JPS6219736A - Infrared ray type gas analyzer - Google Patents

Infrared ray type gas analyzer

Info

Publication number
JPS6219736A
JPS6219736A JP60158832A JP15883285A JPS6219736A JP S6219736 A JPS6219736 A JP S6219736A JP 60158832 A JP60158832 A JP 60158832A JP 15883285 A JP15883285 A JP 15883285A JP S6219736 A JPS6219736 A JP S6219736A
Authority
JP
Japan
Prior art keywords
sample gas
measuring
optical path
infrared
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60158832A
Other languages
Japanese (ja)
Inventor
Kenji Hirai
研治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60158832A priority Critical patent/JPS6219736A/en
Publication of JPS6219736A publication Critical patent/JPS6219736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable measurement of the density of a measuring component without changing the constituent component of an analyzer even in case of the density of the measuring compo nent varying largely on each sample gas by providing the measuring cell to store an optical path body having at least a pair of infrared ray transmitting windows. CONSTITUTION:An attachable and detachable filter transmitting the wavelength to represent the absorption wavelength of the measuring component in a sample gas is fitted to the infrared ray transmitting windows 23, 23 of a measuring cell 12, in case of the density measurement of CO2 in the exhaust gas before and after combustion, for instance, in case of the measuring component in the sample gas being one and the density of the measuring component thereof varying largely on each sample gas. The density of the measuring component in the sample gas is then measured by rotating an optical path body 11 with the operation of a motor 14. In this case, the detecting signal of an infrared ray which passed through the closed cylindrical member 19 having the intermediate length that the gap with the inner wall of the measuring cell 12 becomes narrow secondly is used as the measuring signal in case of the density of the measuring component being high, and in case of low, the detecting signal of the infrared ray having passed through the shortest closed cylindrical member 20 that the gap with the inner wall of the measuring cell 12 becomes widest is used as the measuring signal.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は赤外線領域で吸収波長を有する排ガス等の試
料ガス中の測定成分の濃度を連続的に測定する赤外線式
ガス分析計に関し、詳しくは試料ガス毎に大きく変化す
る測定成分の濃度を測定するのに好適な赤外線式ガス分
析計に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to an infrared gas analyzer that continuously measures the concentration of a component to be measured in a sample gas such as exhaust gas having an absorption wavelength in the infrared region. relates to an infrared gas analyzer suitable for measuring the concentration of a measurement component that varies greatly depending on the sample gas.

(ロ)従来の技術 従来の赤外線式ガス分析計は、第5図に示すように、光
源(1)からの光が、試料ガス導入路(a及び試料ガス
排出路(3)を備えた筒状の測定セル(4)内を通過し
て赤外線検出器(5)に入射するよう構成したもので、
光源(1)からの光は測定セル(4)内を通過する際に
赤外線の吸収で減光される。測定セル(4)と赤外線検
出器(5)との間には円板状のセクター(6)が水平方
向に回動可能に設けられており、セクター(6)には光
源(1)からの光の波長選択のための光学フィルタ(7
1f8]が2個設けられている。なお、これらのフィル
タ(刀(8)は、測定成分の吸収波長を代表する波長を
透す測定用フィルタと、測定成分とは無関係の比較用フ
ィルタとからなる。上記ガス分析計は、セクター(6)
をモータ(9)で回動さUで、両光学フィルタ(刀(8
)を交互に光源(1)からの光路上に位置させたときに
生じる光量の差から測定成分の9度を検出するようにし
たものである。
(B) Conventional technology As shown in Fig. 5, in a conventional infrared gas analyzer, light from a light source (1) is transmitted through a tube equipped with a sample gas introduction path (a) and a sample gas discharge path (3). It is configured so that it passes through the shaped measurement cell (4) and enters the infrared detector (5).
The light from the light source (1) is attenuated by absorption of infrared rays as it passes through the measurement cell (4). A disc-shaped sector (6) is provided horizontally rotatably between the measurement cell (4) and the infrared detector (5), and the sector (6) receives light from the light source (1). Optical filter for wavelength selection of light (7
1f8] are provided. Note that these filters (swords (8) consist of a measurement filter that transmits a wavelength representative of the absorption wavelength of the measurement component, and a comparison filter that is unrelated to the measurement component. 6)
is rotated by the motor (9), and both optical filters (sword (8)
) is arranged alternately on the optical path from the light source (1), and the 9 degrees of the measured component is detected from the difference in the amount of light that occurs.

