JPS62198644A - Production of benzophenonepolycarboxylic acid - Google Patents

Production of benzophenonepolycarboxylic acid

Info

Publication number
JPS62198644A
JPS62198644A JP4044586A JP4044586A JPS62198644A JP S62198644 A JPS62198644 A JP S62198644A JP 4044586 A JP4044586 A JP 4044586A JP 4044586 A JP4044586 A JP 4044586A JP S62198644 A JPS62198644 A JP S62198644A
Authority
JP
Japan
Prior art keywords
nitric acid
reaction
acid
aqueous solution
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044586A
Other languages
Japanese (ja)
Inventor
Hideetsu Fujiwara
秀悦 藤原
Naoki Ando
直樹 安藤
Kenji Hosoya
細谷 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP4044586A priority Critical patent/JPS62198644A/en
Publication of JPS62198644A publication Critical patent/JPS62198644A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled substance in good selectivity under mild condition, by reacting, 1,1-bis(3,4-dimethylphenyl)ethane, etc., with an aqueous solution of nitric acid in the presence of oxygen or carrying out the reaction while injecting nitric acid or aqueous solution thereof into a reactor. CONSTITUTION:A compound expressed by the formula (R1-R6 are H or 1-3C alkyl and at least one of R1-R3 and at least one of R4-R6 are alkyl; R7 is H or 1-7C alkyl) is reacted with an aqueous solution of nitric acid to afford the titled substance. In the process, at least one of operations; (A) the compound expressed by the formula is reacted with the aqueous solution of nitric acid in the presence of oxygen and (B) the reaction is carried out at 120-200 deg.C while injecting nitric acid or aqueous solution thereof into a reactor under <=50kg/cm<2> pressure. EFFECT:The amounts of consumed nitric acid and N compounds in discharged gases are small. Useful as a raw material for polyimide, polyamide, polyester, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリイミド、ポリアミド9またはポリエステ
ルの原料などとして有用なベンゾフェノンポリカルボン
酸の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing benzophenone polycarboxylic acid useful as a raw material for polyimide, polyamide 9 or polyester.

〔従来の技術〕[Conventional technology]

従来1両側のフェニル基にカルボキシル基を有スルベン
ゾフェノンポリカルボン酸の製造方法として、2個のフ
ェニル基のそれぞれに少なくとも1個のアルキル基を有
するジ((ポリ)アルキルフェニル)アルキリデン を
硝酸を用いて酸化する方法(硝酸酸化法)が知られてい
る。
Conventional method 1: As a method for producing sulfenzophenone polycarboxylic acid having carboxyl groups on both phenyl groups, di((poly)alkylphenyl)alkylidene having at least one alkyl group on each of two phenyl groups was prepared using nitric acid. A method of oxidizing with nitric acid (nitric acid oxidation method) is known.

例えば、米国特許第4173573号には、1,1−ビ
ス(:%4−′)メチルフェニル)エタンを硝酸水溶液
とともに圧力容器中で加熱することによシ、a 3.’
44’−<ンゾフエノンテトラカルボン酸が得られるこ
とが記載されている。このような硝酸酸化法は、特別な
酸化触媒も要らず、生成物の分離も比較的容易な上1反
応容器の材質も比較的安価なステンレスなどの材料を使
用することができ、有利な反応方法である。
For example, U.S. Pat. No. 4,173,573 discloses that a 3. '
It is stated that 44'-<nzophenonetetracarboxylic acid is obtained. This nitric acid oxidation method does not require a special oxidation catalyst, the separation of the product is relatively easy, and the reaction vessel can be made of relatively inexpensive materials such as stainless steel, making it an advantageous reaction. It's a method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の硝酸酸化法では1反応中に多量の窒
素酸化物を含む廃ガスが生成するため、廃ガスの処理設
備が必要であること、多量の硝酸が必要であること、目
的生成物の収率が十分なものではないこと、硝酸の原単
位が高いことなどの問題点を有していた。
However, in the conventional nitric acid oxidation method, a large amount of waste gas containing nitrogen oxides is generated during one reaction, so waste gas treatment equipment is required, a large amount of nitric acid is required, and the target product cannot be obtained. There were problems such as an insufficient rate and a high unit consumption of nitric acid.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち1本発明は一般式(I) (式中、R□〜R6は互に独立したものであって。 That is, 1 the present invention is based on the general formula (I) (In the formula, R□ to R6 are independent from each other.

それぞれ水素原子または炭素数1〜3のアルキル基を表
わし、かつR1−R3の少なくとも1個およびR4−R
6の少なくとも1個はアルキル基であシ、馬は水素原子
または炭素数1〜7のアルキル基を表わす。) おいて。
Each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one of R1-R3 and R4-R
At least one of 6 is an alkyl group, and ``horse'' represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms. ) Leave it.

(1)一般式〔I〕で示される化合物と硝酸水溶液とを
酸素の存在下で反応させる操作 (2)  硝酸または硝酸水溶液を反応器に注入しなが
ら反応させる操作 の少なくとも1種の操作を圧力50ksl/cm’以下
で行なうことを特徴とするはンゾブエノンポリヵルボン
酸の製造方法を提供するものである。
(1) An operation of reacting the compound represented by the general formula [I] with an aqueous nitric acid solution in the presence of oxygen; (2) An operation of reacting the compound represented by the general formula [I] while injecting nitric acid or an aqueous nitric acid solution into a reactor. The present invention provides a method for producing nzobuenonpolycarboxylic acid, which is characterized in that it is carried out at a rate of 50 ksl/cm' or less.

