JPH023459B2 - - Google Patents

Info

Publication number
JPH023459B2
JPH023459B2 JP16559582A JP16559582A JPH023459B2 JP H023459 B2 JPH023459 B2 JP H023459B2 JP 16559582 A JP16559582 A JP 16559582A JP 16559582 A JP16559582 A JP 16559582A JP H023459 B2 JPH023459 B2 JP H023459B2
Authority
JP
Japan
Prior art keywords
gas
cell
concentration
infrared
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16559582A
Other languages
Japanese (ja)
Other versions
JPS5954951A (en
Inventor
Tsutomu Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP57165595A priority Critical patent/JPS5954951A/en
Publication of JPS5954951A publication Critical patent/JPS5954951A/en
Publication of JPH023459B2 publication Critical patent/JPH023459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、各種の工業、特に化学工業において
工業計器として使用される赤外線ガス分析計に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared gas analyzer used as an industrial instrument in various industries, particularly in the chemical industry.

各種の工業において、高度の生産性を確保して
いくためには、反応生成分の濃度を知り、自動制
御や工程管理を行うことが重要で、このため各種
のガス分析計によつて濃度を測定している。この
ガス分析計としては、測定対象が比較的広く、し
かも選択性すなわち、被検ガス中に数種の成分が
含まれている場合、他の成分に影響されることな
しに測定成分のみを検出できる性質がすぐれてい
る赤外線ガス分析計が広く使用されている。
In order to ensure high productivity in various industries, it is important to know the concentration of reaction products and perform automatic control and process management. Measuring. This gas analyzer can measure a relatively wide range of targets, and is highly selective.In other words, when the gas being tested contains several components, it detects only the component to be measured without being affected by other components. Infrared gas analyzers are widely used because of their excellent properties.

従来の赤外線ガス分析計は第1図に示すよう
に、光源1によつて照射される赤外線の光軸上集
光器2との間に、モータ3で回転駆動される回転
ホイール4により交互にセツトされる透過ガスセ
ル5、基準ガスセル6を介して被検ガスが送給さ
れるサンプルセル7が設けられ、これらセルを透
過した光量を、例えばHgCdTeなどのセンサ8で
受光するように構成されている。
As shown in FIG. 1, a conventional infrared gas analyzer has a rotating wheel 4 driven by a motor 3 that alternately connects an on-axis condenser 2 of infrared rays irradiated by a light source 1. A sample cell 7 to which a test gas is supplied via a permeation gas cell 5 and a reference gas cell 6 is provided, and a sensor 8 such as HgCdTe is configured to receive the amount of light transmitted through these cells. There is.

前記基準ガスセル6には、測定しようとする成
分ガス例えばCH4がほぼ飽和状態で封入されてい
る。この基準ガスセル6が回転ホイール4により
光軸上にセツトされているときは、センサ8の出
力Aとして第2図aに示すような波長Bの3.3μ域
に大きなパルス変動を有する波形を得る。すなわ
ち、H4ガスは3.3μの赤外線領域を良く吸収する
性質があり、逆にこの性質を利用してCH4ガス濃
度を知ることができる。
The reference gas cell 6 is filled with a component gas to be measured, for example, CH 4 in a substantially saturated state. When the reference gas cell 6 is set on the optical axis by the rotary wheel 4, the output A of the sensor 8 has a waveform having large pulse fluctuations in the 3.3μ region of the wavelength B as shown in FIG. 2a. That is, H 4 gas has the property of absorbing well in the 3.3μ infrared region, and conversely, this property can be used to determine the CH 4 gas concentration.