(ハ)発明が解決しようとする問題点 しかし、上記分析計では、試料ガス中の一つの測定成分
の濃度が試料ガス毎に大きく変動する場合及び試料ガス
中の複数の測定成分の濃度が大きく異なる場合には、そ
の測定の都度、測定成分の濃度に応じて測定セル(4)
を長さの短い測定セルや長い測定セルに交換しなければ
ならない煩しさがあった。また、測定セル(4)と赤外
線検出器(5)との間にセクター(6)が挿入されてい
るため、セクター(6)と測定セル(4)及び赤外線検
出器(5)との間に隙間が生じていた。そのため、特に
試料ガス中の測定成分の濃度が低い場合には、その測定
濃度が上記隙間に存在する空気の成分変動によって影響
を受けて測定誤差が生じていた。
(c) Problems to be solved by the invention However, with the above analyzer, the concentration of one component to be measured in the sample gas varies greatly from sample gas to another, or the concentration of multiple components to be measured in the sample gas is large. If different, the measurement cell (4) is adjusted depending on the concentration of the component to be measured each time the measurement is performed.
There was the hassle of having to replace the measuring cell with a shorter or longer measuring cell. Also, since the sector (6) is inserted between the measurement cell (4) and the infrared detector (5), the sector (6) is inserted between the measurement cell (4) and the infrared detector (5). A gap had arisen. Therefore, especially when the concentration of the component to be measured in the sample gas is low, the measured concentration is affected by the fluctuation in the components of the air present in the gap, resulting in measurement errors.

この発明は以上の事情に鑑みなされたもので、試料ガス
中の1つの測定成分の濃度が試料ガス毎に大きく変動す
る場合及び試料ガス中の複数の測定成分の濃度が大きく
異なる場合でも分析計の構成部品を交換することなく正
確に各測定成分の濃度を測定することができる赤外線式
ガス分析δtの提供を目的とする。
This invention was made in view of the above circumstances, and it is possible to use an analyzer even when the concentration of one measuring component in a sample gas varies greatly from sample gas to sample gas, or when the concentrations of multiple measuring components in a sample gas differ greatly. An object of the present invention is to provide an infrared gas analysis δt that can accurately measure the concentration of each component to be measured without replacing the component parts.

(ニ)問題点を解決するための手段 この発明は赤外線式ガス分析計であって、長手方向に赤
外線透過可能な長さの異なる複数の長手部材を同一平面
でかつそれぞれその長手方向の中央部で交差さけて形成
した少なくとも一つの光路体と、試料ガス導入路及び試
料ガス排出路を備えた中空円盤体でそのl111の対称
位置に少なくとも一対の赤外線透過窓を有し前記光路体
を収納する測定セルと、光路体の交差部中心を挟持しそ
の交差方向と略直交する向きで測定セルの中心軸と略同
軸に測定セル外に回転可能に延出された回転軸と、測定
セル外に設けられ前記回転軸を回転させるモータと、測
定セルの胴外壁に取付けられ前記赤外線透過窓を透過し
光路を回転させたときにその各長手部材を透過する光路
を形成する少なくとも一対の光源及び赤外線検出器とを
備え、かつ測定ヒルの赤外線透過窓を試料ガス中のフィ
ルタが着脱可能に取付けられるよう構成し、さらに光路
体の最も長い長手部材の両端面を試料ガス中の測定成分
とは無関係のフィルタが着脱可能に取付けられるよう構
成するとともに、光路体の他の各長手部材の両端面を試
料ガス中の吸収波長を代表する波長を透すためのフィル
タがそれぞれ着脱可能に取付けられるよう構成したもの
である。
(d) Means for Solving the Problems The present invention is an infrared type gas analyzer, in which a plurality of longitudinal members having different lengths capable of transmitting infrared rays in the longitudinal direction are arranged on the same plane and at the central part thereof in the longitudinal direction. A hollow disk body is provided with at least one optical path body formed so as not to intersect with each other, a sample gas introduction path and a sample gas discharge path, and has at least a pair of infrared transmitting windows at symmetrical positions of l111, and houses the optical path body. A rotating shaft that sandwiches the center of the intersection between the measurement cell and the optical path body and extends rotatably outside the measurement cell approximately coaxially with the center axis of the measurement cell in a direction substantially orthogonal to the direction of intersection; at least one pair of light sources and infrared rays that are attached to the outer wall of the body of the measuring cell and form an optical path that passes through the infrared ray transmission window and that passes through each longitudinal member when the optical path is rotated; The infrared transmitting window of the measurement hill is configured so that a filter in the sample gas can be detachably attached, and both end faces of the longest longitudinal member of the optical path body are arranged so that they are independent of the measurement component in the sample gas. A filter is configured to be removably attached, and a filter for transmitting a wavelength representative of the absorption wavelength in the sample gas is configured to be detachably attached to both end surfaces of each of the other longitudinal members of the optical path body. This is what I did.