なお1本発明において硝酸とは濃度100チのものを示
し、硝酸水溶液とは濃度100%未満のものを示すもの
とする。
In the present invention, nitric acid refers to a solution with a concentration of 100%, and nitric acid aqueous solution refers to a solution with a concentration of less than 100%.

また、圧力はゲージ圧力を示すものとする。In addition, pressure shall indicate gauge pressure.

本発明における一般式(I)で示される化合物(以下「
原料化合物」と記す、)は、一般式(R□〜R3は前記
と同じ意味を表わす。)で示されるポリアルキルインイ
ンとR,CHO(R,は前記と同じ意味を表わす。)で
示されるアルデヒドとを1例えば硫酸の存在下に反応さ
せることで容易に得ることができる(米国特許第a00
2,034号など)。
The compound represented by the general formula (I) in the present invention (hereinafter "
"Raw material compound") is a polyalkylinyne represented by the general formula (R□ to R3 have the same meanings as above) and R, CHO (R represents the same meanings as above). It can be easily obtained by reacting aldehyde with 1, for example, in the presence of sulfuric acid (US Patent No. a00
No. 2,034, etc.).

例ttfo−キシレン、m−キシレンまたはp−)シレ
ンとアセトアルデヒドとからは、1,1−ビス(ジメチ
ルフェニル)エタンを得ることができる。
Examples ttfo-xylene, m-xylene or p-)silene and acetaldehyde can give 1,1-bis(dimethylphenyl)ethane.

その他の原料化合物の具体例としては、ビス(ジメチル
フェニル)メタン、  1.i−ヒス(ジメチルフェニ
ル)フロ/セン、Lx−”ス(ジメチルフェニル)ブタ
ン、1.1−?”ス(ジメチルフェニル)オクタン。
Specific examples of other raw material compounds include bis(dimethylphenyl)methane, 1. i-his(dimethylphenyl)furo/cene, Lx-"su(dimethylphenyl)butane, 1.1-?"su(dimethylphenyl)octane.

ビス(ジエチルフェニル)メタン、lx−ビス(ジエチ
ルフェニル)エタン、 1,1−ビス(トリメチル7エ
二ル)エタン、1,1−ビス(メチルフェニル)エタン
、1−ジメチルフェニル−1−)9メチルフエニルエタ
ンなどが挙げられる。これらの原料化合物のうち。
Bis(diethylphenyl)methane, lx-bis(diethylphenyl)ethane, 1,1-bis(trimethyl7enyl)ethane, 1,1-bis(methylphenyl)ethane, 1-dimethylphenyl-1-)9 Examples include methylphenylethane. Of these raw compounds.

好ましいのはR1−R6が水素原子またはメチル基を表
わし、R7がメチル基を表わす化合物である。
Preferred are compounds in which R1 to R6 represent a hydrogen atom or a methyl group, and R7 represents a methyl group.

本発明において、前記原料化合物を硝酸で酸化して得ら
れるベンゾフェノンポリカルボン酸は、両側のフェニル
基の各々に少なくとも1個のカルボキシル基を有するイ
ンシフエノン誘導体、すなわチ、ベンゾフェノンジカル
ボン酸、ベンゾフェノントリカルボン酸、ベンゾフェノ
ンテトラカルボン酸、インシフエノンペンタカルボン酸
、ベンゾフェノンヘキサカルボン酸などである。
In the present invention, the benzophenone polycarboxylic acid obtained by oxidizing the raw material compound with nitric acid is an insiphenone derivative having at least one carboxyl group on each of the phenyl groups on both sides, i.e., benzophenone dicarboxylic acid, benzophenone tricarboxylic acid. , benzophenone tetracarboxylic acid, insiphenone pentacarboxylic acid, benzophenone hexacarboxylic acid, and the like.

本発明では前記原料化合物と硝酸水溶液を反応器、例え
ばオートクレーブ中で反応させるが、このとき反応液中
の硝酸の濃度は1通常5〜60重量チが好適である。反
応液中の硝酸濃度が5重量%未満では、反応速度が遅く
、装置上の効率が低下する傾向にあシ1反応液中の硝酸
濃度が60重量%を越え 高すぎると、ニトロ化、ニト
ロン化などの副反応が起りやすくなシ、ベンゾフェノン
ポリカルボン酸の収率が低下する傾向にある。
In the present invention, the raw material compound and the nitric acid aqueous solution are reacted in a reactor, for example, an autoclave. At this time, the concentration of nitric acid in the reaction solution is preferably from 1 to 60% by weight. If the nitric acid concentration in the reaction solution is less than 5% by weight, the reaction rate will be slow and the efficiency of the device will tend to decrease.If the nitric acid concentration in the reaction solution is too high (over 60% by weight), nitration, nitrone, etc. However, the yield of benzophenone polycarboxylic acid tends to decrease because side reactions such as chemical reactions tend to occur.