一方前記透過ガスセル5には、光を遮らない
(少なくとも被検ガスの赤外線吸収領域を遮らな
い)ガス例えばN2ガスが封入され、基準ガスセ
ル6が存在しない光軸上の空間に雰囲気ガスが流
入してこのガスが光をさえぎらないようにしてい
る。このときはサンプルセル7に送給される被検
ガス中の各成分ガスが遮光する波形として第2図
bを得ることができる。したがつて被検ガス中の
CH4濃度は、第2図aの3.3μにおけるパルスの大
きさ(100%濃度)と第2図bの同じ領域のパル
スの大きさの比から求めることができる。
On the other hand, the transmission gas cell 5 is filled with a gas that does not block light (at least does not block the infrared absorption region of the test gas), such as N 2 gas, and atmospheric gas flows into the space on the optical axis where the reference gas cell 6 does not exist. This prevents this gas from blocking the light. At this time, a waveform shown in FIG. 2b can be obtained as a light-shielding waveform of each component gas in the test gas fed to the sample cell 7. Therefore, the
The CH 4 concentration can be determined from the ratio of the pulse magnitude (100% concentration) at 3.3 μ in FIG. 2a and the pulse magnitude in the same region in FIG. 2b.

ところで、赤外線ガス分析計においては、被検
ガスの濃度が低すぎるときは、単に基準ガスによ
る出力を比較しただけでは、その差が読みとりに
くい。またその領域の出力変化値はリニヤリテイ
が悪くなり測定精度が低くなるという欠点があつ
た。これを解決するためにサンプルセル7を長く
して、透過ガスセル5が光軸上にセツトされてい
るときの出力値がリニヤとなる領域内で変化する
よう選ぶことが行われている。
By the way, in an infrared gas analyzer, when the concentration of the test gas is too low, it is difficult to read the difference simply by comparing the output with the reference gas. Moreover, the linearity of the output change value in that region is poor and the measurement accuracy is low. In order to solve this problem, the sample cell 7 is made longer so that the output value changes within a linear range when the transmitted gas cell 5 is set on the optical axis.

しかるに従来のこの種赤外線ガス分析計におい
ては、サンプルセル7を長さの異なる種々用意し
なければならないうえに、集光器2やセンサ8を
サンプルセル7の長さに応じて配設位置を換えな
ければならないという不具合があつた。また外
形々状が定まらないことに起因する保護筐内格納
化の困難や操作の煩雑さなどもあり問題となつて
いた。
However, in this type of conventional infrared gas analyzer, it is necessary to prepare sample cells 7 of various lengths, and the placement positions of the condenser 2 and sensor 8 must be adjusted depending on the length of the sample cell 7. There was a problem that I had to replace it. Further, problems such as difficulty in storing the device in a protective case and complicated operation due to the indeterminate external shape have also arisen.

本発明はこのような事情に鑑みなされたもの
で、サンプルセルをる光軸上に、測定出力を高め
る濃度の被検ガス成分を封入した調整ガスセルを
着脱自在に介装するというきわめて簡単な構成に
より、低濃度の被検ガスであつてもサンプルセル
の長さなどの変更を要せずに精度良く測定するこ
とができる赤外線ガス分析計を提供するものであ
る。以下、その構成等を図に示す実施例によつて
詳細に説明する。
The present invention was developed in view of the above circumstances, and has an extremely simple structure in which a conditioning gas cell filled with a gas component to be detected at a concentration that increases the measurement output is removably inserted on the optical axis of the sample cell. This provides an infrared gas analyzer that can accurately measure even low-concentration test gases without changing the length of the sample cell or the like. Hereinafter, the configuration and the like will be explained in detail by referring to embodiments shown in the drawings.

第3図は本発明に係る赤外線ガス分析計を示す
断面図で、同図において符号11で示すものは赤
外線を照射す光源を示し、この光源11による光
軸上にはこれに対向して後述する複数個のセルを
透過した透過光を集光する集光器12が設けられ
ている。この集光器12と前記光源11との間に
はモータ13が前記光軸と平行に固定され、この
モータ13の出力軸には円形の回転ホイール14
が軸装されている。この回転ホイール14には、
透過ガスセル15と基準ガスセル16とが交互に
軸線方向に装着され、これらのセル15,16は
モータ13の回転ホイール14駆動により、交互
に光源11の光軸上に臨むように位置決めされ
る。
FIG. 3 is a cross-sectional view showing an infrared gas analyzer according to the present invention. In the same figure, the reference numeral 11 indicates a light source that irradiates infrared rays, and a light source 11 on the optical axis is located opposite to this and will be described later. A condenser 12 is provided to condense transmitted light transmitted through a plurality of cells. A motor 13 is fixed between the condenser 12 and the light source 11 in parallel to the optical axis, and a circular rotating wheel 14 is attached to the output shaft of the motor 13.
is mounted on the shaft. This rotating wheel 14 includes
A transmitted gas cell 15 and a reference gas cell 16 are installed alternately in the axial direction, and these cells 15 and 16 are positioned so as to face the optical axis of the light source 11 alternately by driving a rotary wheel 14 of a motor 13.