(ホ)作 用 この発明は、光路体を回転させると、各長手部材の両端
部と光源及び赤外線検出器との間の距雛が変化し、これ
によって試料ガス中の測定成分が一以上でその測定濃度
が試料ガス毎に大きく変化する場合の測定成分の濃度を
測定するようにしたものである。
(E) Function According to the present invention, when the optical path body is rotated, the distance between both ends of each longitudinal member and the light source and the infrared detector changes, whereby one or more measurement components in the sample gas change. This method is designed to measure the concentration of a component to be measured when the measured concentration varies greatly depending on the sample gas.

(へ)実施例 以下図に示す実施例に基づいてこの発明を詳述する。な
お、これによってこの発明が限定されるものではない。
(F) EXAMPLES The present invention will be described in detail below based on examples shown in the figures. Note that this invention is not limited to this.

M1図及び第2図において、赤外線式ガス分析計(ト)
)ハ、光路体(11J、1llll 定t’ /lz 
021、回転@03)、モータ04)、光源(15)及
び赤外線検出器(161から主として構成される。
In Figure M1 and Figure 2, the infrared gas analyzer (G)
) C, optical path body (11J, 1llll constant t'/lz
021, rotation @03), a motor 04), a light source (15), and an infrared detector (161).

光路体(1υは、赤外線透過窓a力を両端に有し不活性
ガスが封入された異なる長さの3つの密閉筒状部材便に
■部材一平面でかつそれぞれその長手方向の中央部で交
差させて形成されたもので、各密閉筒状部材08)’ 
(ICo (21の両端面は、上記部材08] (19
)■毎に異なる後述するフィルタ(図示しない)が着脱
畦面に取付けられるよう構成されている。なお、上記不
活性ガスとしては、窒素(N2)が好ましい例として挙
げられる。また、光路体(11)は、上記部材(18)
 a91■の他に、長手方向に赤外線透過可能な柱状部
材を用いてもよい。この柱状部材の材料としては、フッ
化カルシウム等が好ましい例として挙げられる。
The optical path body (1υ) consists of three sealed cylindrical members of different lengths each having an infrared transmitting window at both ends and filled with inert gas. Each sealed cylindrical member 08)'
(Both end surfaces of ICo (21 are the above member 08)) (19
) A different filter (not shown), which will be described later, is attached to the attachment/detachment ridge. In addition, nitrogen (N2) is mentioned as a preferable example of the said inert gas. Further, the optical path body (11) includes the member (18)
In addition to a91■, a columnar member that can transmit infrared rays in the longitudinal direction may be used. Preferred examples of the material for this columnar member include calcium fluoride.

測定セルa′2Jは光路体(11)を収納するもので、
中空円盤体からなり、その胴壁には測定セル面内に開口
する試料ガス導入路&+1及び試料ガス排出路値が取付
けられており、さらにその胴壁の対称位置には一対の赤
外線透過窓色(至)が設けられている。各赤外線透過窓
@は、後述するフィルタ(図示しない)が着脱可能に取
付けられるよう構成されている。
The measurement cell a'2J houses the optical path body (11),
It consists of a hollow disc body, and a sample gas introduction path &+1 and a sample gas discharge path opening into the measurement cell surface are attached to the body wall, and a pair of infrared transmitting windows are installed at symmetrical positions on the body wall. (to) is provided. Each infrared transmitting window @ is configured such that a filter (not shown), which will be described later, is removably attached.