また硝酸の使用量は、原料化合物1モルに対し3〜30
モルが好ましく、特に5−15モルが好ましい。使用量
が3モル未満の場合には、酸化反応が十分に進行せず、
tた凹モルを越える大量の硝酸は1反応に不必要であり
、シかも反応後、生成するはンゾフエノンポリカルボン
酸を回収する場合に不利となる。
The amount of nitric acid used is 3 to 30 nitric acid per mole of raw material compound.
Moles are preferred, particularly 5-15 moles. If the amount used is less than 3 moles, the oxidation reaction will not proceed sufficiently,
A large amount of nitric acid in excess of 2 molar amounts is unnecessary for one reaction, and the amount of nitric acid produced after the reaction is disadvantageous when recovering the nzophenone polycarboxylic acid.

また1反応源度は通常100〜220℃、好ましくは1
20〜200℃である。反応温度が100℃未満では黄
色の化合物が副生じ易くなる。一方、220℃が越える
高温では、開裂反応、燃焼反応などが多くなシ、目的生
成物であるベンゾフェノンポリカルボン酸の収率が低下
する。
In addition, the degree of 1 reaction source is usually 100 to 220°C, preferably 1
The temperature is 20-200°C. If the reaction temperature is less than 100°C, a yellow compound is likely to be produced as a by-product. On the other hand, at high temperatures exceeding 220° C., cleavage reactions, combustion reactions, etc. occur frequently, and the yield of the desired product, benzophenone polycarboxylic acid, decreases.

本発明では1反応中に発生するガスによって反応器内の
圧力は増加するので発生したガスを反応器外に放出しな
がら反応を行なうことが好ましい。
In the present invention, since the pressure inside the reactor increases due to the gas generated during one reaction, it is preferable to carry out the reaction while releasing the generated gas to the outside of the reactor.

反応時の圧力は50に9/an” 、好ましくは10〜
恥ψ雀2であるが1反応時の圧力が50鷺4♂より大き
くなると1分解反応などの副反応が起こシ、目的生成物
のベンゾフェノンポリカルボン酸の選択率が低下する。
The pressure during the reaction is 50 to 9/an'', preferably 10~
However, if the pressure during one reaction is greater than 50♂♂, side reactions such as 1-decomposition reaction will occur, and the selectivity of the target product, benzophenone polycarboxylic acid, will decrease.

また、反応は水溶液系で行なわれるため1反応源度に相
当する水の蒸気圧以上の圧力が必要であシ、水の蒸気圧
が10眩4−を越える反応温度の場合は1反応圧力の下
限は水の蒸気圧以上となることは勿論である。
In addition, since the reaction is carried out in an aqueous solution system, a pressure higher than the vapor pressure of water corresponding to one reaction pressure is required, and in the case of a reaction temperature where the vapor pressure of water exceeds 10°C, one reaction pressure is required. Of course, the lower limit is equal to or higher than the vapor pressure of water.

本発明は、前記の条件で硝酸酸化反応を行なわせる際に
以下の(11および(2)の少なくとも1′!sの操作
を行なうことを特徴とする。
The present invention is characterized in that at least 1'!s of the following operations (11 and (2)) are performed when carrying out the nitric acid oxidation reaction under the above conditions.

(1)原料化合物と硝酸水溶液を酸素存在下で反応させ
る操作: ここにおいて、酸素としては、純酸素、空気および純酸
素を窒素、−酸化炭素、二酸化炭素、亜酸化窒素、二酸
化窒素などのガスで希釈したものを挙げることができる
(1) Operation of reacting a raw material compound with an aqueous nitric acid solution in the presence of oxygen: Here, oxygen is pure oxygen, air, and pure oxygen can be replaced with nitrogen, carbon oxide, carbon dioxide, nitrous oxide, nitrogen dioxide, etc. It can be diluted with

この(1)の操作における反応方法としては。The reaction method in this operation (1) is as follows.

(1)原料化合物および硝酸水溶液を予め反応器内に充
填し、その後昇温して反応させる方法。
(1) A method of filling a reactor with a raw material compound and an aqueous nitric acid solution in advance, and then raising the temperature and causing the reaction.

(Ii)  予め硝酸水溶液を充填し、所定の温度に外
皮した後原料化合物をポンプなどによフ供給し反応させ
る方法。
(Ii) A method in which a nitric acid aqueous solution is filled in advance, the shell is heated to a predetermined temperature, and then the raw material compound is supplied through a pump or the like and reacted.

(Ill1  予め水(一部または全部)のみを反応器
内に充填し、所定の反応温度にした後、原料化合物と硝
酸または硝酸水溶液とを同時あるいは交互に供給する方
法 などがあシ、どの方法を用いてもよいが、(Ill)の
方法では供給する硝酸水溶液は60チを越える濃度のも
のでもよい。ただし、仕込完了後の反応器内の硝酸の濃
度および量は前述の範囲内にあることが望ましい。
(Ill1) There are several methods, such as filling only water (in part or all) into the reactor in advance, bringing it to a predetermined reaction temperature, and then supplying the raw material compound and nitric acid or nitric acid aqueous solution simultaneously or alternately. However, in the method of (Ill), the nitric acid aqueous solution supplied may have a concentration exceeding 60%.However, the concentration and amount of nitric acid in the reactor after completion of charging must be within the above-mentioned range. This is desirable.

また1反応系に共存させる酸素は、反応器の気相または
液相のどちらに吹き込んでもよい。
Further, the oxygen coexisting in one reaction system may be blown into either the gas phase or the liquid phase of the reactor.

