JPS62198385A - Process and equipment for feeding carbon dioxide into microalgae suspension - Google Patents

Process and equipment for feeding carbon dioxide into microalgae suspension

Info

Publication number
JPS62198385A
JPS62198385A JP3967086A JP3967086A JPS62198385A JP S62198385 A JPS62198385 A JP S62198385A JP 3967086 A JP3967086 A JP 3967086A JP 3967086 A JP3967086 A JP 3967086A JP S62198385 A JPS62198385 A JP S62198385A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
microalgae suspension
sealed container
microalgae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3967086A
Other languages
Japanese (ja)
Inventor
Toshiro Sekine
敏朗 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3967086A priority Critical patent/JPS62198385A/en
Publication of JPS62198385A publication Critical patent/JPS62198385A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Abstract

PURPOSE:The suspension of microalgae in the cultivation tank is taken out into a tightly closed vessel and carbon dioxide is added thereto and the mixture is recycled to the cultivation tank where the concentration of carbon dioxide and the gas-liquid contact area are adjusted to effect efficient feed of carbon dioxide. CONSTITUTION:A suspension of microalgae is sent into a tightly closed vessel 1 filled with a carbon dioxide-containing gas, and the suspension is brought into contact with carbon dioxide-containing gas in the vessel 1, then sent back into the cultivation tank 8 in which the microalgae is cultured under light irradiation. When the concentration of carbon dioxide lowers down to a prescribed value in the vessel 1, the gas is exchanged to adjust the concentration, and the liquid-gas contact area is controlled according to the carbon dioxide concentration. As a result, carbon dioxide is efficiently fed for the cultivation of microalgae.

Description

【発明の詳細な説明】 本発明は、光照射上微細藻類の培養が行なわれている培
養槽内の微1111藻類懸濁液を連続的に取り出し、こ
れに炭酸ガスを添加し、再び培養槽に戻す形式の微m藻
類懸濁液に炭酸ガスを供給する方法及びその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves continuously taking out a suspension of microalgae in a culture tank where microalgae are being cultured by light irradiation, adding carbon dioxide gas thereto, and returning the microalgae suspension to the culture tank. The present invention relates to a method and apparatus for supplying carbon dioxide gas to a microalgae suspension that is returned to a microalgae suspension.

従来、微細藻類の培養には、クロレラ培養等食料生産を
目的としたもの、又は廃水処理における高率酸化演法の
ように藻体生産と廃水の浄化を目的としたものがある。
Conventionally, microalgae cultivation has been carried out for the purpose of food production, such as chlorella culture, or for the purpose of algae production and wastewater purification, such as the high-rate oxidation method used in wastewater treatment.

これらの培養におCする炭酸ガスの供給は下記の如く行
なわれている。(ア)培養槽底部から炭酸ガス強化空気
を連続的に通気する。(イ)培養槽とは別にガス吸収塔
を設け、微細藻類懸濁液を上方から散布導入し、炭酸ガ
ス強化空気を下方から連続的に通気し上方から排出する
。(つ)培養槽仝休を透明なカバーで覆い、気相に炭酸
ガス強化空気を一端から連続的に通気し他端から排出す
る。これらは通気された炭酸ガスの中で液体とまったく
接触することのないものを大気中へ放出する結果となり
損失が非常に大きい。このため通気炭酸ガスを炭素源と
した微細藻類の培養はほとんど行なわれでいないのが現
状である。
The supply of carbon dioxide gas to these cultures is carried out as follows. (a) Continuously aerate carbon dioxide-enriched air from the bottom of the culture tank. (b) A gas absorption tower is installed separately from the culture tank, and the microalgae suspension is introduced by spraying from above, and carbon dioxide gas-enriched air is continuously aerated from below and discharged from above. (1) Cover the culture tank with a transparent cover, and continuously aerate carbon dioxide-enriched air into the gas phase from one end and exhaust it from the other end. These methods result in releasing into the atmosphere some of the aerated carbon dioxide gas that never comes into contact with the liquid, resulting in very large losses. For this reason, at present, cultivation of microalgae using aerated carbon dioxide gas as a carbon source is hardly carried out.

しかし、前述の損失を改善すれば、炭酸ガスは他の酢酸
等の炭素源と比較して非常に安価であるので、藻体の生
産価格を大幅に減少しうる。本発明はこのような点に鑑
みなされたもので、微細藻類の培養に対して効率的に炭
酸ガスを供給する方法及び装置を提供することを目的と
する。
However, if the above-mentioned losses are improved, the production price of algae can be significantly reduced, since carbon dioxide gas is very cheap compared to other carbon sources such as acetic acid. The present invention was made in view of these points, and an object of the present invention is to provide a method and apparatus for efficiently supplying carbon dioxide gas to the culture of microalgae.

すなわち未発明は、第1に微細藻類懸濁液への炭酸ガス
の供給を、(a)光照射条件下で微細藻類の培養が行な
われている槽内の少なくとも一部の微細藻類懸濁液を、
炭酸ガス含有気体が充填された密閉容器内に送り、該密
閉容器内にJ′3いて微m藻類懸濁液と炭酸ガス含有気
体を接触させることにより該微細藻類懸濁液に炭酸ガス
を溶解させた後、光照射条件下で微細藻類の培養が行な
われている槽内に返送する第1操作及び(b)密閉容器
内の炭酸ガス濃度が所定の値に紙上した時点で、密閉容
器内上方と密閉容器外とを一連通する連通口を開放し、
微細藻類懸濁液を密閉容器内に導入することで、該低濃
度炭酸ガス含有気体を密閉容器外へ押し出した後、前記
連通口を閉じ密閉容器外へ微細藻類懸濁液を排出しつつ
密閉容器内に新しい炭酸ガス含有気体を導入し、これに
より密閉容器内に新たに調整された炭酸ガス含有気体を
充填する第2操作を繰り返すことにより行なうとともに
、前記第1操作において、密閉容器内の気液接触面積を
調節することにより炭酸ガスの溶解量を、調節すること
を特徴どする微細藻類懸濁液に炭酸ガスを供給する方法
であり、第2に微細藻類懸濁液に炭酸ガスを供給するた
めの装置において、(c)上方に炭酸ガス含有気体を下
方に微細藻類懸濁液を保持し得る密閉容器、(d>密閉
容器内に微細藻類懸濁液を導入する流路、(e)密閉容
器下方から密閉容器外に微細藻類懸濁液を取り出す流路
、(f)密閉容器内上方と密閉容器外を連通する連通口
、(cJ)密閉容器内に炭酸ガス含有気体を導入するた
めの手段、(i)密閉容器内に微細藻類懸濁液を導入す
る前記流路、密閉容器内、及び密閉容器下方から密閉容
器外に微細藻類懸濁液を取り出す首記流路を順次通過す
る微細藻類懸濁液の流れを形成するための強制流働手段
、(i)前記連通口を開閉する手段、(j>密閉容器内
の炭酸ガス濃度が所定の値に低下した時点で、前記連通
口を開放し、微細藻類懸濁液を密閉容器内に導入するこ
とで、該低′im度炭酸ガス含有気体を密閉容器外へ押
し出した後、前記連通口を閉じ、密閉容器内に新しい炭
酸ガス含有気体を導入するための手段を一定時間作動さ
せるよう制御する手段、及び(k)密閉容器内の炭酸ガ
スの濃度変化に応じて密閉容器内の気液接触面積を制御
して炭酸ガスの溶解量を調節するための手段を具備する
ことを特徴とする微細藻類懸濁液に炭酸ガスを供給する
装置である。
That is, the uninvented invention first supplies carbon dioxide gas to the microalgae suspension by (a) at least part of the microalgae suspension in a tank in which microalgae are cultured under light irradiation conditions; of,
The carbon dioxide gas is dissolved in the microalgae suspension by sending it into a closed container filled with a gas containing carbon dioxide gas, and dissolving the carbon dioxide gas in the microalgae suspension by bringing the microalgae suspension into contact with the gas containing carbonic acid gas. (b) When the carbon dioxide concentration in the sealed container reaches a predetermined value, the Open the communication port that connects the top and the outside of the sealed container,
By introducing the microalgae suspension into the sealed container, the low concentration carbon dioxide-containing gas is forced out of the sealed container, and then the communication port is closed and the sealed container is sealed while discharging the microalgae suspension to the outside of the sealed container. This is carried out by repeating the second operation of introducing a new carbon dioxide-containing gas into the container and thereby filling the airtight container with the newly adjusted carbon dioxide-containing gas. This is a method of supplying carbon dioxide gas to a microalgae suspension, which is characterized by adjusting the amount of dissolved carbon dioxide gas by adjusting the gas-liquid contact area.The second method is to supply carbon dioxide gas to a microalgae suspension. In the apparatus for supplying, (c) an airtight container capable of holding a carbon dioxide gas-containing gas above and a microalgae suspension below, (d> a channel for introducing the microalgae suspension into the airtight container, ( e) A channel for taking out the microalgae suspension from the bottom of the sealed container to the outside of the sealed container, (f) A communication port that communicates the upper part of the inside of the sealed container with the outside of the sealed container, (cJ) Introducing a gas containing carbon dioxide into the sealed container. means for (i) sequentially introducing the flow path for introducing the microalgae suspension into the closed container, the inside of the closed container, and the above-mentioned flow path for taking out the microalgae suspension from the bottom of the closed container to the outside of the closed container; forced flow means for forming a flow of the microalgae suspension passing through; (i) means for opening and closing the communication port; The communication port is opened and the microalgae suspension is introduced into the sealed container to push out the low carbon dioxide-containing gas out of the sealed container, and then the communication port is closed and the microalgae suspension is introduced into the sealed container. (k) means for controlling the means for introducing new carbon dioxide-containing gas to operate for a certain period of time; This is an apparatus for supplying carbon dioxide gas to a microalgae suspension, characterized by comprising means for adjusting the amount of dissolved gas.

