラム溶出パターンを示す図面であ
る。 1□は大豆ホエー濃度5%の糖の溶出 曲線を示す。 2□は大豆ホエー濃度10%の糖の溶出曲線を示す。 3・・・・は大豆ホエー濃度5%の電解質の溶出曲線を
示す。 4・・・・は大豆ホエー濃度10%の電解質の溶出曲線
を示す。 5−・−・は大豆ホエー濃度5%の蛋白質の溶出曲線を
示す。 6−・−・は大豆ホエー濃度10%の蛋白質の溶出曲線
を示す。 第6図はpHが3.5.7の大豆ホエーのカラム溶出パ
ターンを示す図面である。 ■□は大豆ホエーp)13の糖の溶出曲線、2□は大豆
ホエーp1)5の糖の溶出曲線、3□は大豆ホエーpH
7の糖の溶出曲線、4・・・・は大豆ホエーpH3の電
解質の溶出曲線を示す。 5・・・・は大豆ホエーpH5の電解質の溶出曲線を示
す。 6・・・・は大豆ホエーpH7の電解質の溶出曲線を示
す。 7−・−・は大豆ホエーpH3の蛋白質の溶出曲線を示
す。 8−・−・は大豆ホエーpH5の蛋白質の溶出曲線を示
す。 9−・−・は大豆ホエーpH7の蛋白質の溶出曲線を示
す。
[Brief Description of the Drawings] Fig. 1 is a drawing showing the column elution pattern of 2.5% soybean whey. 1□ shows the elution curve of sugar, 2... shows the elution curve of electrolyte, and 3-... shows the elution curve of protein. FIG. 2 is a diagram showing a column elution pattern of 2.5% soybean whey at a temperature of 15° C. and a degree of crosslinking of an ion exchange resin of 4%. 1□ shows the elution curve of sugar, 2... shows the elution curve of electrolyte, and 3-... shows the elution curve of protein. FIG. 3 is a drawing showing a column elution pattern of 2.5% soybean whey at a temperature of 80° C. and a degree of crosslinking of ion exchange resin of 8%. 1□ shows the elution curve of sugar, 2... shows the elution curve of electrolyte, and 3-... shows the elution curve of protein. FIG. 4 is a drawing showing column elution patterns of ion exchange resins with a crosslinking degree of 4% for soybean whey concentrations of 2% and 4%. 1□ shows the elution curves of sugars at 2% and 4% soybean whey concentrations, and 2... shows the elution curves of electrolytes at 2% soybean whey concentrations. 3... shows the elution curve of electrolyte with a soybean whey concentration of 4%. 4-- shows the elution curve of protein with a soybean whey concentration of 2%. 5-- shows the elution curve of protein with a soybean whey concentration of 4%. FIG. 5 is a drawing showing column elution patterns of soybean whey concentrations of 5% and 10% with ion exchange resins having a degree of crosslinking of 8%. 1□ shows the elution curve of sugar at a soybean whey concentration of 5%. 2□ shows the elution curve of sugar at a soybean whey concentration of 10%. 3... shows the elution curve of electrolyte with a soybean whey concentration of 5%. 4... shows the elution curve of electrolyte with a soybean whey concentration of 10%. 5-- shows the elution curve of protein with a soybean whey concentration of 5%. 6-- shows the elution curve of protein at a soybean whey concentration of 10%. FIG. 6 is a drawing showing the column elution pattern of soybean whey with a pH of 3.5.7. ■□ is the sugar elution curve of soy whey p) 13, 2□ is the sugar elution curve of soy whey p1) 5, 3□ is the soy whey pH
7 shows the sugar elution curve, 4... shows the electrolyte elution curve of soybean whey pH 3. 5... shows the electrolyte elution curve of soybean whey pH 5. 6 shows the electrolyte elution curve of soybean whey pH 7. 7-- shows the protein elution curve of soybean whey pH 3. 8-- shows the protein elution curve of soybean whey pH 5. 9-- shows the protein elution curve of soybean whey pH 7.