酸素の供給速度は、反応速度が原料と硝酸との比率、反
応温度などに依存しているので、これらの条件によって
異なるが、通常、原料化合物1モルに対し純酸素として
毎時0.1〜5−E−ル、好ましくは毎時0.2〜1モ
ルの速度で供給する。
The rate of supply of oxygen depends on the ratio of the raw material to nitric acid, the reaction temperature, etc., so it varies depending on these conditions, but it is usually 0.1 to 5 ml of pure oxygen per mol of the raw material compound per hour. -E-le, preferably at a rate of 0.2 to 1 mol per hour.

毎時5モルを越えて、供給速度が過大となると、反応速
度に比し、酸素の供給速度が過大となシ、酸素の利用率
が低下しやすくなる。また、0.1砂未満の場合は、反
応速度に比して、酸素の供給速度が不足となり、硝酸の
消費量が増大する。
If the supply rate is too high, exceeding 5 moles per hour, the oxygen supply rate will be too high compared to the reaction rate, and the oxygen utilization rate will tend to decrease. Furthermore, if the amount of sand is less than 0.1, the oxygen supply rate becomes insufficient compared to the reaction rate, and the amount of nitric acid consumed increases.

反応中に発生するガスは1反応器中に導入された酸素ガ
ス、ならびに硝酸酸化によって生じた窒素化合物、およ
び−酸化炭素、二酸化炭素などである。硝酸酸化によっ
て生じる窒素化合物とは、−酸化窒素、二酸化窒素、亜
酸化窒素、窒素などであるが1本発明による、反応系に
酸素を共存させる方法では窒素化合物の量が大幅に減少
し、特に−膜化窒素、二酸化窒素などの発生量が大きく
減少する。これによって硝酸の消費量が大幅に減少する
ので、工業的な製造に極めて有利となる。
The gases generated during the reaction are 1 the oxygen gas introduced into the reactor, as well as nitrogen compounds produced by nitric acid oxidation, and carbon oxides, carbon dioxide, etc. Nitrogen compounds produced by nitric acid oxidation include -nitrogen oxide, nitrogen dioxide, nitrous oxide, nitrogen, etc.1 The method of the present invention in which oxygen coexists in the reaction system greatly reduces the amount of nitrogen compounds, and especially -The amount of nitrogen film, nitrogen dioxide, etc. generated is greatly reduced. This greatly reduces the amount of nitric acid consumed, which is extremely advantageous for industrial production.

(2)硝酸または硝酸水溶液を反応器に徐々に注入しな
がら反応させる操作: この(2)の操作における反応方法としては、(!) 
 予め原料化合物のみを反応器内で所定の反応温度まで
加熱した後、ポンプなどによシ硝酸水溶液を供給し反応
させる方法。
(2) Operation of reacting while gradually injecting nitric acid or nitric acid aqueous solution into the reactor: The reaction method for this operation (2) is (!)
A method in which only the raw material compounds are heated in advance to a predetermined reaction temperature in a reactor, and then an aqueous nitric acid solution is supplied using a pump or the like to react.

(H)  予め原料化合物と水を反応器内で所定の反応
温度まで加熱した後、ポンプなどにより硝酸を供給して
反応させる方法。
(H) A method in which a raw material compound and water are heated in advance to a predetermined reaction temperature in a reactor, and then nitric acid is supplied using a pump or the like to react.

(nl>  予め原料化合物のみまたは原料化合物と水
の一部を反応器内で所定の反応温度まで加熱した後、硝
酸と水を同時にまたは又互に供給して反応させる方法 などがある。
(nl> There is a method in which only the raw material compound or a part of the raw material compound and water is heated in advance to a predetermined reaction temperature in a reactor, and then nitric acid and water are supplied simultaneously or mutually to react.

これら(1)〜(lli)の方法においては、原料化合
物または原料化合物と水は、100〜220℃、特に1
20〜200℃に加熱されていることが好ましい。
In these methods (1) to (lli), the raw material compound or the raw material compound and water are heated at 100 to 220°C, especially at 1
Preferably, it is heated to 20 to 200°C.

また、硝酸の供給速度は、原料化合物1モルに対し毎時
平均1〜20モルとなるように供給することが好ましい
。毎時20モルを越えると反応熱の除去などの制御が困
難となる傾向にあり%1モル未満では反応時間が長くな
シ効率的ではなくなってくる。
Further, it is preferable that the nitric acid is supplied at an average rate of 1 to 20 moles per hour per mole of the raw material compound. If it exceeds 20 moles per hour, it tends to be difficult to control the removal of reaction heat, and if it is less than 1 mole per hour, the reaction time becomes long and becomes inefficient.

本発明において(11の操作と(2)の操作を併用する
こともできるが、その場合は酸素存在下で(2)の操作
を行なうことであり、酸素の供給量および供給速度は(
1)の操作の場合に記載したとおシである。
In the present invention, operation (11) and operation (2) can be used together, but in that case, operation (2) is performed in the presence of oxygen, and the amount and rate of oxygen supply are (
This is described in the case of operation 1).