回転軸03)は、光路体(11)の交差部中心を挟持し
その交差方向と略直交する向きで、測定セル(121の
中心軸と略同軸に測定レル面外に回転可能に延出されて
おり、モータ(14)は回転軸03)の延出端部に取付
けられている。
The rotation axis 03) is rotatably extended out of the measurement cell plane substantially coaxially with the center axis of the measurement cell (121), and is oriented substantially perpendicular to the direction of intersection while sandwiching the center of the intersection of the optical path body (11). The motor (14) is attached to the extending end of the rotating shaft (03).

光源f15]及び赤外線検出器(+61は、前記赤外線
透過窓(至)(至)を透過し光路体(11)を回転させ
たときに、その各長手部材Q8LO9■を透過する光路
を形成するよう測定セルf121の胴外壁に取付けられ
ている。
The light source f15] and the infrared detector (+61 are configured to form an optical path that passes through the infrared transmitting window (to) (to) and passes through each longitudinal member Q8LO9 when the optical path body (11) is rotated. It is attached to the outer wall of the body of the measurement cell f121.

なお、前記密閉筒状部材(18)[ll’D■のうち最
も長いものは、測定セル0zの内壁との隙間が殆んどゼ
ロになる長さに形成されている。
The longest one of the sealed cylindrical members (18) [ll'D■ is formed in such a length that the gap with the inner wall of the measurement cell 0z is almost zero.

次に上記分析計(至)の使用方法について説明する。Next, how to use the above analyzer will be explained.

なお、最も長い密閉筒状部材(18)は光路上に試料ガ
スがない基準用として用いられる。
Note that the longest sealed cylindrical member (18) is used as a reference with no sample gas on the optical path.

まず、試料ガス中の測定成分が一つでその測定成分の濃
度が試料ガス毎に大きく変わる場合、たとえば燃焼前後
の排ガス中の002の濃度測定の場合には、測定セルa
′2Jの赤外線透過窓@(至)に、試料ガス中の測定成
分の吸収波長を代表する波長を透すフィルタを取付ける
。そして、モータM)の作動によって光路体(Illを
回転させて試料ガス中の測定成分の濃度を測定する。こ
の際、測定成分の濃度が高い場合には、測定セル面の内
壁との隙間が    ふ2番目に狭くなる中間長さの密
閉筒状部材a9を通過した赤外線の検出信号を測定信号
として用い、測定成分の濃度が低い場合には、測定セル
面の内壁との隙間が最も広くなる最も短い密閉筒状部材
■を通過した赤外線の検出信号を測定信号として用いる
First, when there is only one component to be measured in the sample gas and the concentration of that component varies greatly depending on the sample gas, for example, when measuring the concentration of 002 in the exhaust gas before and after combustion, the measurement cell a
A filter that transmits a wavelength representative of the absorption wavelength of the measurement component in the sample gas is attached to the infrared transmission window @ (to) of '2J. Then, the concentration of the measurement component in the sample gas is measured by rotating the optical path member (Ill) by the operation of the motor M).At this time, if the concentration of the measurement component is high, the gap between the measurement cell surface and the inner wall The detection signal of the infrared rays passing through the middle-length sealed cylindrical member a9 which becomes the second narrowest is used as the measurement signal, and when the concentration of the measurement component is low, the gap between the measurement cell surface and the inner wall is the widest. The infrared detection signal that has passed through the shortest sealed cylindrical member (2) is used as the measurement signal.

