JPS62198057A - Member for fuel cell - Google Patents

Member for fuel cell

Info

Publication number
JPS62198057A
JPS62198057A JP61039695A JP3969586A JPS62198057A JP S62198057 A JPS62198057 A JP S62198057A JP 61039695 A JP61039695 A JP 61039695A JP 3969586 A JP3969586 A JP 3969586A JP S62198057 A JPS62198057 A JP S62198057A
Authority
JP
Japan
Prior art keywords
plate
electrode
nickel
separator
constructing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61039695A
Other languages
Japanese (ja)
Inventor
Ryuichi Fukusato
福里 隆一
Yuji Horii
堀井 雄二
Mamoru Aoki
守 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61039695A priority Critical patent/JPS62198057A/en
Publication of JPS62198057A publication Critical patent/JPS62198057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the contact resistance so as to be able to hold a high cell output by joining an electrode plate consisting of electro-conductive porous plate to a separator consisting of conductive metal plate at the upper ends of the projected ribs constructing grooves. CONSTITUTION:In an electrode plate 22 consisting of electro-conductive metallic porous plate metallic fine powder for constructing the electrode is holded in uniform distribution, and on the surface of the said plate 22 grooves 21 are previously provided for the pathway of fuel gas or oxidizing gas. As for the electrode metal for constructing such the electrode 22 some kinds of metallic fine powder commonly used for the electrode of a fused carbonate type fuel cell are suitable, e.g. nickel, nickel-chromium alloy or nickel-cobalt alloy and so on can be used desirably. The separator 23 is joined to the electrode plate 22 at the upper ends of the projected ribs 24 constructing the grooves 21, and as for the separator conventional separator materials e.g. stainless steel plate, nickel plate, nickel claded stainless steel plate and so on can be used usually.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料電池のための複合化構成部材に関し、詳
しくは、特に、溶融炭酸塩型燃料電池のための電極、燃
料ガス又は酸化剤ガス通路、集電板及びセパレータとし
ての機能を多元的に備えた複合化構成部材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to composite components for fuel cells, and in particular to electrodes, fuel gas or oxidizers for molten carbonate fuel cells. The present invention relates to a composite structural member having multiple functions as a gas passage, a current collector plate, and a separator.

(従来の技術) 近年、電解質として溶融炭酸塩を用いて、高温で作動さ
せる溶融炭酸塩型燃料電池が、高い発電効率を有するう
えに、利用可能な燃料の種類が多いこと、白金等のよう
な貴金属触媒を必要としないこと、高温作動させるため
に質の高い排熱が回収されること等のために、注目を集
めており、実用化が進められている。
(Prior art) In recent years, molten carbonate fuel cells, which use molten carbonate as an electrolyte and operate at high temperatures, have high power generation efficiency and can be used with many types of fuel, such as platinum. It is attracting attention because it does not require a precious metal catalyst, and high-quality waste heat is recovered for high-temperature operation, and its practical application is progressing.

このような溶融炭酸塩型燃料電池の従来の代表例を第3
図に示す。即ち、溶融炭酸塩を含む電解質板11を挟ん
で正極12と負極13が積層されて単電池14が構成さ
れ、この単電池が集電体15と4電性のセパレータ16
を介して多数積層されている。このようにして、各単電
池の正極が隣接する単電池の負極と電気的に接続されて
、すべての単電池が直列に接続されてなる溶融炭酸塩型
燃料電池が構成される。セパレータ16には、通常、一
方の面には燃料ガスの通路としての溝17が設けられて
おり、他方の面には酸化剤ガスの通路としての溝18が
設けられており、燃料ガスとしては例えば水素が、また
、酸化剤としては、例えば空気と炭酸ガスとが供給され
て、所定の電気化学的反応が行なわれる。
A conventional representative example of such a molten carbonate fuel cell is shown in Section 3.
As shown in the figure. That is, a positive electrode 12 and a negative electrode 13 are stacked with an electrolyte plate 11 containing molten carbonate in between to form a single cell 14, and this single cell is made up of a current collector 15 and a quadrielectric separator 16.
A large number of layers are stacked together. In this way, the positive electrode of each unit cell is electrically connected to the negative electrode of the adjacent unit cell, thereby forming a molten carbonate fuel cell in which all the unit cells are connected in series. The separator 16 is normally provided with a groove 17 as a passage for fuel gas on one side, and a groove 18 as a passage for oxidizing gas on the other side. For example, hydrogen is supplied, and as oxidizing agents, for example, air and carbon dioxide gas are supplied to carry out a predetermined electrochemical reaction.