このように本発明は、炭酸ガス含有気体が充填された密
閉容器内に微細藻類懸濁液を送り、該密閉容器内におい
て微細藻類懸濁液と炭酸ガス含イ1気体を接触させるこ
とにより該微細藻類懸濁液に炭酸ガスを溶解させた後、
光照射条件下で微細藻類の培養が行なわれている槽内に
返送し、適宜密閉容器内の炭酸ガス含有気体中の炭酸ガ
ス濃度が所定の値に低下した時点で気体の交換により充
填気体の炭酸ガス濃度の調整を行なうとともに、充填さ
れている炭酸ガス含有気体中の炭酸ガス濃度の変化に応
じて密閉容器内の気液接触面積を調節することにより炭
酸ガスの溶解量を調節するよう構成した点に特色を有し
ている。
As described above, the present invention provides a method for transporting a microalgae suspension into a closed container filled with a gas containing carbon dioxide, and bringing the microalgae suspension into contact with the gas containing carbon dioxide in the closed container. After dissolving carbon dioxide gas in the microalgae suspension,
The gas is returned to the tank where microalgae are cultured under light irradiation conditions, and when the carbon dioxide concentration in the carbon dioxide-containing gas in the sealed container has decreased to a predetermined value, the filled gas is replaced by gas exchange. Constructed to adjust the amount of dissolved carbon dioxide by adjusting the carbon dioxide concentration and adjusting the gas-liquid contact area in the sealed container according to changes in the carbon dioxide concentration in the filled carbon dioxide-containing gas. It is characterized by the following points.

本発明では前記の如く構成したので、投入した炭酸ガス
のほとlυど全てを微細藻類懸濁液に溶解させることが
でき、その溶解量も調節できる。
Since the present invention is configured as described above, almost all of the carbon dioxide gas introduced can be dissolved in the microalgae suspension, and the amount of dissolved carbon dioxide gas can also be adjusted.

本発明に用いる炭酸ガス含有気体としては、ボイラー排
ガス、醗酵プラン1〜排ガス、おるいはこれらを加圧濃
縮した液化炭酸ガス等があげられる。
Examples of the carbon dioxide-containing gas used in the present invention include boiler exhaust gas, fermentation plan 1 to exhaust gas, and liquefied carbon dioxide obtained by pressurizing and concentrating these.

次に本発明の方法及び装置を図面により更に詳しく説明
する。
Next, the method and apparatus of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の装置の一実施例を示す縦断面図で必る
。本実施例においては、装置はその上端が微細藻類培養
槽の水面より下方になるよう設置されている。、装置は
、上方に炭酸ガス含有気体を、下方に微細藻類懸濁液を
、それぞれ共存して保持し得る密閉容器1、微細藻類培
養槽8内の微細藻類懸濁液を密閉容器1内に導入するた
めの流路としての管2、上方より噴M導入するための・
流路としての管2a、下方にり導入するための流路とし
ての管2b、液相り内の微細藻類懸濁液を微細藻類培養
槽8へ取り出すための流路としての管3からなる。密閉
容器1の上方には開閉を制御する制御弁10の付いた連
通管4が設けられている。密閉容器1外には炭酸ガス含
有気体源5から管7を介して炭酸ガス含有気体を密閉容
器1内に圧入するためのコンプレツナ−6が設けられて
いる。微細藻類培養槽8から管2、管2a及び管2bを
介して微細藻類懸濁液を密閉容器1内に強制的に導入す
るためのポンプ9が管2中に設けられている。気相G内
の炭酸ガス濃度を連続的に取り出し分析する炭酸ガス分
析器11が設けられ、該分析器11は記録制御器12を
経て制御弁10に連結する。密閉容器1内上方には液面
Sの上限旧を規定する接点13が設けられ制御器18を
経て制御弁10に連接する。また接点13は制御器18
を経そコンプレッサー6にも連結する。密閉容器1内下
方には液面Sの下限−2を規定する接点14が設けられ
制御器18を経てコンプレッサー6に連結する。接点2
3及び接点24がそれぞれ接点13及び接点14と密閉
容器1内の同じ高さに設けられ制御器25を経てポンプ
9に連結する。微細藻′MI懸濁液を管2a及び管2b
に分けて密閉容器1内に導入するに際して、それぞれの
流単比を制御するための制御弁19及び制御弁20がそ
れぞれ管2a及び管2b中に設けられ、管2aは分岐し
て密閉容器1に連結する。分岐した管2aの先端には液
体噴霧用の霧化装置1122が設けられ、分岐した管中
には管2a内の流量の変化に応じて順次開閉するシーケ
ンス弁21が設けられている。密閉容器1内下方の液相
し内には溶解炭酸ガス測定器15が配置され炭酸ガス分
析器16及び記録制御器17を経て流量制御弁19及び
流量制御弁20に連結する。密閉容器1内の液面S上に
は開孔を有する浮遊板31が設けられている。浮遊板3
1は突起物32により上下の移動範囲が制限されている
FIG. 1 is a longitudinal sectional view showing one embodiment of the apparatus of the present invention. In this example, the device is installed so that its upper end is below the water surface of the microalgae culture tank. The device includes a closed container 1 capable of coexisting with a carbon dioxide-containing gas above and a microalgae suspension below, and a microalgae suspension in a microalgae culture tank 8 into the closed container 1. A pipe 2 serves as a flow path for introducing the jet M, and a pipe 2 serves as a flow path for introducing the jet M from above.
It consists of a pipe 2a as a flow path, a pipe 2b as a flow path for downward introduction, and a pipe 3 as a flow path for taking out the microalgae suspension in the liquid phase to the microalgae culture tank 8. A communication pipe 4 equipped with a control valve 10 for controlling opening and closing is provided above the closed container 1. A compressor 6 is provided outside the hermetic container 1 for pressurizing a carbon dioxide-containing gas from a carbon dioxide-containing gas source 5 into the hermetic container 1 via a pipe 7. A pump 9 is provided in the tube 2 for forcibly introducing the microalgae suspension into the closed container 1 from the microalgae culture tank 8 through the tube 2, tube 2a, and tube 2b. A carbon dioxide gas analyzer 11 is provided that continuously extracts and analyzes the carbon dioxide concentration in the gas phase G, and the analyzer 11 is connected to a control valve 10 via a recording controller 12. A contact point 13 that defines the upper limit of the liquid level S is provided in the upper part of the closed container 1 and is connected to the control valve 10 via a controller 18 . Also, the contact 13 is connected to the controller 18
It is also connected to the compressor 6 through it. A contact point 14 that defines a lower limit -2 of the liquid level S is provided in the lower part of the closed container 1 and is connected to the compressor 6 via a controller 18 . Contact 2
3 and 24 are provided at the same height within the closed container 1 as the contacts 13 and 14, respectively, and are connected to the pump 9 via a controller 25. Transfer the microalgae 'MI suspension to tube 2a and tube 2b.
A control valve 19 and a control valve 20 for controlling the respective flow rate ratios are provided in the pipe 2a and the pipe 2b, respectively, and the pipe 2a is branched and introduced into the closed container 1. Connect to. An atomizer 1122 for spraying liquid is provided at the tip of the branched pipe 2a, and a sequence valve 21 is provided in the branched pipe to open and close sequentially according to changes in the flow rate within the pipe 2a. A dissolved carbon dioxide measuring device 15 is disposed in a liquid phase chamber in the lower part of the sealed container 1, and is connected to a flow rate control valve 19 and a flow rate control valve 20 via a carbon dioxide gas analyzer 16 and a recording controller 17. A floating plate 31 having an opening is provided above the liquid level S in the closed container 1. floating board 3
1 has a protrusion 32 that restricts its vertical movement range.

炭酸ガス分析器11、記録制御器12及び制御弁10か
らなる制御弁10の操作回路は他の制御技術分野におい
てそれ自体公知の種類のものである。この制御弁10の
操作回路は、密閉容器1内気相Gの炭酸ガス濃度が記録
制御器12にあらかじめ決定された設定直に低下した時
点で制御弁10を開ける。また、接点13、制御器18
及び制御弁10からなる制御弁10の操作回路は他の制
御技術分野においてそれ自体公知の種類のものである。
The operating circuit of the control valve 10, consisting of the carbon dioxide analyzer 11, the recording controller 12 and the control valve 10, is of a type known per se in other fields of control technology. The operating circuit for the control valve 10 opens the control valve 10 when the carbon dioxide concentration of the gas phase G inside the closed container 1 drops to a setting predetermined by the recording controller 12. In addition, the contact 13 and the controller 18
The operating circuit of the control valve 10, consisting of the control valve 10 and the control valve 10, is of a type known per se in other control technology fields.