次に、試料ガス中の測定成分が2成分でそれらの成分の
濃度が大きく異なる場合、たとえば燃焼排ガス中の低濃
度のCOと高濃度のCO2とを測定する場合には、最も
長い密閉筒状部材(18)の赤外線透過窓a力には2成
分に無関係のフィルタを、中間長の密閉筒状部材のの赤
外線透過窓0力には二酸化炭素(CO2)の吸収波長を
代表するフィルタを、最も短い密閉筒状部材■の赤外線
透過窓07)には−酸化炭素(Co)の吸収波長を代表
するフィルタをそれぞれ取付ける。そして、モータ(1
4)の作動によって光路体(11Jを回転させて試rl
ガス中の測定成分の濃度を測定する。この際、C02の
濃度測定には、中間長の密閉筒状部材a!1を通過した
赤外線の検出信号を測定信号として用い、COの濃度測
定には、最も短い密閉筒状部材■を通過した赤外線の検
出信号を測定信号として用いる。
Next, when there are two components to be measured in the sample gas and the concentrations of these components are significantly different, for example, when measuring low concentration CO and high concentration CO2 in combustion exhaust gas, the longest closed cylinder is used. A filter unrelated to the two components is used for the infrared transmitting window a of the member (18), and a filter representative of the absorption wavelength of carbon dioxide (CO2) is used for the infrared transmitting window zero of the intermediate-length sealed cylindrical member. A filter representative of the absorption wavelength of -carbon oxide (Co) is attached to each infrared transmitting window 07) of the shortest sealed cylindrical member (2). And the motor (1
4) By rotating the optical path body (11J),
Measures the concentration of the component to be measured in the gas. At this time, to measure the concentration of C02, an intermediate length closed cylindrical member a! The detection signal of the infrared rays which passed through 1 is used as the measurement signal, and the detection signal of the infrared rays which passed through the shortest sealed cylindrical member 2 is used as the measurement signal to measure the concentration of CO.

以上により、試料ガス中の測定成分が単一でその測定濃
度が試料ガス毎に大きく変わる場合でも、試料ガス中の
測定成分が2成分でそれらの測定濃度が大きく異なる場
合でも、光路体(1υを回転させるだけで、試料ガス中
の測定成分の濃度を測定することができる。また、光源
05)から赤外線検出器色に至る光路上に空気が存在し
ないため、試料ガス中の測定成分の測定濃度に測定誤差
が生じることがなくなる。
As described above, even if the measured component in the sample gas is single and its measured concentration varies greatly depending on the sample gas, or even if the measured component in the sample gas is two components and their measured concentrations differ greatly, the optical path body (1 υ The concentration of the component to be measured in the sample gas can be measured simply by rotating the .In addition, since there is no air on the optical path from the light source 05) to the infrared detector color, it is possible to measure the concentration of the component to be measured in the sample gas. Measurement errors in concentration will no longer occur.

第3図は他の一つの実施例を示す図で光源(15a)と
赤外線検出器(16a)を第1実施例のごとく2組設け
たものである。これは、試料ガス中の測定成分が2成分
でかつそれぞれの濃度が試料ガス毎に大きく変化する場
合の測定に用いることができる。なお、この場合、光源
と赤外線検出器を3組以上にしてもよい。
FIG. 3 shows another embodiment, in which two sets of light sources (15a) and infrared detectors (16a) are provided as in the first embodiment. This can be used for measurements where there are two components to be measured in the sample gas and the concentrations of each component vary greatly from sample gas to sample gas. In this case, there may be three or more sets of light sources and infrared detectors.

第4図はもう一つの他の実施例を示す図で、測定セル(
12b)内に、たとえば3つの光路体(llb)を回動
可能に積層した状態に設けるとともに、各光路体(11
b)に対応させて第1実施例のごとく311の光源(1
5b)と赤外線検出器(16b)を設けたものである。
FIG. 4 is a diagram showing another embodiment, in which the measurement cell (
12b), for example, three optical path bodies (llb) are provided in a rotatably stacked state, and each optical path body (11
In correspondence with b), 311 light sources (1
5b) and an infrared detector (16b).

これは、試料ガス中の測定成分が多成分でかつ試料ガス
中の測定成分の濃度が大きく変化する場合の測定に用い
ることができる。
This can be used for measurements when the sample gas has multiple components to be measured and the concentrations of the components to be measured in the sample gas vary greatly.