このような従来の溶融炭酸塩型燃料電池においては、正
極としては、代表的には、酸化ニッケル微粉末を必要に
応じて有機結合剤や溶剤と共に混練し、これをコールド
プレス法、テープ鋳込法、ロール圧縮法等で板状に成形
した後、これを高温で焼結し、例えば、気孔率60%程
度の多孔質シートとした酸化ニッケル多孔質板が用いら
れている。負極としては、ニッケル−クロム又はニッケ
ル−コバルト等のようなニッケル合金の微粉末を上記と
同様にして成形した後、これを真空下又は水素雰囲気中
で高温にて焼結してなる多孔質板が用いられている。ま
た、別の方法として、金属微粉末を金型内に均一に充填
し、焼結して、電極としての多孔質金属板を得る方法も
知られている。
In such conventional molten carbonate fuel cells, the positive electrode is typically made by kneading fine nickel oxide powder with an organic binder and solvent as needed, and then using a cold press method or tape casting. A porous nickel oxide plate is used, which is formed into a plate shape by a method such as a nickel oxide method or a roll compression method, and then sintered at a high temperature to form a porous sheet with a porosity of, for example, about 60%. The negative electrode is a porous plate made by molding fine powder of a nickel alloy such as nickel-chromium or nickel-cobalt in the same manner as above, and then sintering it at high temperature under vacuum or in a hydrogen atmosphere. is used. Another known method is to uniformly fill a mold with fine metal powder and sinter it to obtain a porous metal plate as an electrode.

他方、セパレータとしては、高い導電性を有すると共に
、気体不透過性及び耐食性にすぐれることが要求される
ので、従来、ステンレス鋼やそのニッケルクラッド板が
用いられている。
On the other hand, since separators are required to have high electrical conductivity, gas impermeability, and corrosion resistance, stainless steel or nickel-clad plates thereof have been conventionally used.

前記のような従来の溶融炭酸塩型燃料電池は、上記した
各構成要素、即ち、正極、電解質板、負極、セパレータ
、及び集電体のそれぞれを単独にて製作し、これを所定
の順序に積層し、組立てることによって製造されている
。但し、集電体は、電極やセパレータの構造によっては
省略されることがある。
In the conventional molten carbonate fuel cell as described above, each of the above-mentioned components, namely, a positive electrode, an electrolyte plate, a negative electrode, a separator, and a current collector, are individually manufactured and then assembled in a predetermined order. Manufactured by laminating and assembling. However, the current collector may be omitted depending on the structure of the electrode or separator.

従って、従来の溶融炭酸塩型燃料電池においては、各構
成要素を高い製作精度にて製作し、且つ、各構成要素間
に良好な接触を保持して組立てても、長時間の連続運転
においては、各構成要素が機械的、熱的な原因によって
不均一な形状変化、例えば、伸縮を生じて、次第に各構
成要素間の接触抵抗が増大し、このようにして、電池出
力の低下を招き、更には、電池の発熱を増大させる。
Therefore, in conventional molten carbonate fuel cells, even if each component is manufactured with high precision and assembled with good contact between each component, it is difficult to operate continuously for a long time. , each component undergoes non-uniform shape changes due to mechanical and thermal causes, such as expansion and contraction, and the contact resistance between each component gradually increases, thus leading to a decrease in battery output, Furthermore, it increases the heat generation of the battery.