この制御弁10の操作回路は、液面Sが上限1l11に
達した時点で、御弁10を閉じる。また、接点13、接
点14、制御器18、コンプレッサー6、炭酸ガス含有
気体源5及び管7からなる炭酸ガス含有気体圧入回路は
他の制御技術分野においてそれ自体公知の種類のもので
ある。この炭酸ガス含有気体圧入回路は液面Sが上限旧
に達した時点でコンプレッサー6を作動させ、下限り2
に達した時点で停止させ、密閉容器1内に一定量の炭酸
ガス含有気体を圧入し炭酸ガス濃度を調整する。接点2
3、接点24、制御器25及びポンプ9からなる微細藻
類懸濁液導入回路も他の制御技術分野においてそれ自体
公知の種類のものである。この微細91類懸濁液導入回
路は液面Sが上限旧に達した時点でポンプ9を停止させ
、下限量に達した時点で作動させ、これにより前記の炭
酸ガス含有気体充填時には微細藻類懸濁液の導入を止め
る。炭酸ガス測定器15、炭酸ガス分析器16、記録制
御31γ、流量制御弁19及び流量制御弁20からなる
流量制御回路も他の制御技術分野においてそれ自体公知
の種類のものである。この流量制御回路は管2aを通っ
て密閉容器1内上方から噴霧され炭酸ガスが添加される
微細藻類懸濁液の流量と管2bを通って密閉容器1内下
方に導入される微細藻類W!!濁液の流量の比を調節し
てほぼ一定の炭酸ガス濃度の微細藻類懸濁液を液相し内
に生成せしめる。管2bを通って導入される微細藻類懸
濁液は浮遊板31により炭酸ガスの添加を制限され主と
して浮遊板31の開孔から下方に移動してくる炭酸ガス
が添加された微細藻類懸濁液の稀釈液としての役割を果
す。
The operating circuit for the control valve 10 closes the control valve 10 when the liquid level S reaches the upper limit 1l11. Furthermore, the carbon dioxide-containing gas injection circuit consisting of contacts 13, contacts 14, controller 18, compressor 6, carbon dioxide-containing gas source 5 and tube 7 is of a type known per se in other control technology fields. This carbon dioxide-containing gas injection circuit operates the compressor 6 when the liquid level S reaches the upper limit, and
When this temperature is reached, the process is stopped, and a certain amount of carbon dioxide-containing gas is pressurized into the sealed container 1 to adjust the carbon dioxide concentration. Contact 2
The microalgae suspension introduction circuit consisting of 3, contacts 24, controller 25 and pump 9 is also of a type known per se in other control technology fields. This fine class 91 suspension introduction circuit stops the pump 9 when the liquid level S reaches the upper limit, and starts operating it when the lower limit is reached. Stop introducing the cloudy liquid. The flow control circuit consisting of the carbon dioxide meter 15, the carbon dioxide analyzer 16, the recording control 31γ, the flow control valve 19 and the flow control valve 20 is also of a type known per se in other control technology fields. This flow rate control circuit controls the flow rate of the microalgae suspension that is sprayed from above into the sealed container 1 through the pipe 2a and to which carbon dioxide gas is added, and the flow rate of the microalgae W! introduced into the sealed container 1 from below through the pipe 2b. ! A microalgae suspension with a substantially constant carbon dioxide concentration is generated in the liquid phase by adjusting the flow rate ratio of the suspension. The microalgae suspension introduced through the tube 2b is a microalgae suspension to which carbon dioxide gas is added, which mainly moves downward through the openings of the floating plate 31, with the addition of carbon dioxide gas being restricted by the floating plate 31. Serves as a diluent.

炭酸ガス分析器11、記録制御器12及び制tilll
弁10からなる制御弁10の操作回路において炭酸ガス
分析器11は気相G内の炭酸ガス濃度を連続的に分析す
る。炭酸ガス分析器11は例えば赤外線炭酸ガス分析計
であり、これは応答速度がきわめて早いという特徴を持
ら、記録制御器12との接続が可能である。赤外線炭酸
ガス分析計は連続的に試料気体を通過させる分析試料至
及び窒素ガスが封入されている分析比較室からなり、両
室には赤外線が均等に発射される。試13+室を通過す
る赤外線は試料中の炭酸ガ支に吸収され炭酸ガスの濃度
に応じてその透過厘を減する。一方、比較室には炭酸ガ
スが存在しないので、ここを通過する赤外線は減少しな
い。赤外線炭酸ガス分析計はこの各室を通過した赤外線
のエネルギー差を電流として検出し、これを標準制御器
に対して適当な標準信号範囲に増幅する。記録制御器1
2は記録計と結合された上記の制御器からなり、記録制
御器12は連続的に炭酸ガス濃度を指示し記録する。
Carbon dioxide analyzer 11, recording controller 12 and till control
In the operation circuit of the control valve 10 including the valve 10, a carbon dioxide gas analyzer 11 continuously analyzes the carbon dioxide concentration in the gas phase G. The carbon dioxide gas analyzer 11 is, for example, an infrared carbon dioxide gas analyzer, which is characterized by extremely fast response speed and can be connected to the recording controller 12. An infrared carbon dioxide gas analyzer consists of an analysis sample chamber through which sample gas is continuously passed, and an analysis comparison chamber filled with nitrogen gas, and infrared rays are emitted equally into both chambers. The infrared rays passing through the sample 13+ chamber are absorbed by the carbon dioxide gas in the sample, and its transmission strength is reduced according to the concentration of carbon dioxide gas. On the other hand, since there is no carbon dioxide gas in the comparison chamber, the infrared rays passing through this chamber do not decrease. The infrared carbon dioxide gas analyzer detects the energy difference of the infrared rays passing through each chamber as a current, and amplifies this to a standard signal range appropriate for the standard controller. Recording controller 1
Reference numeral 2 comprises the above-mentioned controller combined with a recorder, and the recording controller 12 continuously indicates and records the carbon dioxide concentration.

記録制御器12中の制御器はあらかじめ決定された設定
値と入力信号とを比較し、炭酸ガスS度が設定値以下で
あれCヨ制御井10に開栓の信号を送る。
The controller in the recording controller 12 compares the input signal with a predetermined set value, and sends a signal to the C-control well 10 to open if the carbon dioxide level S is below the set value.

制御弁10に開栓により密閉容器1内の気体は、新たな
炭酸ガス含有気体の導入のため、外へ放出される。設定
値は主として経済的観点から決定され、可能な限り低く
することが望ましいが、大気中の炭酸ガス温度約0.0
3%以上が必要とされる。
When the control valve 10 is opened, the gas in the closed container 1 is released to the outside in order to introduce new carbon dioxide-containing gas. The set value is determined primarily from an economic standpoint, and it is desirable to keep it as low as possible, but the temperature of carbon dioxide in the atmosphere is approximately 0.0.
3% or more is required.

炭酸ガス測定器15、炭酸ガス分析器161.記録制神
器17、流量制御弁19及び流量制御弁20からなる流
量制御回路において炭酸ガス測定器15は液相し内下方
の溶解炭酸ガスの濃度を感知する。炭酸ガス測定器15
は例えば炭酸ガス電極であり電解液中に浸された比較電
極及びガラス電極からなりテフロン膜によって液相し内
の液から分離されている。
Carbon dioxide measuring device 15, carbon dioxide gas analyzer 161. In the flow rate control circuit consisting of the recording control device 17, the flow rate control valve 19, and the flow rate control valve 20, the carbon dioxide measuring device 15 senses the concentration of dissolved carbon dioxide in the lower part of the liquid phase. Carbon dioxide measuring device 15
For example, the electrode is a carbon dioxide gas electrode, which consists of a reference electrode and a glass electrode immersed in an electrolytic solution, and is separated from the liquid in the liquid phase chamber by a Teflon membrane.

溶解炭酸ガス濃度は二つの電極の間に生ずる電流に比例
する。
The dissolved carbon dioxide concentration is proportional to the current generated between the two electrodes.

溶解炭酸ガスI!度の尺度としての炭酸ガス測定器15
からの電流出力は炭酸ガス分析器によって分析され標準
制御器に対して適当な標準信号範囲に増幅される。記録
制御器17は記録計と結合された上記の制御器からなり
、記録制御器11は連続的に溶解炭酸ガス濃度を指示し
記録する。記録制御器17中の制御器はあらかじめ決定
された設定値と入力信号とを比較し流量制御弁19及び
流量制御弁20に信号を送る。溶解炭酸ガス濃度が52
定値より低いならば流量制御弁19及び流量制御弁20
にはそれぞれ開栓及び開栓の信号が送られその逆も又同
様である。設定値は微細藻類培養槽8中の微細藻類の炭
酸ガス要求量とポンプ9の吐出量によって決定される。
Dissolved carbon dioxide I! Carbon dioxide measurement device 15 as a measure of degree
The current output from the is analyzed by a carbon dioxide analyzer and amplified to the appropriate standard signal range for the standard controller. The recording controller 17 consists of the above-mentioned controller combined with a recorder, and the recording controller 11 continuously indicates and records the dissolved carbon dioxide concentration. A controller in recording controller 17 compares the input signal with a predetermined setting value and sends a signal to flow control valve 19 and flow control valve 20. Dissolved carbon dioxide concentration is 52
If it is lower than the fixed value, the flow rate control valve 19 and the flow rate control valve 20
are sent signals for opening and opening, respectively, and vice versa. The set value is determined by the amount of carbon dioxide required by the microalgae in the microalgae culture tank 8 and the discharge amount of the pump 9.

本装置によれば、本発明の方法は次のように進行する。According to the device, the method of the invention proceeds as follows.