前記透過および基準ガスセル15,16は少な
くとも光源11に対向する部分が透光性材から形
成され、透過ガスセル15中には光を遮らない
(少なくとも被検ガスの赤外線吸収領域を遮らな
い)透過ガスが封入され、光軸上に雰囲気ガスが
流入して光を遮るのを防止している。基準ガスセ
ル16内には、測定しようとする成分ガスが飽和
状態(濃度100%)の基準ガスが封入されている。
The transmission and reference gas cells 15 and 16 are made of a transparent material at least in the portion facing the light source 11, and the transmission gas cell 15 contains a transmission gas that does not block light (at least does not block the infrared absorption region of the test gas). is sealed to prevent atmospheric gas from flowing onto the optical axis and blocking the light. The reference gas cell 16 is filled with a reference gas in which the component gas to be measured is saturated (concentration 100%).

17は光軸上前記集光器12の前方に設けら
れ、被検ガスが連続的にその内部に送給されるサ
ンプルセルで、透過および基準ガスセル15,1
6と同様に少なくとも光源に対向するすなわち、
光軸上の部分は透光性材から形成されている。こ
のサンプルセル17は被検ガスが低濃度であつて
も、従来のように長さが変更されるようなことが
なく、一定長を有している。これらサンプルセル
17および透過ガスセル15あるいは基準ガスセ
ル16を透光した透過光は前記集光器12に集光
される。これをセンサ18が受光し測定出力を得
ることができる。
17 is a sample cell provided in front of the condenser 12 on the optical axis, into which the test gas is continuously fed;
6, at least facing the light source, i.e.
The portion on the optical axis is made of a translucent material. This sample cell 17 has a constant length, without changing its length as in the conventional case, even if the sample gas is at a low concentration. The transmitted light that has passed through the sample cell 17 and the transmitted gas cell 15 or the reference gas cell 16 is focused on the condenser 12. The sensor 18 receives this light and can obtain a measurement output.

19は前記回転ホイール14とサンプルセル1
7との間サンプルセル17を通る光軸上に着脱自
在に介装された調整ガスセルで、この調整ガスセ
ル19は少なくとも光軸上の部分は透光性材から
形成されている。その内部には被検ガスの濃度が
低いときに、センサ18の測定出力を基準ガスセ
ル16内の基準ガスとの信号比較が容易なレベル
に高める濃度を有する被検ガス成分の調整ガスが
封入されている。換言すれば、調整ガス19の被
検ガス成分は第2図bに示すセンサ出力において
読みとりやすいパルスが得られるような濃度に調
整されている。20はその内部に挿入された前記
調整ガスセル19を光軸上に保持する保持部材
で、調整ガスセル19が装着されないときには、
前記透過ガスセル15と同様なセルが装着され雰
囲気の内部流入を防止している。
19 is the rotating wheel 14 and the sample cell 1;
The adjustment gas cell 19 is removably interposed on the optical axis passing through the sample cell 17 between the adjustment gas cell 19 and the sample cell 17. At least the portion on the optical axis of the adjustment gas cell 19 is made of a translucent material. An adjustment gas containing a component of the test gas is sealed inside the chamber, and has a concentration that increases the measurement output of the sensor 18 to a level that makes it easy to compare the signal with the reference gas in the reference gas cell 16 when the concentration of the test gas is low. ing. In other words, the concentration of the gas component to be detected in the adjustment gas 19 is adjusted to such a level that an easy-to-read pulse is obtained in the sensor output shown in FIG. 2b. 20 is a holding member that holds the adjustment gas cell 19 inserted therein on the optical axis, and when the adjustment gas cell 19 is not attached,
A cell similar to the permeation gas cell 15 is installed to prevent the atmosphere from flowing inside.