特に、電極は、電池容積を小型化すると共に、内部抵抗
を減少させるために、一般に、厚み1日程度とする必要
があり、また、電極反応を活性化するために、通常、6
0〜70%程度に高多孔度化する必要があり、他方、実
用的な電池として所要の起電力を得るためには、数十個
乃至1mm角度の薄板状とする必要がある。しかし、上
記のような従来より知られている電極は、機械的衝撃に
対する抵抗が小さく、また、変形しやすいので、電池の
組立時に容易に損傷する。更に、電池の運転時には、積
層状態にて荷重や熱サイクル等に対して十分な強度を有
すると共に、長時間の加熱による収縮ができる限りに小
さいことが必要である。
In particular, the electrodes generally need to be about 1 day thick in order to downsize the battery volume and reduce internal resistance, and to activate the electrode reaction, the electrodes usually have a thickness of about 6
It is necessary to increase the porosity to about 0 to 70%, and on the other hand, in order to obtain the electromotive force required for a practical battery, it is necessary to form several dozen pieces into thin plates with an angle of 1 mm. However, the conventionally known electrodes as described above have low resistance to mechanical shock and are easily deformed, so they are easily damaged during battery assembly. Furthermore, during operation of the battery, it is necessary that the laminated state has sufficient strength against loads, thermal cycles, etc., and that shrinkage due to long-term heating is as small as possible.

しかし、従来の電極は、運転時の強度が満足できるもの
ではなく、更に、変形や収縮が大きい。
However, conventional electrodes do not have satisfactory strength during operation, and are also subject to large deformation and shrinkage.

また、前述したように、一般に各構成要素の製作に当た
っては、高い寸法精度が要求されるが、電極とセパレー
タとの間に燃料又は酸化剤のための通路として、通常・
、セパレータ又は電極の表面に溝が刻設されるが、この
ような加工も、製作上の寸法精度要求を高めるうえに、
電池の製造工程数を増加させることとなる。
In addition, as mentioned above, high dimensional accuracy is generally required when manufacturing each component, but it is usually
, grooves are carved on the surface of the separator or electrode, but such processing also increases the dimensional accuracy requirements for manufacturing, and
This increases the number of battery manufacturing steps.

また、従来の溶融炭酸塩型燃料電池においては、実用的
に必要とされる電圧を得るためには、単電池を数百層に
も積層し、従って、各構成要素にすれば、数十枚も積層
することとなるので、電池の組み立て及び保守管理が容
易ではない。
In addition, in conventional molten carbonate fuel cells, in order to obtain the voltage that is practically required, single cells are stacked in hundreds of layers, and each component requires several tens of layers. Since the batteries are also stacked, it is not easy to assemble and maintain the battery.

(発明の目的) 本発明者らは、溶融炭酸塩型燃料電池における上記した
種々の問題を解決するために鋭意研究した結果、電極板
を含むと共に上記した構成要素の幾つか、即ち、電極板
と共に、少なくとも燃料ガス及び/又は酸化剤ガス通路
、並びに集電板及びセパレータとしての機能を多元的に
備えた一体的な複合化構成部材を得ることに成功して、
本発明を完成するに至ったものである。
(Object of the Invention) As a result of intensive research in order to solve the various problems described above in molten carbonate fuel cells, the present inventors have discovered that some of the above-mentioned components including the electrode plate, namely the electrode plate. At the same time, we succeeded in obtaining an integrated composite component having multiple functions as at least a fuel gas and/or oxidant gas passage, as well as a current collector plate and a separator,
This has led to the completion of the present invention.

従って、本発明は、一般には、燃料電池のための複合化
構成部材を提供することを目的とし、特に、溶融炭酸塩
型燃料電池のための電極を含む多元的機能を備えた複合
化構成部材を提供することを目的とする。
Accordingly, the present invention is directed to a composite component for fuel cells in general, and in particular to a composite component with multiple functions including electrodes for molten carbonate fuel cells. The purpose is to provide

(発明の構成) 本発明による燃料電池用構成部材は、燃料ガス通路又は
酸化剤ガス通路のための溝が表面に刻設されている導電
性多孔質板からなる電極板と導電性金属板であるセパレ
ータとからなり、電極板とセパレータとが上記溝を形成
する突条体の上縁にて接合されていることを特徴とする
(Structure of the Invention) A fuel cell component according to the present invention comprises an electrode plate made of a conductive porous plate having grooves carved on its surface for a fuel gas passage or an oxidant gas passage, and a conductive metal plate. It is characterized in that the electrode plate and the separator are joined at the upper edge of the protrusion forming the groove.

以下、詳細に本発明による燃料電池のための複合化構成
部材について説明する。
Hereinafter, the composite component for a fuel cell according to the present invention will be explained in detail.