運転開始前、密閉容器1内の液面Sは上限旧にあるとす
る。運転の開始によって、接点13からの信号は制御器
18に送られ、それは制御弁10を閉じ、コンプレッサ
ー6を作動させ炭酸ガス含有気体源5からの炭酸ガス含
有気体を管7を介して密閉容器1内に圧入する。液面S
が下降し下限匿に達すると、接点14からの信号が制御
器18に送られ、それはコンプレッサー6を停止し、接
点24からの信号が制御器25に送られ、それはポンプ
9を作動させる。ポンプ9の流量は必要に応じて変更し
得る。ポンプ9の作動により微細藻類懸濁液を管2、管
2が分枝した管2a及び管2bを介して密閉容器1内に
導入し、該液に炭酸ガスを添加した後、管3を介して微
細藻類培養槽8に溢流させることにより取り出す。この
炭酸ガスの添加は管2aを介して導入される微細藻類懸
濁液が気相Gを微細な液滴として落下する間に為され、
該液は管2bを介して導入される微細藻類懸濁液により
稀釈される。炭酸ガス測定器15は微細藻類懸濁液中の
溶解炭酸ガスを検知し分析器16に信号を送る。分析器
16は次に記録制御器17に信号を送りそれは流量制御
弁19及び流量制御弁20を調節する。溶解炭酸ガス濃
度が設定値より低いならば流量制御弁19は更に開き、
流量制御弁20は更に閉じられる。これにより流量に応
じてシーケンス弁21は順次開放され噴霧量が増加し、
気液接触面積が増加し、炭酸ガス添加量が増加する。逆
に溶解炭酸ガス濃度が設定値より高いならば流量制御弁
19は更に閉じ、流量制御弁20は更に開けられる。こ
れにより流量に応じてシーケンス弁21は順次閉じられ
噴霧量が減少し、気液接触面積が減少し、炭酸ガス添加
量が減少する。記録υ制御器17の設定値は必要量こ応
じて変更され得る。通常、気相G内の炭酸ガス濃度は次
第に減少するので、流量制御弁19は次第に開き・、流
量制御弁20は次第に閉じられる。
It is assumed that before the start of operation, the liquid level S in the closed container 1 is at the upper limit. Upon start of operation, a signal from the contact 13 is sent to the controller 18, which closes the control valve 10 and activates the compressor 6 to transfer the carbon dioxide-containing gas from the carbon dioxide-containing gas source 5 through the tube 7 to a closed container. Press fit into 1. Liquid level S
When the lower limit is reached, a signal from contacts 14 is sent to the controller 18, which stops the compressor 6, and a signal from contacts 24 is sent to the controller 25, which activates the pump 9. The flow rate of pump 9 can be changed as necessary. By operating the pump 9, the microalgae suspension is introduced into the closed container 1 through the tube 2, and the tubes 2a and 2b branched from the tube 2, and after carbon dioxide is added to the liquid, the microalgae suspension is introduced through the tube 3. The microalgae is taken out by overflowing into the microalgae culture tank 8. This addition of carbon dioxide gas is performed while the microalgae suspension introduced through the pipe 2a falls from the gas phase G as fine droplets,
The liquid is diluted by the microalgae suspension introduced via tube 2b. The carbon dioxide measuring device 15 detects dissolved carbon dioxide in the microalgae suspension and sends a signal to the analyzer 16. Analyzer 16 then sends a signal to recording controller 17 which adjusts flow control valve 19 and flow control valve 20. If the dissolved carbon dioxide concentration is lower than the set value, the flow rate control valve 19 opens further;
The flow control valve 20 is further closed. As a result, the sequence valve 21 is sequentially opened according to the flow rate, and the spray amount increases.
The gas-liquid contact area increases, and the amount of carbon dioxide gas added increases. Conversely, if the dissolved carbon dioxide concentration is higher than the set value, the flow rate control valve 19 is further closed and the flow rate control valve 20 is further opened. As a result, the sequence valve 21 is sequentially closed according to the flow rate, the amount of spray is reduced, the gas-liquid contact area is reduced, and the amount of carbon dioxide gas added is reduced. The setting value of the recording v controller 17 can be changed according to the required amount. Normally, the carbon dioxide concentration in the gas phase G gradually decreases, so the flow rate control valve 19 is gradually opened and the flow rate control valve 20 is gradually closed.

かようにして、気相G内の炭酸ガス濃度が記録制、神器
12にあらかじめ設定された設定値まで低下すると制御
弁10は開けられ、液面Sは上昇する。
In this way, when the carbon dioxide concentration in the gas phase G falls to the set value set in advance in the sacred treasure 12, the control valve 10 is opened and the liquid level S rises.

液面Sが上限41に達し、前記の運転開始前の状態に戻
る。再び接点13からの信号が制御器18に送られそれ
はコンプレッサー6を作動させ、同時に接点23からの
信号が制御器25に送られそれはポンプ9を停止する。
The liquid level S reaches the upper limit 41 and returns to the state before the start of operation. Again the signal from contact 13 is sent to controller 18 which activates compressor 6 and at the same time the signal from contact 23 is sent to controller 25 which stops pump 9.

コンプレッサー6は液面Sを下方に移行させながら炭酸
ガス含有気体を圧入する。
The compressor 6 pressurizes the carbon dioxide gas while moving the liquid level S downward.

液面Sが下限乾に達すると、接点14からの信号が制御
器18に送られそれはコンプレッサー6を停止し、接点
24からの信号が制御器25に送られそれはポンプ9を
作動ざ往、炭酸ガスの添加が行なわれる。以後、運転終
了まで前記の操作が繰り返される。
When the liquid level S reaches the lower dry limit, a signal from contacts 14 is sent to the controller 18, which stops the compressor 6, and a signal from contacts 24 is sent to the controller 25, which starts the pump 9 and starts carbonation. Addition of gas takes place. Thereafter, the above operations are repeated until the end of the operation.

記録制御器17に対する設定値は、微細藻類!J濁液流
看及び微細藻類培養槽8における炭酸ガス必要量によっ
て決定する。この炭酸ガス必要量の決定法は藻類培養の
技術分野において既知のものでおる。この炭酸ガス必要
量は、培養槽の光熱!)1i1fii積、光熱tA聞、
藻体濃度、水温、藻類の炭酸ガス固定比速度等に依存す
る。したがって、オフラインの実験で各水温における光
吸収量当りの炭酸ガス固定量及び藻体濃度と水深と光の
吸収率との関係を決定し、実際の屋外培養では、前記オ
フラインでの実験結果をもとにして、藻体濃度と水深よ
り光の吸収率を計算し、これ番こ光吸収量当りの炭酸ガ
ス固定量、培養槽の光照射面積及び太陽光照射量を乗じ
て炭酸ガス必要量を決定する。通常の屋外培養では、光
の有効利用の目的から光合成色素に吸収され得る光は全
て吸収される藻体濃度で培養が行なわれるので、吸収率
は太陽光の中の可視光の割合である約45%としてよい
The setting value for the recording controller 17 is microalgae! Determined based on J turbidity flow rate and the required amount of carbon dioxide in the microalgae culture tank 8. This method for determining the required amount of carbon dioxide is well known in the art of algae cultivation. The required amount of carbon dioxide is the light heat of the culture tank! )1i1fii product, light heat tA,
It depends on the algae concentration, water temperature, carbon dioxide fixed specific rate of algae, etc. Therefore, in an offline experiment, we determined the amount of carbon dioxide fixed per amount of light absorbed at each water temperature, the relationship between algae concentration, water depth, and light absorption rate, and in actual outdoor cultivation, we also used the results of the offline experiment. Calculate the light absorption rate from the algae concentration and water depth, and then calculate the required amount of carbon dioxide by multiplying it by the fixed amount of carbon dioxide per amount of light absorbed, the light irradiation area of the culture tank, and the amount of sunlight irradiation. decide. In normal outdoor cultivation, cultivation is carried out at a concentration of algae that absorbs all the light that can be absorbed by photosynthetic pigments for the purpose of effective use of light, so the absorption rate is approximately It may be set to 45%.

このようにして決定した単位時間当りの炭酸ガス必要量
を密閉容器内への導入流娘で除して記録制ill器17
に対する設定値を決定する。
The amount of carbon dioxide gas required per unit time determined in this way is divided by the amount of flow introduced into the sealed container, and the recorder 17
Determine the setting value for.

第2図は本発明の装置の他の実施例を示す縦断面図であ
る。本実/11!例においては、装置はその上端が微細
藻類培養槽の水面より下方になるよう設置されている。
FIG. 2 is a longitudinal sectional view showing another embodiment of the device of the present invention. Honji/11! In the example, the device is installed such that its upper end is below the water level of the microalgae culture tank.

本装置では、密閉容器1内の気液接触面積を制御する手
段が、密閉容器1内上方の原画ガス含有気体を密閉容器
1内下方の微細藻類懸濁液中に導く流路としての管36
、管38、及び該流路を通して密閉容器1内上方の炭酸
ガス含有気体を密閉容器1内下方の微細藻類懸濁液中へ
循環供給する手段としてのブロワ−35、前記流路の密
閉容器1内開口部に設けられ”た散気装置40及び密閉
容器1内又は前記取り出し流路としての管3内の炭酸ガ
ス濃度に応じて炭酸ガス含有気体の循環供給量を制御す
る手段から構成されている点が第1図の装置と異なる。
In this device, the means for controlling the gas-liquid contact area in the closed container 1 is a pipe 36 serving as a flow path for guiding the original gas-containing gas in the upper part of the closed container 1 into the microalgae suspension in the lower part of the closed container 1.
, a pipe 38, and a blower 35 as a means for circulating the carbon dioxide-containing gas above the airtight container 1 into the microalgae suspension below the airtight container 1 through the flow path; It consists of an aeration device 40 provided in the inner opening and a means for controlling the circulating supply amount of carbon dioxide-containing gas according to the carbon dioxide concentration in the closed container 1 or in the pipe 3 as the extraction flow path. This differs from the device shown in FIG.