以上の他に、密閉筒状部材を4以上にして試料ガス中の
多成分の測定用としてもよく、また、最も長い密閉筒状
部材の両端部と測定セルの内壁との隙間を極力少なくし
て、最も長い密閉筒状部材が測定ヒルの内壁を摺動して
回転するようにすると、光路体の回転によって試料ガス
が測定セル内に吸引されるとともに試料ガスを測定セル
外に排出させることができるため、測定セルへの試料ガ
ス導入のためのポンプを設ける必要がなくなる。
In addition to the above, four or more sealed cylindrical members may be used to measure multiple components in the sample gas, and the gap between both ends of the longest sealed cylindrical member and the inner wall of the measurement cell may be minimized. When the longest sealed cylindrical member slides on the inner wall of the measurement hill and rotates, the rotation of the optical path body draws the sample gas into the measurement cell and causes the sample gas to be discharged outside the measurement cell. This eliminates the need to provide a pump for introducing sample gas into the measurement cell.

(ト)発明の効果 この発明によれば、試料中の1以上の測定成分の濃度が
試料ガス毎に大きく変化する場合でも、試料ガス中の複
数の測定成分の濃度が測定成分毎に大きく異なる場合で
も、分析計の構成部品を交換することなく簡単にかつ正
確に各測定成分の濃度を測定することができる。
(G) Effects of the Invention According to this invention, even when the concentration of one or more measurement components in a sample varies greatly depending on the sample gas, the concentrations of the plurality of measurement components in the sample gas vary greatly depending on the measurement component. Even in cases where the analyzer is in use, the concentration of each component can be easily and accurately measured without replacing any component parts of the analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図は第1図
のA−A断面図、第3図はこの発明の他の実施例を示す
第1図相当図、第4図はこの発明のもう一つの他の実施
例を示ず第2図相当図、第5図は従来例の斜視図である
。 (イ))・・・・・・赤外線式ガス分析計、(Ill 
(11a )  (11b ) −−−−−−光路体、
G21 (12a )  (12b )−=−mll定
セル、03) (13b )・・・・・・回転軸、G4
)(14b)・・・・・・モータ、051 (15a 
)  (15b ) −−光m、(16) (16a 
)  (16b ) −−赤外線検出器、08)8■・
・・・・・密閉筒状部材(長手部材)、21)・・・・
・・試料ガス導入路、 (支)・・・・・・試料ガス排出路、 (支)・・・・・・赤外線透過窓。 第2図
FIG. 1 is a sectional view of one embodiment of this invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, FIG. 3 is a view corresponding to FIG. 1 showing another embodiment of this invention, and FIG. 2 shows another embodiment of the present invention, and FIG. 5 is a perspective view of a conventional example. (I))... Infrared gas analyzer, (Ill
(11a) (11b) ------- Optical path body,
G21 (12a) (12b)-=-mll constant cell, 03) (13b)... Rotation axis, G4
) (14b)...Motor, 051 (15a
) (15b) --light m, (16) (16a
) (16b) --Infrared detector, 08)8■・
... Sealed cylindrical member (longitudinal member), 21) ...
...Sample gas introduction path, (branch)...Sample gas discharge path, (branch)...Infrared transmission window. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、長手方向に赤外線透過可能な長さの異なる複数の長
手部材を同一平面でかつそれぞれその長手方向の中央部
で交差させて形成した少なくとも一つの光路体と、試料
ガス導入路及び試料ガス排出路を備えた中空円盤体でそ
の胴壁の対称位置に少なくとも一対の赤外線透過窓を有
し前記光路体を収納する測定セルと、光路体の交差部中
心を挟持しその交差方向と略直交する向きで測定セルの
中心軸と略同軸に測定セル外に回転可能に延出された回
転軸と、測定セル外に設けられ前記回転軸を回転させる
モータと、測定セルの胴外壁に取付けられ前記赤外線透
過窓を透過し光路を回転させたときにその各長手部材を
透過する光路を形成する少なくとも一対の光源及び赤外
線検出器とを備え、かつ測定セルの赤外線透過窓を試料
ガス中の測定成分の吸収波長を代表する波長を透すため
のフィルタが着脱可能に取付けられるよう構成し、さら
に光路体の最も長い長手部材の両端面を試料ガス中の測
定成分とは無関係のフィルタが着脱可能に取付けられる
よう構成するとともに、光路体の他の各長手部材の両端
面を試料ガス中の吸収波長を代表する波長を透すための
フィルタがそれぞれ着脱可能に取付けられるよう構成し
てなる赤外線式ガス分析計。
1. At least one optical path body formed by a plurality of longitudinal members having different lengths that can transmit infrared rays in the longitudinal direction and intersecting each other at the center of the longitudinal direction, a sample gas introduction path, and a sample gas discharge A hollow disc body with a passageway, having at least a pair of infrared transmitting windows at symmetrical positions on its body wall, and a measuring cell that houses the optical passageway body, and a measurement cell that holds the center of the intersection of the optical passageways and is substantially perpendicular to the direction of intersection thereof. a rotating shaft rotatably extending outside the measuring cell approximately coaxially with the central axis of the measuring cell; a motor provided outside the measuring cell for rotating the rotating shaft; at least one pair of light sources and an infrared detector forming an optical path that passes through the infrared transmitting window and transmits through each longitudinal member when the optical path is rotated; It is configured so that a filter that transmits a wavelength representative of the absorption wavelength of the sample gas can be removably attached, and filters unrelated to the measurement component in the sample gas can be attached and detached to both end faces of the longest longitudinal member of the optical path body. The infrared gas type is configured such that filters for transmitting wavelengths representative of the absorption wavelengths in the sample gas can be detachably attached to both end faces of each of the other longitudinal members of the optical path body. Analyzer.
JP60158832A 1985-07-18 1985-07-18 Infrared ray type gas analyzer Pending JPS6219736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158832A JPS6219736A (en) 1985-07-18 1985-07-18 Infrared ray type gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158832A JPS6219736A (en) 1985-07-18 1985-07-18 Infrared ray type gas analyzer