本発明において用いる電極板は、導電性を有する金属多
孔質板内に電極を構成するための金属微粉末が均一に分
散担持されていると共に、その表面に予め燃料ガス通路
又は酸化剤ガス通路のための溝が表面に刻設されている
The electrode plate used in the present invention has a conductive metal porous plate on which fine metal powder for forming the electrode is uniformly dispersed and supported, and a fuel gas passage or an oxidizing gas passage is preliminarily formed on the surface of the electrode plate. There are grooves carved into the surface.

上記多孔質板としては、導電性の金属材料からなる多孔
質板、例えば、焼結金属、金属繊維、発泡金属等からな
る多孔質板や、表面に銅やニッケル等の金属めっきを施
して導電性を付与した多孔質セラミック板、例えば、焼
結多孔質アルミナ板等を好適に用いることができる。こ
のような導電性多孔質板は、通常、50〜90%程度の
多孔度を有し、市販品として入手することができる。特
に、溶融炭酸塩型燃料電池における電極として用いる場
合は、この多孔質板は、導電性、耐食性、耐焼結性等に
すぐれるニッケル又はその合金が好ましい。しかし、後
述するように、正極を兼ねる複合化構成部材として用い
る場合は、例えばステンレス鋼を、また、負極を兼ねる
複合化構成要素として用いる場合は、例えば銅を用いる
こともできる。
The above-mentioned porous plate may be a porous plate made of a conductive metal material, such as a porous plate made of sintered metal, metal fiber, foamed metal, etc., or a porous plate whose surface is plated with a metal such as copper or nickel to make it conductive. A porous ceramic plate to which properties have been imparted, such as a sintered porous alumina plate, can be suitably used. Such a conductive porous plate usually has a porosity of about 50 to 90% and can be obtained as a commercial product. In particular, when used as an electrode in a molten carbonate fuel cell, the porous plate is preferably made of nickel or an alloy thereof, which has excellent conductivity, corrosion resistance, sintering resistance, etc. However, as will be described later, when used as a composite component that also serves as a positive electrode, for example, stainless steel may be used, and when used as a composite component that also serves as a negative electrode, for example, copper may be used.

このような電極を構成するための電極金属としては、溶
融炭酸塩型燃料電池の電極として一般に用いられている
金属の微粉末でよく、例えば、ニッケルのほか、ニッケ
ル−クロム合金、ニッケル−コバルト合金等が好ましく
用いられる。但し、正極については、必要に応じて、酸
化ニッケルであってもよい。ここに、導電性多孔質板の
厚みは、できる限り薄いことが好ましく、通常、0.3
〜1゜5mが適当であり、また、電極金属微粉末の粒径
は1〜20μmが適当であるが、これに限定されるもの
ではない。
The electrode metal used to construct such an electrode may be fine powder of a metal commonly used as an electrode for molten carbonate fuel cells, such as nickel, nickel-chromium alloy, nickel-cobalt alloy, etc. etc. are preferably used. However, the positive electrode may be made of nickel oxide, if necessary. Here, the thickness of the conductive porous plate is preferably as thin as possible, usually 0.3
The particle size of the electrode metal fine powder is preferably 1 to 20 μm, but is not limited to this.

このような電極板を製造する方法は、特に限定されるも
のではないが、好ましくは、例えば、ブレード法や鋳込
法によって製造される。
Although the method for manufacturing such an electrode plate is not particularly limited, it is preferably manufactured by, for example, a blade method or a casting method.

ブレード法においては、用いる電極に応じて選択された
金属微粉末に溶剤と好ましくは有機結合剤とを加え、更
に、必要に応じて、解膠剤、可塑剤等を加え、十分に混
合して、スラリーを調製する。溶剤としては、通常、水
が用いられ、従って、上記有機結合剤としては、ポリビ
ニルアルコール、ポリエチレングリコール、カルボキシ
メチルセルロース、その誘導体等、水溶性高分子からな
るものが用いられる。
In the blade method, a solvent and preferably an organic binder are added to the metal fine powder selected according to the electrode used, and if necessary, a deflocculant, a plasticizer, etc. are added, and the mixture is thoroughly mixed. , prepare a slurry. As the solvent, water is usually used, and therefore, as the organic binder, a water-soluble polymer such as polyvinyl alcohol, polyethylene glycol, carboxymethyl cellulose, or a derivative thereof is used.