このように構成された赤外線ガス分析計におい
ては、モータ13により回転ホイール14を駆動
して光軸上に、透過ガスセル15と基準ガスセル
16とを交互に選択的に臨ませることができる。
したがつて光源11から照射される赤外線の光軸
上には、透過ガスセル15あるいは基準ガスセル
16のいずれか一方、調整ガスセル19、サンプ
ルセル17、集光器12、センサ18が配設され
ることになる。そしてサンプルセル17内の被検
ガスの濃度は従来の赤外線ガス分析計と同様に、
基準ガスセル16を透過した赤外線と透過ガスセ
ル15を透過した赤外線との比較によつて求める
ことができる。前記基準ガスセル16を透過した
赤外線は、前記第2図aに示すグラフとほとんど
変らない信号として得られる。これは光軸上に配
設された基準ガスセル16の基準ガス濃度は、そ
れ以外のセル内ガスの信号が加わつた程度ではほ
とんど信号として押上げることのない100%濃度
に近い値を、それだけで与えてしまうからであ
る。一方透過ガスセル15を透過した赤外線は、
サンプルセル17内に連続的に送給される被検ガ
スの濃度によつて、逐次出力されることになる。
In the infrared gas analyzer configured in this manner, the rotary wheel 14 is driven by the motor 13 so that the transmission gas cell 15 and the reference gas cell 16 can be alternately and selectively faced on the optical axis.
Therefore, on the optical axis of the infrared rays emitted from the light source 11, either the transmission gas cell 15 or the reference gas cell 16, the adjustment gas cell 19, the sample cell 17, the concentrator 12, and the sensor 18 are arranged. become. The concentration of the gas to be detected in the sample cell 17 is determined as in the conventional infrared gas analyzer.
It can be determined by comparing the infrared rays transmitted through the reference gas cell 16 and the infrared rays transmitted through the transmitted gas cell 15. The infrared rays transmitted through the reference gas cell 16 are obtained as a signal that is almost the same as the graph shown in FIG. 2a. This means that the reference gas concentration in the reference gas cell 16 placed on the optical axis can reach a value close to 100% concentration, which is hardly raised as a signal by adding signals from other gases in the cell. Because it gives away. On the other hand, the infrared rays transmitted through the transmission gas cell 15 are
It is outputted sequentially depending on the concentration of the test gas that is continuously fed into the sample cell 17.

ところで本発明においては調整ガスセル19が
着脱自在に介装されているので、前記被検ガスの
濃度がきわめて低いときであつても、測定出力は
調整ガスセル19内の調整ガスによつて、基準ガ
スとの信号比較が容易なレベルに高められてい
る。このため、基準ガスによる信号と比較され易
いレベルの値を得ることができる。濃度の表示は
高めた値を差引くことにより正確に行える。
By the way, in the present invention, since the adjustment gas cell 19 is detachably installed, even when the concentration of the test gas is extremely low, the measurement output is determined by the adjustment gas in the adjustment gas cell 19, so that the measurement output is equal to that of the reference gas. The signal has been raised to a level that makes it easy to compare signals with Therefore, it is possible to obtain a value at a level that can be easily compared with the signal from the reference gas. The concentration can be displayed accurately by subtracting the increased value.

また第4図に示すように濃度Cによつて0から
基準ガス濃度のD位置まで変化するセンサ出力A
のリニヤリテイが問題視されることがあるが、本
発明のように信号のいわゆる底上げが自在にでき
れば、直線性の良いE部分に測定基準点F(ゼロ
点)を移すことができるから、その前後の信号変
化が読み易く、その表示にも補正を要することが
ない。
In addition, as shown in Fig. 4, the sensor output A varies from 0 to the reference gas concentration D position depending on the concentration C.
The linearity of the signal is sometimes viewed as a problem, but if the so-called bottom of the signal can be raised freely as in the present invention, the measurement reference point F (zero point) can be moved to the E section with good linearity, and the The signal changes are easy to read, and the display does not require correction.