気相G内の炭酸ガス含有気体を取り出すための管36は
管37及び管38に分岐し、管36は密閉容器1内上方
に開口し、管38は再び分岐しそれぞれ密閉容器1内下
方に開口している。
A pipe 36 for taking out the carbon dioxide-containing gas in the gas phase G branches into a pipe 37 and a pipe 38, the pipe 36 opens upward into the closed container 1, and the pipe 38 branches again and opens downward into the closed container 1, respectively. It's open.

管37及び管38にはそれぞれ一9流量を調節するため
の¥lJ御ブ″?34及び制御弁33がそれぞれ管37
及び管38中に設けられている。管38が分岐した管の
先端には気体分散用の散気装置40が設けられ、分岐し
た管中には管38内の流量の変化に応じて順次開閉する
シーケンス弁39が設けられている。密閉容器1内下方
の液相し内には溶解炭酸ガス測定器15が配置され炭酸
ガス分析器16及び記録制御器17を経て流量制御弁3
4及び流量制御弁33に連結する。炭酸ガス測定器15
は微1lIl藻類懸濁液中の溶解炭酸ガスを検知し分析
器16に信号を送る。分析器16は次に記録制御器1γ
に信号を送りそれは流量制御弁34及び流量制御弁33
を調節する。溶解炭酸ガス濃度が設定値より低いならば
流量制御弁33は更に開き、流量制御弁34は更に閉じ
られる。これにより流量に応じてシーケンス弁39は順
次開放され微細藻類懸濁液中への炭酸ガス含有気体の循
環供給量が増加し、気液接触面積が増加し、炭酸ガス添
加量が増加する。逆に溶解炭酸ガスWi度が設定値にり
高・いならば流量制御弁33は更に閉じ、流量制御弁3
4は更に聞けられる。これにより流量に応じてシーケン
ス弁39は順次閉じられ微細藻類懸濁液中への炭酸ガス
含有気体の循環供給量が減少し、気液接触面積が減少し
、炭酸ガス添加量が減少する。記録制御器17の設定値
は必要に応じて変更され得る。
A control valve 34 and a control valve 33 for adjusting the flow rate are connected to the pipe 37 and the pipe 38, respectively.
and in tube 38. A diffuser 40 for gas dispersion is provided at the tip of the branched pipe 38, and a sequence valve 39 that opens and closes sequentially in response to changes in the flow rate within the pipe 38 is provided in the branched pipe. A dissolved carbon dioxide measuring device 15 is disposed in the liquid phase chamber in the lower part of the sealed container 1, and is connected to the flow rate control valve 3 via a carbon dioxide gas analyzer 16 and a recording controller 17.
4 and the flow rate control valve 33. Carbon dioxide measuring device 15
detects dissolved carbon dioxide in the minute algae suspension and sends a signal to the analyzer 16. Analyzer 16 then records controller 1γ
It sends a signal to flow control valve 34 and flow control valve 33.
Adjust. If the dissolved carbon dioxide concentration is lower than the set value, the flow control valve 33 is further opened and the flow control valve 34 is further closed. As a result, the sequence valve 39 is sequentially opened in accordance with the flow rate, and the amount of circulating and supplied carbon dioxide-containing gas into the microalgae suspension increases, the gas-liquid contact area increases, and the amount of carbon dioxide gas added increases. Conversely, if the dissolved carbon dioxide Wi degree is higher than the set value, the flow rate control valve 33 is further closed;
4 can be heard further. As a result, the sequence valve 39 is sequentially closed according to the flow rate, and the amount of circulating gas containing carbon dioxide gas supplied into the microalgae suspension is reduced, the gas-liquid contact area is reduced, and the amount of carbon dioxide gas added is reduced. Setting values of the recording controller 17 can be changed as necessary.

第・3図は′本発明の装置のまた他の実施例を示す縦断
面図である。本実施例においては、装置はその上端が微
細藻類培養槽の水面より下方になるよう設置されている
。本装置では、密閉容器1内の気液接触面積を制御する
手段が、密閉容器1内下方の微細藻類懸濁液を密閉容器
1内上方の炭酸ガス含有気体中に導く流路としての管4
1、管44、及び該流路を通して密閉容器1内下方の微
細藻類懸濁液を密閉容器1内上方の炭酸ガス含有気体中
へ循環供給する手段としてのポンプ42、前記流路の密
閉容器1内開口部に設けられた液体霧化装置47及び密
閉容器1内又は前記取り出し流路としての管3内の炭酸
ガス濃度に応じて微細9X類懸濁液の循環供給量を制御
する手段から構成されている点が、第1図及び第2図に
示した装置と異なる。液相し内の微細藻類懸濁液を取り
出−すための管41は管43及び管44に分岐し、管4
3ホ密閉容器1内下方に開口し、管44は再び分岐しそ
れぞれ密閉容器1内上方に開口している。管43及び管
44にはそれぞれの流量を調節するための制御弁46及
び制御弁45がそれぞれ管43及び管44中に設番プら
れている。管44が分岐した管の先端には液体噴看用の
霧化装置47が設【ノられ、分岐した管中には管44内
の流量の変化に応じて順次開閉するシーケンス弁48か
設けられている。密閉容器1内下方の液相し内には溶解
炭酸ガス測定器15が配置され炭酸ガス分析器16及び
記録制御器17を経て流量制御弁45及び流量制御弁4
6に連結する。炭酸ガス測定器15は微細藻類!g濁液
中の溶解炭酸ガスそ検知し分析器1Gに信号を送る。分
析器16は次に記録制御器17に信号を送りそれは流量
制御弁45及び流量制御弁46を制御する。溶解炭酸ガ
スm度が設定値より低いならば流量制御弁45は更に開
き、流量制御弁46は更に閉じられる。これにより流量
に応じてシーケンス弁48は順次開放され気相G内への
微細藻類懸濁液の噴霧量が増加し、気液接触面積が増加
し、炭酸ガス添加量が増加する。逆に溶解炭酸ガス濃度
が設定値より高いならば流量制御弁45は更に閉じ、流
量制御弁46は更に聞けられる。これにより流量に応じ
てシーケンス弁48は順次閉じられ気相G内への微細藻
、類懸濁液の噴霧量が減少し、気液接触面積が減少し、
炭酸ガス添加量が減少する。記録制御器17の設定値は
必要に応じて変更され得る。
FIG. 3 is a longitudinal sectional view showing still another embodiment of the apparatus of the present invention. In this example, the device is installed so that its upper end is below the water surface of the microalgae culture tank. In this device, the means for controlling the gas-liquid contact area in the closed container 1 is a pipe 4 serving as a flow path that guides the microalgae suspension in the lower part of the closed container 1 into the carbon dioxide gas-containing gas in the upper part of the closed container 1.
1, a pipe 44, and a pump 42 as a means for circulating and supplying the microalgae suspension in the lower part of the closed container 1 through the flow path into the carbon dioxide-containing gas in the upper part of the closed container 1; the closed container 1 of the flow path; Consists of a liquid atomizing device 47 provided at the inner opening and means for controlling the circulating supply amount of the fine 9X suspension according to the carbon dioxide concentration in the closed container 1 or in the pipe 3 as the extraction flow path. This differs from the apparatus shown in FIGS. 1 and 2 in that the apparatus shown in FIG. A pipe 41 for taking out the microalgae suspension in the liquid phase tank branches into a pipe 43 and a pipe 44.
3 E opens downward into the closed container 1, and the tubes 44 branch again and open upward into the closed container 1, respectively. A control valve 46 and a control valve 45 are installed in the pipe 43 and the pipe 44, respectively, for adjusting the respective flow rates. An atomizer 47 for liquid injection is provided at the tip of the branched pipe 44, and a sequence valve 48 is provided in the branched pipe to open and close sequentially in response to changes in the flow rate within the pipe 44. ing. A dissolved carbon dioxide measuring device 15 is arranged in the liquid phase chamber in the lower part of the sealed container 1, and the dissolved carbon dioxide measuring device 15 is connected to the flow rate control valve 45 and the flow rate control valve 4 via a carbon dioxide gas analyzer 16 and a recording controller 17.
Connect to 6. Carbon dioxide measuring device 15 is microalgae! g Dissolved carbon dioxide gas in the turbid liquid is detected and a signal is sent to analyzer 1G. Analyzer 16 then sends a signal to recording controller 17 which controls flow control valve 45 and flow control valve 46. If the dissolved carbon dioxide m degrees is lower than the set value, the flow control valve 45 is further opened and the flow control valve 46 is further closed. As a result, the sequence valve 48 is sequentially opened in accordance with the flow rate, and the amount of microalgae suspension sprayed into the gas phase G increases, the gas-liquid contact area increases, and the amount of carbon dioxide gas added increases. Conversely, if the dissolved carbon dioxide concentration is higher than the set value, the flow control valve 45 is further closed and the flow control valve 46 is further closed. As a result, the sequence valve 48 is sequentially closed according to the flow rate, and the amount of microalgae suspension sprayed into the gas phase G is reduced, and the gas-liquid contact area is reduced.
The amount of carbon dioxide added decreases. Setting values of the recording controller 17 can be changed as necessary.