上記(1)および(2)の操作においては1例えば反応
器に1反応中発生するガスを排出するための冷却管、冷
却管から排出させるガスの圧力を制御する内圧制御装置
などを、さらに(1)の操作では酸素を反応系に注入す
るため高圧ガス注入用装置などを、(2)の操作では反
応器に硝酸を注入するための高圧定量ポンプなどを取9
つけることが望ましい。
In the operations (1) and (2) above, 1, for example, a cooling pipe for discharging the gas generated during one reaction into the reactor, an internal pressure control device for controlling the pressure of the gas discharged from the cooling pipe, etc. Operation 1) requires a high-pressure gas injection device to inject oxygen into the reaction system, and operation (2) requires a high-pressure metering pump to inject nitric acid into the reactor.
It is desirable to attach it.

本発明では反応終了後、反応生成液を濃縮するか、冷却
するか、もしくは濃縮後冷却することにより、目的生成
物である粗ベンゾフェノンポリカルボン酸が反応生成液
中に析出する。これをろ過あるいは遠心分離などの通常
用いられる方法により分離することにより粗ベンゾフェ
ノンポリカルボン酸の結晶固体が得られる。
In the present invention, after the completion of the reaction, the reaction product liquid is concentrated or cooled, or by cooling after concentration, the target product, crude benzophenone polycarboxylic acid, is precipitated in the reaction product liquid. By separating this by a commonly used method such as filtration or centrifugation, a crystalline solid of crude benzophenone polycarboxylic acid is obtained.

この結晶固体は、例えば水などの溶媒を用い、再結晶す
ることによ勺精製することもできる。
This crystalline solid can also be purified by recrystallization using a solvent such as water.

ベンゾフェノンポリカルボン酸を分離した後の反応生成
液は1通常未反応の硝酸を含む水溶液であるが、アルカ
リ性物質によって中和し、廃棄することも可能であるし
、また酸化反応系にリサイクルし、再使用することも可
能である。
The reaction product liquid after separating the benzophenone polycarboxylic acid is usually an aqueous solution containing unreacted nitric acid, but it can be neutralized with an alkaline substance and disposed of, or it can be recycled to the oxidation reaction system. It is also possible to reuse it.

〔実施例〕〔Example〕

以下、実施例および比較例を挙げて本発明を更に詳細に
説明する。例中のチは重fjk基準、圧力はゲージ圧力
である。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In the example, ``chi'' is a weight fjk standard, and pressure is a gauge pressure.

実施例 1 ガス導入管およびガス排出管を設置した500−オート
クレーブに、純度98%の1,1−ビス−(3゜4−ジ
メチルフェニル)エタン25 g(0,105吻l)お
よび濃度30%の硝酸水溶液3009 (1,429n
LOl)を仕込んだ。ガス導入管よシ酸素ガスを導入し
、反応系を20ゆ4♂に加圧し、この圧力を保持しなが
ら、気相に酸素ガスをθ℃、1気圧換算で毎分2001
11,1の速度で圧入させながらオートクレーブを攪拌
しつつゆっくり昇温した。室温から120℃まで約1時
間で昇温し、120℃に約1時間保持した後、約1時間
で180℃まで昇温し、この温度を保持しながら約2時
間攪拌をつづけた。この間も反応系内の圧力は20kg
/cl?に維持し、酸素ガスを流通しつづけた。反応中
に排出されるガス中には未反応の酸素、亜酸化窒素、窒
素、−酸化炭素、二酸化炭素および極微量の二酸化窒素
が含まれていたが、−酸化窒素は検出されなかった。
Example 1 25 g (0,105 l) of 1,1-bis-(3°4-dimethylphenyl)ethane with a purity of 98% and a concentration of 30% were placed in a 500-autoclave equipped with a gas inlet pipe and a gas outlet pipe. Nitric acid aqueous solution 3009 (1,429n
LOl) was prepared. Oxygen gas is introduced through the gas introduction pipe, the reaction system is pressurized to 20 yen 4♂, and while this pressure is maintained, oxygen gas is introduced into the gas phase at θ℃, 2001 m/min in terms of 1 atm.
The temperature of the autoclave was slowly raised while stirring the autoclave while injecting the mixture under pressure at a rate of 11.1. The temperature was raised from room temperature to 120°C in about 1 hour, maintained at 120°C for about 1 hour, and then raised to 180°C in about 1 hour, and stirring was continued for about 2 hours while maintaining this temperature. During this time, the pressure inside the reaction system was 20 kg.
/cl? The atmosphere was maintained at a constant temperature, and oxygen gas continued to flow. The gas discharged during the reaction contained unreacted oxygen, nitrous oxide, nitrogen, -carbon oxide, carbon dioxide, and trace amounts of nitrogen dioxide, but -nitrogen oxide was not detected.

反応中に排出されたガスおよび反応終了後のオートクレ
ーブ内の残留ガスを全て回収し、ガスクロマトグラフィ
ーによって分析し、窒素ガスおよび窒素化合物ガスとし
て回収された窒素元素を硝酸換算として、−酸化炭素お
よび二酸化炭素として回収された炭素元素を1,1−ビ
ス−(a4−ジメチルフェニル)エタン換算として測定
した。結果を表1に示す。
All the gases discharged during the reaction and the residual gases in the autoclave after the completion of the reaction were collected and analyzed by gas chromatography, and the nitrogen elements recovered as nitrogen gas and nitrogen compound gas were converted to -carbon oxide and The carbon element recovered as carbon dioxide was measured in terms of 1,1-bis-(a4-dimethylphenyl)ethane. The results are shown in Table 1.