第5図は第2の実施例を示す斜視図、第6図は
第3の実施例を示す要部断面図で、これらの図に
おいて第3図に示すものと同一あるいは同等な部
材には同一符号を付す。第5図に示す実施例にお
いては、多成分の被検ガスを測定するために、回
転ホイール14には測定しようとする成分の数
(本実施例においては3個)の基準ガスセル16,
16,16が装着されている。また調整ガスセル
19内には、各成分ガスごとのセンサ出力を基準
ガスのものと容易に比較できるレベルに高める濃
度の調整ガスが混合状態で封入されている。また
この場合、調整ガスセル19は第6図に示す実施
例のように分離取出し、取換え可能に軸方向に分
割し、個々の調整ガスセル19a,19b,19
c内に各成分ガスごとの調整ガスをそれぞれ封入
してもよい。
FIG. 5 is a perspective view showing the second embodiment, and FIG. 6 is a cross-sectional view of main parts showing the third embodiment. In these figures, the same or equivalent parts as shown in FIG. Attach a sign. In the embodiment shown in FIG. 5, in order to measure a multi-component test gas, the rotating wheel 14 includes reference gas cells 16 for the number of components to be measured (three in this embodiment);
16, 16 are installed. Further, the adjustment gas cell 19 is filled with a mixed adjustment gas having a concentration that increases the sensor output of each component gas to a level that can be easily compared with that of the reference gas. In this case, the adjustment gas cell 19 is divided in the axial direction so that it can be taken out and replaced as in the embodiment shown in FIG.
Adjustment gases for each component gas may be individually sealed in c.

これらの実施例においても、サンプルセル17
内の被検ガスの濃度は、基準ガスセル16を透過
した赤外線と透過ガスセル15を透過した赤外線
との比較によつて求めることができる。また赤外
線の吸収波長域が成分ガスごとに異なるので、被
検ガスが濃度差の大きな混合多成分ガスであつて
も、各成分を同一レンジで同時に測定することが
できる。
In these embodiments as well, the sample cell 17
The concentration of the gas to be detected in the gas can be determined by comparing the infrared rays transmitted through the reference gas cell 16 and the infrared rays transmitted through the transmitted gas cell 15. Furthermore, since the absorption wavelength range of infrared rays differs for each component gas, even if the sample gas is a mixed multi-component gas with a large difference in concentration, each component can be measured simultaneously in the same range.

なお上記実施例においては調整ガスセル19を
サンプルセルと基準ガスセル16あるいは透過ガ
スセル15との間に介装しているが本発明はこれ
に限定されるものではなく、光源11と集光器1
2との間サンプルセル17を通る光軸上であれ
ば、いかなる位置でもよいのはいうまでもない。
また回転ホイール14によつて透過ガスセル15
および基準ガスセル16を選択的に光軸上に臨ま
せているが、光軸を2つに分割し、それぞれの分
割光軸上で被検ガスと基準ガスとを比較するよう
にしたいわゆる「2ビーム方式」の赤外線ガス分
析計にも実施できるのは勿論である。あらかじめ
各濃度の調整ガスセル19を各種用意しておき交
換すれば、濃度変化が激しい被検ガスであつても
迅速に対応することもできる。
In the above embodiment, the adjustment gas cell 19 is interposed between the sample cell and the reference gas cell 16 or the transmission gas cell 15, but the present invention is not limited to this.
Needless to say, any position on the optical axis passing through the sample cell 17 between the sample cell 17 and the sample cell 17 may be used.
The permeate gas cell 15 is also rotated by the rotating wheel 14.
The reference gas cell 16 is selectively placed on the optical axis, but the optical axis is divided into two, and the test gas and the reference gas are compared on each divided optical axis. Of course, this method can also be applied to a beam-type infrared gas analyzer. By preparing various adjustment gas cells 19 for each concentration in advance and replacing them, it is possible to quickly respond to the test gas, even if the concentration changes rapidly.