次に、このスラリーを例えばフッ素樹脂コーティングし
た樹脂フィルム上に流延し、表面を溝付きブレードにて
溝を有するように成形した後、乾燥させて、金属微粉末
と上記電極金属微粉末を含む薄いシート状のグリーン体
を形成する。
Next, this slurry is cast onto, for example, a fluororesin-coated resin film, and the surface is shaped to have grooves using a grooved blade, and then dried to contain the fine metal powder and the fine electrode metal powder. Forms a thin sheet-like green body.

この後、用いる電極に応じて、焼成雰囲気を選択し、こ
れを加熱炉にて焼成し、溶剤、結合剤等を除去し、更に
、高温にて焼結することによって、電極金属を含む多孔
質焼結板を得ることができる。
After this, a firing atmosphere is selected depending on the electrode to be used, and this is fired in a heating furnace to remove the solvent, binder, etc., and then sintered at a high temperature to form a porous material containing the electrode metal. A sintered plate can be obtained.

このような多孔質板における電極金属微粉末の量は、例
えば、前記スラリーの濃度やグリーン体の厚みを適宜に
選択することによって調整することができる。
The amount of electrode metal fine powder in such a porous plate can be adjusted, for example, by appropriately selecting the concentration of the slurry and the thickness of the green body.

例えば、金属微粉末としてニッケル微粉末を含むグリー
ン体を得、これを空気のような酸化性雰囲気下に100
0℃又はそれ以上の温度で適宜時間焼成することによっ
て、表面に酸化ニッケルを含み、従って、正極として用
いることができる多孔質板を得ることができる。また、
金属微粉末として、例えば、ニッケル−クロム合金微粉
末を含むグリーン体を調製し、これを水素囲気下又は真
空雰囲気下に1000℃以上の温度で焼結することによ
って、負極として用いることができる多孔質板を得るこ
とができる。
For example, a green body containing fine nickel powder as metal fine powder is obtained, and it is heated for 100 minutes in an oxidizing atmosphere such as air.
By firing at a temperature of 0° C. or higher for an appropriate period of time, a porous plate containing nickel oxide on the surface and therefore usable as a positive electrode can be obtained. Also,
A porous material that can be used as a negative electrode is prepared by preparing a green body containing fine metal powder, for example, nickel-chromium alloy powder, and sintering it at a temperature of 1000°C or higher in a hydrogen atmosphere or a vacuum atmosphere. You can get quality plates.

また、鋳込法によれば、用いる電極に応じて選択された
金属微粉末を所定の溝を有する金型内に均一に充填し、
上記と同様にして、適当な雰囲気下に加熱炉にてこれを
焼結させることによって、電極板を得ることができる。
In addition, according to the casting method, fine metal powder selected according to the electrode used is uniformly filled into a mold having predetermined grooves.
An electrode plate can be obtained by sintering this in a heating furnace in a suitable atmosphere in the same manner as described above.

本発明による複合化構成部材は、このように、表面に溝
を有する電極板とセパレータとが、電極板の有する溝を
形成する突条の上縁にて相互に一体に接合されて形成さ
れている。
The composite component according to the present invention is thus formed by integrally joining an electrode plate having a groove on its surface and a separator to each other at the upper edge of the protrusion forming the groove of the electrode plate. There is.

第1図に上記のような電極板を含む本発明による燃料電
池のための複合化構成部材の一例を示す。
FIG. 1 shows an example of a composite component for a fuel cell according to the present invention, including an electrode plate as described above.

即ち、この構成部材Aは、燃料ガス通路又は酸化剤ガス
通路としての溝21が表面に刻設されている電極板22
にセパレータ23が上記溝を形成する突条体24の上縁
にて接合されている。セパレータとしては、通常は、例
えば、ステンレス鋼板、ニッケル板、ニッケル被覆ステ
ンレス鋼板等、従来のセパレータ材を用いることができ
る。
That is, this component A has an electrode plate 22 on which grooves 21 are carved as fuel gas passages or oxidant gas passages.
A separator 23 is joined to the upper edge of the protrusion 24 forming the groove. As the separator, conventional separator materials such as stainless steel plates, nickel plates, and nickel-coated stainless steel plates can be used.