また、得られた反応液の一部をとシ、電気伝導度滴定分
析法で硝酸およびカルボン酸の定量を行なった。結果を
表1に示す。
In addition, a portion of the obtained reaction solution was removed, and nitric acid and carboxylic acid were determined by electrical conductivity titration analysis. The results are shown in Table 1.

次いで反応液を蒸留濃縮して約150gとし、これを室
温まで冷却して一夜放置した後、析出した結晶固体を減
圧ろ過によって分離し、約100dの水で洗浄し、12
5℃で一夜乾燥したところ、粗43、’44’−テトラ
カルボン酸29.89を得た。液体クロマトグラフィに
よる分析では純度98チ以上であった。
Next, the reaction solution was distilled and concentrated to about 150 g, which was cooled to room temperature and left overnight. The precipitated crystalline solid was separated by vacuum filtration, washed with about 100 d of water, and
After drying at 5°C overnight, 29.89 of crude 43,'44'-tetracarboxylic acid was obtained. Analysis by liquid chromatography showed that the purity was 98% or higher.

実施例 2 流通するガスを酸素ガスの代シに空気とし、圧入速度を
毎分1.Olとしたほかは、実施例1と同様にして粗a
 a’44’−ベンゾフェノンテトラカルボン酸を得た
Example 2 Air was used as the circulating gas instead of oxygen gas, and the injection rate was set at 1.0 per minute. A crude a was prepared in the same manner as in Example 1, except that Ol
a'44'-benzophenonetetracarboxylic acid was obtained.

実施例1と同様にして排出ガス中の窒素元素および炭素
元素ならびに反応終了後の反応液中の硝酸残存量および
カルボン酸を定量した。結果を表1に示す。
In the same manner as in Example 1, the nitrogen element and carbon element in the exhaust gas, as well as the residual amount of nitric acid and carboxylic acid in the reaction solution after completion of the reaction, were determined. The results are shown in Table 1.

また、得られた粗aa′44′−インシフエノンテトラ
カルボン酸は31.4L純度は98チ以上であった。
Further, the purity of the obtained crude aa'44'-incifenonetetracarboxylic acid (31.4L) was 98% or more.

比較例 1 500 dオートクレーブに、純度98tsの 1.1
−ビス−(3,4−ジメチルフェニル)エタン25g(
0,105讃りおよび濃度30チの硝酸水溶液300g
(1,429mal)を仕込み、気相を常圧のフルビン
ガスで置換し密閉した。反応液を攪拌しつつ、密閉系の
まま加熱し、室温から120℃まで約1時間で昇温させ
た。次に120℃に約1時間保持した後。
Comparative Example 1 1.1 with a purity of 98ts in a 500d autoclave
-bis-(3,4-dimethylphenyl)ethane 25g (
300g of nitric acid aqueous solution with a concentration of 0.105% and a concentration of 30%
(1,429 mal) was charged, the gas phase was replaced with Fulvin gas at normal pressure, and the tank was sealed. The reaction solution was heated in a closed system while stirring, and the temperature was raised from room temperature to 120° C. in about 1 hour. Next, after holding at 120°C for about 1 hour.

約1時間で180℃に昇温し、この温度で約2時間攪拌
をつづけた。反応が進行すると共にオートクレーブ内の
圧力が次第に上昇し始め、反応終了時には、内圧がs 
51q/c−となった。反応終了後、オートクレーブを
冷却し、ガスを全て回収しガスクロマトグラフィーによ
って分析したところ、−酸化窒素、二酸化窒素、亜酸化
窒素、窒素、−酸化炭素、二酸化炭素および予め気相を
置換したアルゴンが確認された。
The temperature was raised to 180°C in about 1 hour, and stirring was continued at this temperature for about 2 hours. As the reaction progresses, the pressure inside the autoclave gradually begins to rise, and at the end of the reaction, the internal pressure reaches s.
It became 51q/c-. After the reaction was completed, the autoclave was cooled and all the gases were collected and analyzed by gas chromatography, which revealed that -nitrogen oxide, nitrogen dioxide, nitrous oxide, nitrogen, -carbon oxide, carbon dioxide, and argon that had previously replaced the gas phase. confirmed.

実施例1と同様にして排出ガス中の窒素元素および炭素
元素ならびに反応終了後の反応液中の硝酸残存量および
カルボン酸を定量した。結果を表1に示す。
In the same manner as in Example 1, the nitrogen element and carbon element in the exhaust gas, as well as the residual amount of nitric acid and carboxylic acid in the reaction solution after completion of the reaction, were determined. The results are shown in Table 1.

また、得られた粗a a’44’−ベンゾフェノンテト
ラカルボン酸は26.2凱純度は96.7%であった。
Further, the obtained crude aa'44'-benzophenonetetracarboxylic acid had a purity of 26.2K and 96.7%.