次に、本発明において注意すべき事項をあげる。Next, there are matters to be noted in the present invention.

前記の実施例においては、装置がその上端が微細藻類培
養槽の水面より下方となるように設置されているが、装
置がそのほとんどが微細藻類培養槽の水面より上方とな
るように設置される場合には、制御弁10の開栓に応じ
て管3を閉じ、制御弁10の開栓に応じて管3を開ける
ための制御弁を管3中に設ければよい。
In the above embodiment, the device is installed so that its upper end is below the water surface of the microalgae culture tank, but the device is installed so that most of the device is above the water surface of the microalgae culture tank. In this case, a control valve may be provided in the pipe 3 to close the pipe 3 when the control valve 10 is opened and to open the pipe 3 when the control valve 10 is opened.

浮遊板31は気相Gと液相りの接触面積を制限し密閉容
器内の気液接触面積の下限を小さくするため、気液接触
面積の制御範囲が広くなるが、必要条件ではない。
The floating plate 31 limits the contact area between the gas phase G and the liquid phase and reduces the lower limit of the gas-liquid contact area in the closed container, so the control range of the gas-liquid contact area becomes wider, but this is not a necessary condition.

炭酸ガス分析器11、記録制御器12からなる制御弁1
0の制御手段は炭酸ガス測定器15、炭酸ガス分析器1
6及び記録制御器17からなる回路と同様な回路と制御
弁■を連結することでも構成し得る。この場合、制御弁
10開放のための設定値は前記記録制御器17に対する
管3により取り出す微細藻類懸濁液中の炭酸ガス濃度を
制御するための設定値より小さくすればよい。
Control valve 1 consisting of carbon dioxide analyzer 11 and recording controller 12
0's control means are a carbon dioxide gas measuring device 15 and a carbon dioxide gas analyzer 1.
It can also be constructed by connecting a circuit similar to the circuit consisting of the control valve 6 and the recording controller 17 to the control valve 1. In this case, the set value for opening the control valve 10 may be smaller than the set value for controlling the carbon dioxide concentration in the microalgae suspension taken out through the pipe 3 to the recording controller 17.

前記記録制御器17に対する任意の設定値における本装
置の一連の動作パターンは、導入する微細藻類懸濁液中
の炭酸ガス濃度が一定の条件下では、一定であるので、
この動作パターンを別の実験であらかじめ把握し、タイ
マー等でフォアワード制御することも容易である。本実
施例の装置では、導入する微細藻類懸濁液中の炭酸ガス
a度が一定でない場合にし対応できる。
Since the series of operation patterns of the present device at any set value for the recording controller 17 are constant under conditions where the carbon dioxide concentration in the microalgae suspension to be introduced is constant,
It is also easy to understand this movement pattern in advance through another experiment and to perform forward control using a timer or the like. The apparatus of this embodiment can handle cases where the carbon dioxide a degree in the microalgae suspension to be introduced is not constant.

前記第1操作中、気相Gの容積の減少により液面Sが上
昇してくる。この減少分を炭酸ガス含有気体の連続的圧
入により補うことで液面Sを一定に保つこともできる。
During the first operation, the liquid level S rises due to a decrease in the volume of the gas phase G. The liquid level S can also be kept constant by compensating for this decrease by continuous injection of carbon dioxide-containing gas.

これは本発明の必要条件ではないが、前記第2操作の回
数を減少さけることができる。この補充用の炭酸ガス含
り気体として液化炭酸ガスを用いると効果的である。
Although this is not a necessary condition of the invention, it is possible to avoid reducing the number of said second operations. It is effective to use liquefied carbon dioxide as the carbon dioxide-containing gas for replenishment.

また本発明を微細藻類培養に適用する際には、培養槽8
におCする起泡を防ぐため、送られてくる炭酸ガスが添
加された微細藻類懸濁液を培養槽8において速やかに稀
釈することか重要である。このためには、警3を培養槽
8の異なる多くの地点で液中に開口させ、培養槽内液に
は適切な流動を与えることが必要である。
Furthermore, when applying the present invention to microalgae culture, the culture tank 8
In order to prevent foaming that may cause carbon dioxide, it is important to quickly dilute the microalgae suspension to which carbon dioxide gas has been added in the culture tank 8. For this purpose, it is necessary to open the tube 3 into the liquid at many different points in the culture tank 8 and to give an appropriate flow to the liquid in the culture tank.

再び、本発明は前記の如く構成しであるため下記のよう
な利点がある。
Again, since the present invention is constructed as described above, it has the following advantages.

(1)炭酸ガス添加中は炭酸ガス含有気体を容器外へ放
出せず全て微細藻類懸濁液に溶解させるので、炭酸ガス
の損失が少ない。
(1) During the addition of carbon dioxide gas, the carbon dioxide-containing gas is not released outside the container and is completely dissolved in the microalgae suspension, so there is little loss of carbon dioxide gas.

(オ)密閉容器内の炭酸ガス含有気体中の炭酸ガスm度
に応じて密閉容器内の気液接触面積を調節するので、必
要に応じて一定旦の炭酸ガスを溶解させることができる
(E) Since the gas-liquid contact area in the sealed container is adjusted according to the degree of carbon dioxide in the carbon dioxide-containing gas in the sealed container, it is possible to dissolve carbon dioxide for a certain amount of time as necessary.

(力)導入する炭酸ガス含有気体中の炭酸ガス濃度は特
に制限はなく、種々−の炭酸ガス濃度の気体を利用でき
る。
(Force) There is no particular restriction on the concentration of carbon dioxide in the carbon dioxide-containing gas to be introduced, and gases with various concentrations of carbon dioxide can be used.

以上、本発明を微細藻類培養に適用すれば、非常に安価
な藻類生産が可能となる。
As described above, if the present invention is applied to microalgae culture, it becomes possible to produce algae at a very low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のvtiδの一実施例を示す縦断面図、
第2図は本発明の装置の他の実施例を示す縦断面図、第
3図は本発明の装置のまた他の実施例を示す縦断面図で
あり、それぞれ装置の上端が微細藻類培養槽の水面より
下方に位置している場合のものでおる。 1は密閉容器、2は管、2aは管、2bは管、3は管、
4は管、5は炭酸ガス含有気体源、6はコンプレッサー
、7は管、8は微細藻類培養槽、9はポンプ、10は制
御弁、11は炭酸ガス分析器、12は記録制御器、13
は接点、14は接点、15は炭酸ガス測定器、16は炭
酸ガス分析器、17は記録制御器、18は制御器、19
は流星制御弁、20は流量制御弁、21はシーケンス弁
、22は霧化装置、23は接点、24は接点、25は制
御器、26は逆止め弁、27は逆止め弁、28は逆止め
弁、29は除湿器、30はポンプ、31は浮遊板、32
は突起物、33は流量制御弁、34は流量制御弁、35
はブロワ−136は管、37は管、38は管、39はシ
ーケンス弁、40は散気装置、41は管、42はポンプ
、43は管、44は管、45は流量制御弁、46は流量
制御弁、47は霧化装置、48はシーケンス弁である。
FIG. 1 is a vertical cross-sectional view showing an embodiment of vtiδ of the present invention,
FIG. 2 is a longitudinal cross-sectional view showing another embodiment of the apparatus of the present invention, and FIG. 3 is a longitudinal cross-sectional view showing another embodiment of the apparatus of the present invention, in which the upper end of the apparatus is a microalgae culture tank. This applies when the water is located below the water surface. 1 is a closed container, 2 is a tube, 2a is a tube, 2b is a tube, 3 is a tube,
4 is a pipe, 5 is a carbon dioxide-containing gas source, 6 is a compressor, 7 is a pipe, 8 is a microalgae culture tank, 9 is a pump, 10 is a control valve, 11 is a carbon dioxide gas analyzer, 12 is a recording controller, 13
14 is a contact, 15 is a carbon dioxide gas measuring device, 16 is a carbon dioxide gas analyzer, 17 is a recording controller, 18 is a controller, 19
is a meteor control valve, 20 is a flow control valve, 21 is a sequence valve, 22 is an atomizer, 23 is a contact, 24 is a contact, 25 is a controller, 26 is a check valve, 27 is a check valve, 28 is a reverse stop valve, 29 dehumidifier, 30 pump, 31 floating plate, 32
33 is a flow control valve; 34 is a flow control valve; 35
is a blower, 136 is a pipe, 37 is a pipe, 38 is a pipe, 39 is a sequence valve, 40 is a diffuser, 41 is a pipe, 42 is a pump, 43 is a pipe, 44 is a pipe, 45 is a flow rate control valve, 46 is a A flow control valve, 47 is an atomizer, and 48 is a sequence valve.