Claims (5)

【特許請求の範囲】[Claims] (1)蛋白、アミノ酸、灰分及び少糖類を含有する液か
ら架橋度4〜12%の強酸性陽イオン交換樹脂を用いて
少糖類を分画することを特徴とする少糖類の精製法。
(1) A method for purifying oligosaccharides, which comprises fractionating oligosaccharides from a liquid containing proteins, amino acids, ash, and oligosaccharides using a strongly acidic cation exchange resin with a degree of crosslinking of 4 to 12%.
(2)少糖類がヘテロ少糖類である特許請求の範囲第(
1)項記載の精製法。
(2) Claim No. 1 in which the oligosaccharide is a heterooligosaccharide (
Purification method described in section 1).
(3)蛋白、アミノ酸、灰分及び少糖類を含有する液が
大豆水性媒体抽出液である特許請求の範囲第(1)項記
載の精製法。
(3) The purification method according to claim (1), wherein the liquid containing protein, amino acids, ash, and oligosaccharides is a soybean aqueous medium extract.
(4)分画する態様がイオン排除クロマトグラフーによ
る特許請求の範囲第(1)項記載の精製法。
(4) The purification method according to claim (1), in which the fractionation is carried out by ion exclusion chromatography.
(5)分画する態様がpH3〜7の条件下に分画する特
許請求の範囲第(1)項記載の精製法。
(5) The purification method according to claim (1), wherein the fractionation is carried out under conditions of pH 3 to 7.
JP4386386A 1986-02-27 1986-02-27 Purification of oligosaccharide Pending JPS62198694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4386386A JPS62198694A (en) 1986-02-27 1986-02-27 Purification of oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4386386A JPS62198694A (en) 1986-02-27 1986-02-27 Purification of oligosaccharide

Publications (1)

Publication Number Publication Date
JPS62198694A true JPS62198694A (en) 1987-09-02

Family

ID=12675535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4386386A Pending JPS62198694A (en) 1986-02-27 1986-02-27 Purification of oligosaccharide

Country Status (1)

Country Link
JP (1) JPS62198694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055133A (en) * 1999-02-03 2000-09-05 조대연 Separation method of the saponin and isoflavone and oligosaccharide from the waste water of the beancurd
WO2003037104A3 (en) * 2001-11-01 2004-04-08 Gelex Synergistic effect between agar with low gel strength and guar flours and the method of producing one such composition
US6913771B2 (en) 2002-01-09 2005-07-05 Oladur, Ltd Process for the production of soybean sugars and the product produced thereof
US7166582B2 (en) 2002-05-02 2007-01-23 J-Oil Mills, Inc. Antiallergic composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055133A (en) * 1999-02-03 2000-09-05 조대연 Separation method of the saponin and isoflavone and oligosaccharide from the waste water of the beancurd
WO2003037104A3 (en) * 2001-11-01 2004-04-08 Gelex Synergistic effect between agar with low gel strength and guar flours and the method of producing one such composition
EA009467B1 (en) * 2001-11-01 2007-12-28 Гелекс Composition for producing high-strength gel
US6913771B2 (en) 2002-01-09 2005-07-05 Oladur, Ltd Process for the production of soybean sugars and the product produced thereof
US7166582B2 (en) 2002-05-02 2007-01-23 J-Oil Mills, Inc. Antiallergic composition

Similar Documents

Publication Publication Date Title
US4101338A (en) Process for recovering useful products from carbohydrate-containing materials
WO1989005861A1 (en) Process and apparatus for manufacturing ethanol, glycerol, succinic acid and free flowing distiller&#39;s dry grain and solubles
BRPI1009897B1 (en) Process for isolation and purification of serum 3&#39;sialyl lactose
CA1333779C (en) Method for producing galactooligosaccharide
EP2094366B1 (en) Method for purifying sialyllactose by means of chromatography
JPS62198694A (en) Purification of oligosaccharide
JP2802654B2 (en) A method for recovering oligosaccharide-bound sialic acids from alkaline washing waste liquid of anion exchange resin generated during desalting of whey
Abasaeed et al. Inulin hydrolysis to fructose by a novel catalyst
KR930018035A (en) Method of producing Neotrehalose and its use
Salo et al. Fractionation of hagfish slime gland secretions: partial characterization of the mucous vesicle fraction
CN103204886A (en) Preparation method of high-purity maltotriose alcohol
JPH0693827B2 (en) Method for preparative purification of dipeptide from bonito broth
IE40922B1 (en) Process for making polyols
CA2604328C (en) Purification method and production method for cellobiose
US4040861A (en) Process of refining enzymatically produced levulose syrups
JPH0331294A (en) New oligosaccharide and production thereof
JP2750400B2 (en) Taste improver
JPH0614870B2 (en) Method for producing galactooligosaccharide
CN103215326A (en) High-purity maltotriose preparation method
JPH0269492A (en) Production of sialic acid
JPH0675511B2 (en) Method for producing fructooligosaccharide
JPH01222779A (en) Production of novel enzyme and syrup containing gentiooligosaccharide with high content
CA1283100C (en) Preparation of high fructose syrup from inulin containing naturally occurring materials
CN116943430A (en) Four-step method for separating and purifying glyceroglycosides
GB1572607A (en) Process for recovering useful products from carbohydrate-containing materials