実施例 3 内容積500−のオートクレーブに、純度98チの1,
1−ビス(3,4−ジメチルフェニル)エタン25g(
0,105730/)、純水1509を仕込んだ。気相
をアルゴンガスで置換し、密閉した後、攪拌しつつ加熱
を開始し、室温から120℃まで1時間で昇温した。次
いで濃度60%の硝酸水溶液を定量ポンプを用い毎時4
0mの速度でオートクレーブ内に供給し1反応を開始さ
せた。硝酸水溶液を約309供給した時点よシ反応器の
内圧が上昇し始め、圧力が20に9/an”に達した時
点よシ保圧弁を用い、内圧が20 k17/3”で一定
となるよう発生するガスを抜き出した。硝酸水溶液を全
量で150 g供給した後、定量ポンプを止め、内圧を
20に9/art”に保持しながら1時間で180℃ま
で昇温させ、昇温後、180℃に保持しながら2時間攪
拌をつづけた。
Example 3 In an autoclave with an internal volume of 500, 1,
25 g of 1-bis(3,4-dimethylphenyl)ethane (
0.105730/) and pure water 1509 were charged. After replacing the gas phase with argon gas and sealing the container, heating was started while stirring, and the temperature was raised from room temperature to 120° C. in 1 hour. Next, a nitric acid aqueous solution with a concentration of 60% was added every hour using a metering pump.
One reaction was started by feeding into the autoclave at a speed of 0 m. When the nitric acid aqueous solution was supplied at about 30%, the internal pressure of the reactor started to rise, and when the pressure reached 20%, use a pressure-holding valve to keep the internal pressure constant at 20%. The generated gas was extracted. After supplying a total of 150 g of the nitric acid aqueous solution, stop the metering pump and raise the temperature to 180°C in 1 hour while maintaining the internal pressure at 20 to 9/art. After raising the temperature, maintain it at 180°C for 2 hours. Stirring continued.

反応中に排出されたガスおよび反応終了後のオートクレ
ーブ内の残留ガスを全て回収して、ガスクロマトグラフ
ィーにより分析したところ、ガス中には窒素、−酸化窒
素、二酸化窒素、亜酸化窒素、−酸化炭素および二酸化
炭素が含まれていることが確認された。
All the gas discharged during the reaction and the residual gas in the autoclave after the reaction was collected and analyzed by gas chromatography revealed that the gas contained nitrogen, -nitrogen oxide, nitrogen dioxide, nitrous oxide, and It was confirmed that carbon and carbon dioxide were included.

実施例1と同様にして排出ガス中の窒素元素および炭素
元素ならびに反応終了後の反応液中の硝酸残存量および
カルボン酸を定量した。結果を表1に示す。
In the same manner as in Example 1, the nitrogen element and carbon element in the exhaust gas, as well as the residual amount of nitric acid and carboxylic acid in the reaction solution after completion of the reaction, were determined. The results are shown in Table 1.

また、得られた粗a 3.’44’−ベンゾフェノンテ
トラカルボン酸は31.6L純度は98チ以上であった
In addition, the obtained crude a3. The purity of 31.6L of '44'-benzophenonetetracarboxylic acid was 98% or more.

比較例 2 反応によシ発生するガスをオートクレーブよシ排出せず
に反応を行った以外は、実施例3と同様に実施したとこ
ろ1反応終了後、オートクレーブ内の内圧は78 kg
Aln”であった。
Comparative Example 2 The reaction was carried out in the same manner as in Example 3, except that the reaction was carried out without discharging the gas generated by the reaction through the autoclave. After completing one reaction, the internal pressure in the autoclave was 78 kg.
It was "Aln".

実施例1と同様にして排出ガス中の窒素元素および炭素
元素ならびに反応終了後の反応液中の硝酸残存量および
カルボン酸を定量した。結果を表1に示す。
In the same manner as in Example 1, the nitrogen element and carbon element in the exhaust gas, as well as the residual amount of nitric acid and carboxylic acid in the reaction solution after completion of the reaction, were determined. The results are shown in Table 1.

また、得られた粗a a’44’−ベンゾフェノンテ)
ラカルボン酸は2B、!l、純度は96.5チであった
In addition, the obtained crude aa'44'-benzophenonte)
Lacarboxylic acid is 2B! The purity was 96.5%.

表1の結果から、以下の事実が判明する。From the results in Table 1, the following facts are revealed.

■ 本発明によると排出ガス中の窒素化合物が減少する
(2) According to the present invention, nitrogen compounds in exhaust gas are reduced.

■ 本発明によると排出ガス中の炭素元素が減少する。■ According to the present invention, carbon elements in exhaust gas are reduced.

このことからベンゼン環の分解などが減少し1反応の選
択率が高まることがわかる。
This shows that the decomposition of the benzene ring is reduced and the selectivity for one reaction is increased.

■ 本発明によると消費される硝酸が減少する。■ According to the present invention, the amount of nitric acid consumed is reduced.

■ 本発明によると粗ベンゾフェノyテトラカルボン酸
の収量が上がシ、純度も高くなる。
(2) According to the present invention, the yield and purity of crude benzophenotetracarboxylic acid are increased.

■ 本発明によると反応終了後に生成している全カルボ
ン酸に対して、得られる粗ペンゾフエノンテト2カルボ
ン酸の収量が高くなる。
(2) According to the present invention, the yield of crude penzophenoneteto dicarboxylic acid obtained is higher than the total amount of carboxylic acid produced after completion of the reaction.

〔発明の効果〕〔Effect of the invention〕

本発明は、密閉系での反応に比較して温和な条件、特に
低い圧力で反応が実施できること、ベンゾフェノンポリ
カルボン酸の選択率が高いこと。
The present invention is characterized by the fact that the reaction can be carried out under milder conditions, particularly at lower pressure, compared to reactions in a closed system, and the selectivity of benzophenone polycarboxylic acid is high.