Claims (1)

【特許請求の範囲】 1、微細藻類懸濁液への炭酸ガスの供給を、(a)光照
射条件下で微細藻類の培養が行なわれている槽内の少な
くとも一部の微細藻類懸濁液を、炭酸ガス含有気体が充
填された密閉容器内に送り、該密閉容器内において微細
藻類懸濁液と炭酸ガス含有気体を接触させることにより
該微細藻類懸濁液に炭酸ガスを溶解させた後、光照射条
件下で微細藻類の培養が行なわれている槽内に返送する
第1操作及び(b)密閉容器内の炭酸ガス濃度が所定の
値に低下した時点で、密閉容器内上方と密閉容器外とを
連通する連通口を開放し、微細藻類懸濁液を密閉容器内
に導入することで、該低濃度炭酸ガス含有気体を密閉容
器外へ押し出した後、前記連通口を閉じ密閉容器外へ微
細藻類懸濁液を排出しつつ密閉容器内に新しい炭酸ガス
含有気体を導入し、これにより密閉容器内に新たに調整
された炭酸ガス含有気体を充填する第2操作を繰り返す
ことにより行なうとともに、前記第1操作において、密
閉容器内の気液接触面積を調節することにより炭酸ガス
の溶解量を調節することを特徴とする微細藻類懸濁液に
炭酸ガスを供給する方法。 2、前記第1操作中、光照射条件下で微細藻類の培養が
行なわれている槽内の少なくとも一部の微細藻類懸濁液
を、炭酸ガス含有気体が充填された密閉容器内に導入す
るに際して、微細藻類懸濁液を密閉容器内上方より噴霧
して導入するとともに、該噴霧導入間を調節することに
より、密閉容器内の気液接触面積を調節することを特徴
とする特許請求の範囲第1項記載の微細藻類懸濁液に炭
酸ガスを供給する方法。 3、前記第1操作中、密閉容器内に充填された炭酸ガス
含有気体を取り出し密閉容器内下方の液中に微細気泡と
して循環供給するとともに、該循環供給量を調節するこ
とにより、気液接触面積を調節すること特徴とする特許
請求の範囲第1項記載の微細藻類懸濁液に炭酸ガスを供
給する方法。 4、前記第1操作中、密閉容器内下方の微細藻類懸濁液
を密閉容器内上方の炭酸ガス含有気体中に微細な液塊と
して循環供給するとともに、該循環供給量を調節するこ
とにより、前記気液接触面積を調節することを特徴とす
る特許請求の範囲第1項記載の微細藻類懸濁液に炭酸ガ
スを供給する方法。 5、微細藻類懸濁液に炭酸ガスを供給するための装置に
おいて、(c)上方に炭酸ガス含有気体を下方に微細藻
類懸濁液を保持し得る密閉容器、(d)密閉容器内に微
細藻類懸濁液を導入する流路、(e)密閉容器下方から
密閉容器外に微細藻類懸濁液を取り出す流路、(f)密
閉容器内上方と密閉容器外を連通する連通口、(g)密
閉容器内に炭酸ガス含有気体を導入するための手段、(
h)密閉容器内に微細藻類懸濁液を導入する前記流路、
密閉容器内、及び密閉容器下方から密閉容器外に微細藻
類懸濁液を取り出す前記流路を順次通過する微細藻類懸
濁液の流れを形成するための強制流働手段、(i)前記
連通口を開閉する手段、(j)密閉容器内の炭酸ガス濃
度が所定の値に低下した時点で、前記連通口を開放し、
微細藻類懸濁液を密閉容器内に導入することで、該低濃
度炭酸ガス含有気体を密閉容器外へ押し出した後、前記
連通口を閉じ、密閉容器内に新しい炭酸ガス含有気体を
導入するための手段を一定時間作動させるよう制御する
手段、及び(k)密閉容器内の炭酸ガスの濃度変化に応
じて密閉容器内の気液接触面積を制御して炭酸ガスの溶
解量を調節するための手段を具備することを特徴とする
微細藻類懸濁液に炭酸ガスを供給する装置。 6、密閉容器内の炭酸ガス濃度が所定の値に低下した時
点で、前記連通口を開放し、微細藻類懸濁液を密閉容器
内に導入することで、該低濃度炭酸ガス含有気体を密閉
容器外へ押し出した後、前記連通口を閉じ、密閉容器内
に新しい炭酸ガス含有気体を導入するための手段を一定
時間作動させるよう制御する手段において、密閉容器内
の炭酸ガス濃度が所定の値に低下した時点で、前記連通
口を開放するよう制御する手段が密閉容器内の炭酸ガス
含有気体を連続的に取り出し炭酸ガスを分析する炭酸ガ
ス分析器からなり、該分析器が該分析器の信号に応じて
前記連通口を開放する制御手段に適宜に連結されている
ことを特徴とする特許請求の範囲第5項記載の微細藻類
懸濁液に炭酸ガスを供給する装置。 7、密閉容器内に微細藻類懸濁液を導入する流路の一端
が密閉容器内上方で開口するとともに、密閉容器内の気
液接触面積を制御する手段が、該開口部に設けられ微細
藻類懸濁液を微細な液塊として噴霧するための霧化装置
、及び密閉容器内の炭酸ガス濃度に応じて微細藻類懸濁
液の噴霧量を制御する手段からなることを特徴とする特
許請求の範囲第5項又は第6項記載の微細藻類懸濁液に
炭酸ガスを供給する装置。 8、前記密閉容器内の炭酸ガス濃度に応じて微細藻類懸
濁液の噴霧量を制御する手段が密閉容器下方から密閉容
器外に微細藻類懸濁液を取り出す流路内又は密閉容器内
下方の微細藻類懸濁液中に配置されていて該液中の溶解
炭酸ガスを測定するのに有効な炭酸ガス測定器からなり
、該測定器が炭酸ガス分析器及び炭酸ガス測定器からの
信号に応じて密閉容器内への微細藻類懸濁液の噴霧量を
制御するための制御手段に適宜に連結されていることを
特徴とする特許請求の範囲第7項記載の微細藻類懸濁液
に炭酸ガスを供給する装置。 9、密閉容器内の気液接触面積を制御する手段が、密閉
容器内上方の炭酸ガス含有気体を密閉容器内下方の微細
藻類懸濁液中に導く流路、該流路を通して密閉容器内上
方の炭酸ガス含有気体を密閉容器内下方の微細藻類懸濁
液中へ循環供給する手段、前記流路の密閉容器内開口部
に設けられた散気装置、及び密閉容器内又は前記取り出
し流路内の炭酸ガス濃度に応じて炭酸ガス含有気体の循
環供給量を制御する手段からなることを特徴とする特許
請求の範囲第5項又は第6項記載の微細藻類懸濁液に炭
酸ガスを供給する装置。 10、前記密閉容器内又は前記取り出し流路内の炭酸ガ
ス濃度に応じて炭酸ガス含有気体の循環供給量を制御す
る手段が密閉容器下方から密閉容器外に微細藻類懸濁液
を取り出す流路内又は密閉容器内下方の微細藻類懸濁液
中に配置されていて該液中の溶解炭酸ガスを測定するの
に有効な炭酸ガス測定器からなり、該測定器が炭酸ガス
分析器及び炭酸ガス測定器からの信号に応じて炭酸ガス
含有気体の循環供給量を制御するための制御手段に適宜
に連結されていることを特徴とする特許請求の範囲第9
項記載の微細藻類懸濁液に炭酸ガスを供給する装置。 11、密閉容器内の気液接触面積を制御する手段が、密
閉容器内下方の微細藻類懸濁液を密閉容器内上方の炭酸
ガス含有気体中に導く流路、該流路を通して密閉容器内
下方の微細藻類懸濁液を密閉容器内上方の炭酸ガス含有
気体中へ循環供給する手段、前記流路の密閉容器内開口
部に設けられた液体霧化装置及び密閉容器内又は前記取
り出し流路内の炭酸ガス濃度に応じて微細藻類懸濁液の
循環供給量を制御する手段からなることを特徴とする特
許請求の範囲第5項又は第6項記載の微細藻類懸濁液に
炭酸ガスを供給する装置。 12、前記密閉容器内又は前記取り出し流路内の炭酸ガ
ス濃度に応じて微細藻類懸濁液の循環供給量を制御する
手段が、密閉容器下方から密閉容器外に微細藻類懸濁液
を取り出す流路内又は密閉容器内下方の微細藻類懸濁液
中に配置されていて該液内の溶解炭酸ガスを測定するの
に有効な炭酸ガス測定器からなり、該測定器が炭酸ガス
分析器及び炭酸ガス測定器からの信号に応じて微細藻類
懸濁液の循環供給量を制御するための制御手段に適宜に
連結されていることを特徴とする特許請求の範囲第11
項記載の微細藻類懸濁液に炭酸ガスを供給する装置。
[Claims] 1. The supply of carbon dioxide gas to the microalgae suspension is carried out by (a) at least a portion of the microalgae suspension in a tank where microalgae are cultured under light irradiation conditions; is sent into a closed container filled with a gas containing carbon dioxide gas, and the microalgae suspension is brought into contact with the gas containing carbon dioxide gas in the closed container, so that carbon dioxide gas is dissolved in the microalgae suspension. (b) When the carbon dioxide concentration in the sealed container has decreased to a predetermined value, the upper part of the sealed container is sealed. By opening the communication port that communicates with the outside of the container and introducing the microalgae suspension into the closed container, the low concentration carbon dioxide-containing gas is pushed out of the closed container, and then the communication port is closed and the closed container is closed. This is carried out by repeating the second operation of introducing new carbon dioxide-containing gas into the sealed container while discharging the microalgae suspension to the outside, and thereby filling the sealed container with the newly adjusted carbon dioxide-containing gas. Also, a method for supplying carbon dioxide gas to a microalgae suspension, characterized in that, in the first operation, the amount of dissolved carbon dioxide gas is adjusted by adjusting the gas-liquid contact area in the closed container. 2. During the first operation, at least a portion of the microalgae suspension in the tank where microalgae are being cultured under light irradiation conditions is introduced into a closed container filled with carbon dioxide-containing gas. In this case, the microalgae suspension is sprayed and introduced from above into the sealed container, and the air-liquid contact area in the sealed container is adjusted by adjusting the time between the spray introductions. A method for supplying carbon dioxide gas to the microalgae suspension according to item 1. 3. During the first operation, the carbon dioxide-containing gas filled in the sealed container is taken out and circulated as fine bubbles into the liquid in the lower part of the sealed container, and the amount of circulating supply is adjusted to achieve gas-liquid contact. A method for supplying carbon dioxide gas to a microalgae suspension according to claim 1, which comprises adjusting the area. 4. During the first operation, by circulating and supplying the microalgae suspension in the lower part of the sealed container to the carbon dioxide gas-containing gas in the upper part of the sealed container as a fine liquid mass, and adjusting the circulating supply amount, The method for supplying carbon dioxide gas to a microalgae suspension according to claim 1, characterized in that the gas-liquid contact area is adjusted. 5. In an apparatus for supplying carbon dioxide gas to a microalgae suspension, (c) an airtight container capable of holding a carbon dioxide gas-containing gas above and a microalgae suspension below; (d) microalgae in the airtight container; A channel for introducing the algae suspension, (e) a channel for taking out the microalgae suspension from the bottom of the sealed container to the outside of the sealed container, (f) a communication port that communicates the upper part of the inside of the sealed container with the outside of the sealed container, (g ) Means for introducing carbon dioxide-containing gas into a closed container, (
h) the channel for introducing the microalgae suspension into the closed container;
forced flow means for forming a flow of the microalgae suspension that sequentially passes through the channel for taking out the microalgae suspension from inside the closed container and from below the closed container to the outside of the closed container; (i) the communication port; (j) opening the communication port when the carbon dioxide concentration in the sealed container has decreased to a predetermined value;
By introducing the microalgae suspension into the sealed container, the low concentration carbon dioxide-containing gas is pushed out of the sealed container, and then the communication port is closed to introduce new carbon dioxide-containing gas into the sealed container. (k) means for controlling the means to operate for a certain period of time, and (k) means for controlling the gas-liquid contact area in the closed container in response to changes in the concentration of carbon dioxide gas in the closed container to adjust the amount of dissolved carbon dioxide gas. An apparatus for supplying carbon dioxide gas to a microalgae suspension, characterized by comprising means. 6. When the carbon dioxide concentration in the sealed container has decreased to a predetermined value, the communication port is opened and the microalgae suspension is introduced into the sealed container, thereby sealing the gas containing low concentration carbon dioxide. After the gas is pushed out of the container, the communication port is closed and the means for introducing new carbon dioxide gas into the sealed container is controlled to operate for a certain period of time, wherein the carbon dioxide concentration in the sealed container is set to a predetermined value. The means for controlling the communication port to open when the temperature decreases to 100% is comprised of a carbon dioxide analyzer that continuously takes out the carbon dioxide-containing gas in the closed container and analyzes the carbon dioxide. 6. The device for supplying carbon dioxide gas to a microalgae suspension according to claim 5, wherein the device is suitably connected to a control means that opens the communication port in response to a signal. 7. One end of the channel for introducing the microalgae suspension into the sealed container is opened above the sealed container, and a means for controlling the air-liquid contact area in the sealed container is provided at the opening. A patent claim comprising: an atomizing device for spraying the suspension as a fine liquid mass; and means for controlling the amount of the microalgae suspension sprayed according to the carbon dioxide concentration in the closed container. A device for supplying carbon dioxide gas to the microalgae suspension according to item 5 or 6. 8. The means for controlling the amount of spraying of the microalgae suspension according to the carbon dioxide concentration in the hermetically sealed container is located in the channel for taking out the microalgae suspension from below the hermetically sealed container or in the lower part of the hermetically sealed container. It consists of a carbon dioxide measuring device placed in a microalgae suspension and effective for measuring dissolved carbon dioxide in the liquid, and the measuring device responds to signals from a carbon dioxide analyzer and a carbon dioxide measuring device. The microalgae suspension according to claim 7 is suitably connected to a control means for controlling the amount of spraying of the microalgae suspension into the closed container. A device that supplies 9. The means for controlling the gas-liquid contact area in the sealed container is a channel for guiding the carbon dioxide-containing gas in the upper part of the sealed container into the microalgae suspension in the lower part of the sealed container; means for circulating and supplying the carbon dioxide-containing gas into the microalgae suspension in the lower part of the closed container, an aeration device provided at the opening of the channel in the sealed container, and inside the sealed container or in the take-out channel. Supplying carbon dioxide gas to the microalgae suspension according to claim 5 or 6, characterized in that the method comprises means for controlling the circulating supply amount of the carbon dioxide-containing gas according to the carbon dioxide concentration of the microalgae suspension. Device. 10. A means for controlling the circulating supply amount of carbon dioxide-containing gas according to the carbon dioxide concentration in the closed container or in the take-out flow path is provided in the flow path for taking out the microalgae suspension from below the closed container to the outside of the closed container. Or, it consists of a carbon dioxide measuring device that is placed in the microalgae suspension in the lower part of the sealed container and is effective for measuring dissolved carbon dioxide in the liquid, and the measuring device is a carbon dioxide gas analyzer and a carbon dioxide gas measuring device. Claim 9, characterized in that the device is appropriately connected to a control means for controlling the circulating supply amount of carbon dioxide gas-containing gas in accordance with a signal from the device.
A device for supplying carbon dioxide gas to the microalgae suspension described in 2. 11. The means for controlling the gas-liquid contact area in the sealed container includes a channel for guiding the microalgae suspension in the lower part of the sealed container into the carbon dioxide gas-containing gas in the upper part of the sealed container; means for circulating and supplying the microalgae suspension into the carbon dioxide-containing gas above the airtight container, a liquid atomizer provided at the opening in the airtight container of the channel, and a liquid atomizer provided in the airtight container or the extraction channel. Supplying carbon dioxide gas to the microalgae suspension according to claim 5 or 6, characterized by comprising means for controlling the circulating supply amount of the microalgae suspension according to the carbon dioxide concentration of the microalgae suspension. device to do. 12. The means for controlling the circulation supply amount of the microalgae suspension according to the carbon dioxide concentration in the closed container or in the take-out channel is a flow for taking out the microalgae suspension from below the closed container to the outside of the closed container. It consists of a carbon dioxide measuring device that is placed in the microalgae suspension inside the road or in the lower part of the closed container and is effective for measuring dissolved carbon dioxide in the liquid, and the measuring device is a carbon dioxide gas analyzer and a carbon dioxide gas analyzer. Claim 11, characterized in that the device is suitably connected to a control means for controlling the circulating supply amount of the microalgae suspension in response to a signal from a gas measuring device.
A device for supplying carbon dioxide gas to the microalgae suspension described in 2.
JP3967086A 1986-02-25 1986-02-25 Process and equipment for feeding carbon dioxide into microalgae suspension Pending JPS62198385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3967086A JPS62198385A (en) 1986-02-25 1986-02-25 Process and equipment for feeding carbon dioxide into microalgae suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3967086A JPS62198385A (en) 1986-02-25 1986-02-25 Process and equipment for feeding carbon dioxide into microalgae suspension