Publications (1)

Publication Number Publication Date
JPS6219736A true JPS6219736A (en) 1987-01-28

Family

ID=15680366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158832A Pending JPS6219736A (en) 1985-07-18 1985-07-18 Infrared ray type gas analyzer

Country Status (1)

Country Link
JP (1) JPS6219736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002030A (en) * 2012-06-18 2014-01-09 Denso Corp Concentration detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002030A (en) * 2012-06-18 2014-01-09 Denso Corp Concentration detector

Similar Documents

Publication Publication Date Title
CA1136886A (en) Spectrophotometer
US5876674A (en) Gas detection and measurement system
US3796887A (en) Photometric analyzer
SE468782B (en) gas analyzer
JPH02236441A (en) Apparatus and method for identifying multiple gas
US6512230B1 (en) Method and an arrangement for initiating radiation absorption measurements of gaseous media
JP2559851B2 (en) Calibration device for non-dispersive infrared photometer
JPS6131415B2 (en)
EP1167949B1 (en) Isotopomer absorption spectral analyzer and its method
US5572032A (en) Gas analyzer and gas-analyzing mechanism
Van Wagenen et al. Dedicated monitoring of anesthetic and respiratory gases by Raman scattering
Millikan Photoelectric methods of measuring the velocity of rapid reactions-III—A portable micro-apparatus applicable to an extended range of reactions
JPS6219736A (en) Infrared ray type gas analyzer
JPH0266428A (en) Multicomponent measuring instrument
US4444499A (en) Detector for use in optical measuring instruments
JP4218954B2 (en) Absorption analyzer
JP2001324446A (en) Apparatus for measuring isotope gas
US3756726A (en) Spectral analysis utilizing a beam-switching optical system
US4167338A (en) Method and apparatus for determining the quantity ratio of two components of a multi-substance mixture
GB2214291A (en) Device for measuring the concentration of gaseous or vaporous constituents of a fluid mixture
US3161769A (en) Ultraviolet spectrometer with means to change the length of the optical path in the fluent material
US3342099A (en) Scattered light spectrophotometer
JPH02249955A (en) Multiple times reflected light type absorptiometry
JPH023459B2 (en)
JPS6010132A (en) Optical measuring instrument