消費される硝酸量が少ないこと、排出ガス中の窒素化合
物の量が少なく、廃ガス処理を簡略化できることなど数
多くの特徴を有するものである。
It has many features such as a small amount of nitric acid consumed, a small amount of nitrogen compounds in the exhaust gas, and the ability to simplify waste gas treatment.

Claims (1)

【特許請求の範囲】 1)一般式〔 I 〕 ▲数式、化学式、表等があります▼〔 I 〕 (式中、R_1〜R_6は互に独立したものであって、
それぞれ水素原子または炭素数1〜3のアルキル基を表
わし、かつR_1〜R_3の少なくとも1個およびR_
4〜R_6の少なくとも1個はアルキル基であり、R_
7は水素原子または炭素数1〜7のアルキル基を表わす
。) で示される化合物を硝酸水溶液と反応させることからな
るベンゾフェノンポリカルボン酸の製造方法において、 (1)一般式〔 I 〕で示される化合物と硝酸水溶液と
を酸素の存在下で反応させる操作 (2)硝酸または硝酸水溶液を反応器に注入しながら反
応させる操作 の少なくとも1種の操作を圧力50kg/cm^2以下
で行なうことを特徴とするベンゾフェノンポリカルボン
酸の製造方法。 2)一般式〔 I 〕で示される化合物が1,1−ビス(
3,4−ジメチルフェニル)エタンであることを特徴と
する特許請求の範囲第1項に記載のベンゾフェノンポリ
カルボン酸の製造方法。
[Claims] 1) General formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] (In the formula, R_1 to R_6 are mutually independent,
Each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and at least one of R_1 to R_3 and R_
At least one of 4 to R_6 is an alkyl group, and R_
7 represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms. ) In the method for producing benzophenone polycarboxylic acid, which comprises reacting a compound represented by the formula [I] with an aqueous nitric acid solution, (1) an operation of reacting a compound represented by the general formula [I] with an aqueous nitric acid solution in the presence of oxygen (2) ) A method for producing benzophenone polycarboxylic acid, characterized in that at least one operation of reacting while injecting nitric acid or an aqueous nitric acid solution into a reactor is carried out at a pressure of 50 kg/cm^2 or less. 2) The compound represented by the general formula [I] is 1,1-bis(
The method for producing benzophenone polycarboxylic acid according to claim 1, wherein the benzophenone polycarboxylic acid is 3,4-dimethylphenyl)ethane.
JP4044586A 1986-02-27 1986-02-27 Production of benzophenonepolycarboxylic acid Pending JPS62198644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044586A JPS62198644A (en) 1986-02-27 1986-02-27 Production of benzophenonepolycarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044586A JPS62198644A (en) 1986-02-27 1986-02-27 Production of benzophenonepolycarboxylic acid

Publications (1)

Publication Number Publication Date
JPS62198644A true JPS62198644A (en) 1987-09-02

Family

ID=12580843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044586A Pending JPS62198644A (en) 1986-02-27 1986-02-27 Production of benzophenonepolycarboxylic acid

Country Status (1)

Country Link
JP (1) JPS62198644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838883A1 (en) 2019-12-16 2021-06-23 Evonik Fibres GmbH A method for oxidizing a 1,1-bis-(3,4-dimethylphenyl)-alkane to 3,3',4,4'-benzophenone tetracarboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838883A1 (en) 2019-12-16 2021-06-23 Evonik Fibres GmbH A method for oxidizing a 1,1-bis-(3,4-dimethylphenyl)-alkane to 3,3',4,4'-benzophenone tetracarboxylic acid
US11724978B2 (en) 2019-12-16 2023-08-15 Evonik Fibres Gmbh Method for oxidizing a 1,1,-bis-(3,4-dimethylphenyl)-alkane to 3,3′,4,4′-benzophenone tetracarboxylic acid

Similar Documents

Publication Publication Date Title
JPH0399041A (en) Continuous preparation method for dialkyl carbonate
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
JPS62198644A (en) Production of benzophenonepolycarboxylic acid
US3869485A (en) Preparation of acid chlorides with phosgene in the presence of a catalyst
EP0625502B1 (en) Process for producing methyl formate
JPH0567132B2 (en)
US3944601A (en) Quality of phthalic acids improved by strong inorganic acids
JPH0557250B2 (en)
AU747951B2 (en) Method for preparing hydrazine hydrate
US3030414A (en) Process of preparing meta- and para-nitrobenzoic acids
US4162268A (en) Process for preparing diacetylbenzene
US3681444A (en) Preparation of para nitrobenzoic acids and 4{40 -nitro-4-biphenylcarboxylic acids
JPS58188836A (en) Manufacture of isobutyric acid fluoride or isobutyric acid
WO1999008998A1 (en) Process for producing formamide
JP4148480B2 (en) Method for producing 3-nitro-o-toluic acid
US3030415A (en) Separation of ortho-nitrotoluene from nitrotoluene mixtures
SU595300A1 (en) Method of preparing cyanbenzoic acids
JPS6217989B2 (en)
CA1058637A (en) Liquid phase oxidation of propane
JPS5921855B2 (en) Production method of malonic acid diesters
US4222959A (en) Process for the preparation of aromatic formamides
US3374059A (en) Preparation of nitrosyl acid sulfate
JPS6124569A (en) Preparation of 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
JPS609018B2 (en) Production method of terephthalic acid
US3639416A (en) Process for the preparation of bis-isoxazoline