Publications (1)

Publication Number Publication Date
JPS62198385A true JPS62198385A (en) 1987-09-02

Family

ID=12559522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3967086A Pending JPS62198385A (en) 1986-02-25 1986-02-25 Process and equipment for feeding carbon dioxide into microalgae suspension

Country Status (1)

Country Link
JP (1) JPS62198385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023978A (en) * 2010-07-20 2012-02-09 Hitachi Plant Technologies Ltd Apparatus and method for culturing photosynthetic microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023978A (en) * 2010-07-20 2012-02-09 Hitachi Plant Technologies Ltd Apparatus and method for culturing photosynthetic microorganism

Similar Documents

Publication Publication Date Title
US4329433A (en) Process for continuous fermentation
US4426450A (en) Fermentation process and apparatus
US8241904B2 (en) System and method for controlling a mammalian cell culture process
EP0325938B1 (en) Multiple stage gas absorber
CA1301101C (en) Method and device for the carrying out of a microbiological or enzymatic process
Viesturs et al. Foam in microbiological processes
GB1072647A (en) Submerged orifice proportioner
EP0306466A2 (en) Method and means for the production of a micro-organism cell mass
SU967278A3 (en) Method and apparatus for contacting gas and liquid
US4233407A (en) Apparatus for the continuous sterile fermentation
JPS62198385A (en) Process and equipment for feeding carbon dioxide into microalgae suspension
DE3160162D1 (en) Process and plants using yeasts
JPS62220183A (en) Culture device for fine alga
US20050118702A1 (en) Bio-reactor
JPS6356296A (en) Method and apparatus for producing polysaccharides especially by fermentation of xanthone
GB2197341A (en) Brewing beer
US3068155A (en) A method of producing yeast
HIROSE et al. Studies on Oxygen Transfer in Submerged Fermentations Part VII. Glutamic Acid Fermentation under Controlled Pressure of Dissolved Oxygen by Means of Electrolysis of Water
RU2766892C1 (en) Bioreactor for cultivating aerobic microorganisms
JPS63123375A (en) Cultivation apparatus for microalgae
JPS6413987A (en) Method for cultivation and apparatus therefor
SU1507786A1 (en) Method of cultivating yeast biomass
Luttmann et al. Growth simulation of Hansenula polymorpha: I. Extension of Oxygen Cell Mass Balance Model
SU436078A1 (en) APPARATUS FOR CULTIVATION OF MICROORGANISMS
Voigt et al. Comparison of single-and three-stage tower loop reactors