第2図に本発明による別の複合化構成部材を示す。この
構成部材Bにおいては、セパレータ23の両面にそれぞ
れ溝21を有する電極板22が接合されている。この構
成部材は、一方の電極を負極とし、他方の電極を正極と
して使用される。即ち、電池においては、一つの単電池
の負極と、これに隣接する単電池の正極とがセパレータ
23を介して一体化されている。従って、この構成部材
間に電解質板を挟んで積層すれば、電池を構成すること
ができる。
FIG. 2 shows another composite component according to the invention. In this component B, electrode plates 22 each having a groove 21 are joined to both sides of a separator 23. This component is used with one electrode serving as a negative electrode and the other electrode serving as a positive electrode. That is, in the battery, the negative electrode of one cell and the positive electrode of an adjacent cell are integrated with the separator 23 interposed therebetween. Therefore, by stacking these components with an electrolyte plate sandwiched between them, a battery can be constructed.

(発明の効果) 本発明の燃料電池用複合化構成部材によれば、溶融炭酸
塩型燃料電池の製造において、個々に分離された構成部
材の積層数を著しく低減することができると共に、従来
の複数の構成部材が接合一体化されて、強度的に改善さ
れているので、電池の長時間にわたる運転によっても、
各構成部材の不均一な変形による接触状態の悪化を防ぐ
ことができ、かくして、接触抵抗を小さくして、電池出
力を高く保持することができる。
(Effects of the Invention) According to the composite structural member for fuel cells of the present invention, in the production of molten carbonate fuel cells, it is possible to significantly reduce the number of layers of individually separated structural members, and to Multiple components are joined together to improve strength, so even when the battery is operated for a long time,
It is possible to prevent deterioration of the contact condition due to non-uniform deformation of each component, and thus it is possible to reduce contact resistance and maintain high battery output.

また、従来の溶融炭酸塩型燃料電池においては、構成要
素、特に、電極の強度が不十分であって、その他の構成
要素との積層及び組立において、細心の注意が必要とさ
れているが、本発明による複合化構成要素によれば、電
極はセパレータと一体化されているので、強度が大きく
、更に、使用中の熱応力による割れも防止することがで
きる。また、本発明による構成部材においては、燃料ガ
ス又は酸化剤ガス通路としての溝が電極板の成形時に既
に一体に形成されているので、従来の電極板やセパレー
タにおけるように、その表面にこれら通路を刻設する必
要もない。
In addition, in conventional molten carbonate fuel cells, the strength of the components, especially the electrodes, is insufficient, and great care is required when laminating and assembling other components. According to the composite component according to the present invention, since the electrode is integrated with the separator, the strength is high and furthermore, cracking due to thermal stress during use can be prevented. In addition, in the component according to the present invention, grooves as fuel gas or oxidant gas passages are already formed integrally with the electrode plate when molded, so these passages are formed on the surface of the electrode plate, as in conventional electrode plates and separators. There is no need to engrave it.

更に、本発明による構成部材を用いることによって、上
記のように、溶融炭酸塩型燃料電池の製造において、組
立部品数が減少することから、積層における寸法精度が
向上し、積層及び組立を容易にして、電池製造の効率を
高くすることができる。
Furthermore, by using the component according to the present invention, as mentioned above, in the production of molten carbonate fuel cells, the number of assembled parts is reduced, so the dimensional accuracy in lamination is improved, and lamination and assembly are facilitated. Therefore, the efficiency of battery manufacturing can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による燃料電池のための複合化構成部
材の実施例を示す要部断面図、第2図は、本発明による
別の複合化構成部材の実施例を示す要部断面図、第3図
は、従来の溶融炭酸塩型燃料電池の代表例の要部構成を
示す一部分解斜視図である。 11・・・電解質板、12・・・正極、13・・・負極
、14・・・単電池、15・・・集電体、16・・・セ
パレータ、17・・・燃料通路、18・・・酸化剤通路
、21・・・溝、22・・・電極板、23・・・セパレ
ータ、24・・・突条体。 第1図 第3図 ]5
FIG. 1 is a sectional view of a main part showing an embodiment of a composite component for a fuel cell according to the present invention, and FIG. 2 is a sectional view of a main part showing an embodiment of another composite component according to the present invention. , FIG. 3 is a partially exploded perspective view showing the main part configuration of a typical example of a conventional molten carbonate fuel cell. DESCRIPTION OF SYMBOLS 11... Electrolyte plate, 12... Positive electrode, 13... Negative electrode, 14... Cell, 15... Current collector, 16... Separator, 17... Fuel passage, 18... - Oxidizing agent passage, 21...Groove, 22...Electrode plate, 23...Separator, 24...Protrusion body. Figure 1 Figure 3] 5

Claims (3)

【特許請求の範囲】[Claims] (1)燃料ガス通路又は酸化剤ガス通路のための溝が表
面に刻設されている導電性多孔質板からなる電極板と、
導電性金属板であるセパレータとからなり、電極板とセ
パレータとが上記溝を形成する突条体の上縁にて接合さ
れていることを特徴とする燃料電池用構成部材。
(1) An electrode plate made of a conductive porous plate with grooves carved on its surface for a fuel gas passage or an oxidizing gas passage;
1. A fuel cell component comprising a separator that is a conductive metal plate, the electrode plate and the separator being joined at the upper edge of a protrusion forming the groove.
(2)セパレータの両面に電極板が接合されていること
を特徴とする特許請求の範囲第1項記載の燃料電池用構
成部材。
(2) The fuel cell component according to claim 1, wherein electrode plates are bonded to both sides of the separator.
(3)電極板が電極金属としてニッケル、ニッケル−ク
ロム合金又はニッケル−コバルト合金を含み、セパレー
タがニッケル板、ステンレス鋼板又はニッケル被覆ステ
ンレス鋼板であることを特徴とする特許請求の範囲第1
項又は第2項燃料電池用構成部材。
(3) Claim 1, characterized in that the electrode plate contains nickel, nickel-chromium alloy, or nickel-cobalt alloy as the electrode metal, and the separator is a nickel plate, a stainless steel plate, or a nickel-coated stainless steel plate.
Section 2 or Section 2 Components for fuel cells.
JP61039695A 1986-02-24 1986-02-24 Member for fuel cell Pending JPS62198057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039695A JPS62198057A (en) 1986-02-24 1986-02-24 Member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039695A JPS62198057A (en) 1986-02-24 1986-02-24 Member for fuel cell

Publications (1)

Publication Number Publication Date
JPS62198057A true JPS62198057A (en) 1987-09-01

Family

ID=12560166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039695A Pending JPS62198057A (en) 1986-02-24 1986-02-24 Member for fuel cell

Country Status (1)

Country Link
JP (1) JPS62198057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494300A1 (en) * 2003-07-04 2005-01-05 Nisshinbo Industries, Inc. Porous fuel cell separator, method of manufacture thereof, and solid polymer fuel cell
JP2010065276A (en) * 2008-09-10 2010-03-25 Mitsubishi Materials Corp Porous metal body and production method therefor
JP2013049925A (en) * 2012-10-29 2013-03-14 Mitsubishi Materials Corp Method for manufacturing metal porous body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494300A1 (en) * 2003-07-04 2005-01-05 Nisshinbo Industries, Inc. Porous fuel cell separator, method of manufacture thereof, and solid polymer fuel cell
JP2010065276A (en) * 2008-09-10 2010-03-25 Mitsubishi Materials Corp Porous metal body and production method therefor
JP2013049925A (en) * 2012-10-29 2013-03-14 Mitsubishi Materials Corp Method for manufacturing metal porous body

Similar Documents

Publication Publication Date Title
US5290642A (en) Method of fabricating a monolithic solid oxide fuel cell
US4913982A (en) Fabrication of a monolithic solid oxide fuel cell
US5162167A (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
US5256499A (en) Monolithic solid oxide fuel cells with integral manifolds
CA1301832C (en) Fabrication of ceramic trilayers for a monolithic solid oxide fuel cell
EP1020941B1 (en) Separator for fuel cell battery and method of producing the same
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
JP3295945B2 (en) Distributor of solid oxide fuel cell and method of manufacturing the same
JP2001196069A (en) Fuel cell
EP0549695B1 (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
JP4815815B2 (en) Single-chamber solid oxide fuel cell
JPS62198057A (en) Member for fuel cell
JPH02276166A (en) Solid electrolyte fuel cell
JPH11354139A (en) Solid electrolyte type fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JP3116455B2 (en) Solid oxide fuel cell
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
JP2802196B2 (en) Method for producing fuel cell support
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
JPS61260550A (en) Composite constituent element for fuel cell
JP3116504B2 (en) Solid oxide fuel cell