以上説明したように本発明によればサンプルセ
ルを通る光軸上に、基準ガスとの信号比較が容易
なレベルに測定出力を高める濃度の被検ガス成分
を封入した調整ガスセルを着脱自在に介装したか
ら、被検ガスの濃度がきわめて低いときは、調整
ガスセルによつて、透過ガスセルを透過した赤外
線の測定出力を基準ガスセルを透過した赤外線と
の信号比較が容易なレベルに高めることができる
と共に、センサ出力の測定基準点を直線性の良い
部分に移すことができる。
As explained above, according to the present invention, on the optical axis passing through the sample cell, a regulating gas cell filled with a gas component to be detected at a concentration that increases the measurement output to a level that facilitates signal comparison with a reference gas is detachably inserted. Therefore, when the concentration of the test gas is extremely low, the adjustment gas cell can increase the measurement output of the infrared light transmitted through the transmission gas cell to a level that makes it easy to compare the signal with the infrared light transmitted through the reference gas cell. At the same time, the measurement reference point of the sensor output can be moved to a portion with good linearity.

したがつて、被検ガスの濃度がきわめて低いと
きであつても従来のようにサンプルセルを長くす
ることなく、一定長のサンプルセルで高精度に被
検ガスの濃度を測定できるという効果がある。こ
のため測定操作の簡素化ならびに保護筐内格納化
がはかれるという効果もある。
Therefore, even when the concentration of the gas to be detected is extremely low, it is possible to measure the concentration of the gas to be detected with high precision using a sample cell of a certain length, without increasing the length of the sample cell as in conventional methods. . This has the effect of simplifying the measurement operation and allowing it to be stored in a protective case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の赤外線ガス分析計を示す断面
図、第2図はセンサの出力と(a)基準ガスセルを透
過した赤外線(b)透過ガスセルを透過した赤外線の
波長との関係を示すグラフ、第3図は本発明に係
る赤外線ガス分析計の一実施例を示す断面図、第
4図はセンサ出力と濃度との関係を示すグラフ、
第5図は本発明に係る赤外線ガス分析計の第2の
実施例を示す斜視図、第6図は同じく第3の実施
例を示す要部断面図である。 11……光源、15……透過ガスセル、16…
…基準ガスセル、17……サンプルセル、18…
…センサ、19……調整ガスセル。
FIG. 1 is a cross-sectional view of a conventional infrared gas analyzer, and FIG. 2 is a graph showing the relationship between the output of the sensor and (a) the infrared rays transmitted through the reference gas cell, and (b) the wavelength of the infrared rays transmitted through the transmission gas cell. FIG. 3 is a sectional view showing an embodiment of an infrared gas analyzer according to the present invention, and FIG. 4 is a graph showing the relationship between sensor output and concentration.
FIG. 5 is a perspective view showing a second embodiment of the infrared gas analyzer according to the present invention, and FIG. 6 is a sectional view of a main part of the third embodiment. 11...Light source, 15...Transmission gas cell, 16...
...Reference gas cell, 17...Sample cell, 18...
...sensor, 19...adjustment gas cell.

Claims (1)

【特許請求の範囲】 1 被検ガスが送給される一定長さのサンプルセ
ルを通る光軸上に、基準ガスとの信号比較が容易
なレベルに測定出力を高める濃度の被検ガス成分
を封入した調整ガスセルを着脱自在に介装したこ
とを特徴とする赤外線ガス分析計。 2 上記調整ガスセルは検出しようとする複数成
分のガスごとに分離取出し、取換え可能に軸方向
に分割されていることを特徴とする特許請求の範
囲第1項記載の赤外線ガス分析計。
[Claims] 1. On the optical axis passing through a sample cell of a certain length to which the test gas is fed, a test gas component is placed at a concentration that increases the measurement output to a level that makes signal comparison with a reference gas easy. An infrared gas analyzer characterized by a removably inserted adjustment gas cell. 2. The infrared gas analyzer according to claim 1, wherein the adjustment gas cell is divided in the axial direction so that each gas component to be detected can be separated and replaced.
JP57165595A 1982-09-22 1982-09-22 Infrared ray gas analyzer Granted JPS5954951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165595A JPS5954951A (en) 1982-09-22 1982-09-22 Infrared ray gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165595A JPS5954951A (en) 1982-09-22 1982-09-22 Infrared ray gas analyzer

Publications (2)

Publication Number Publication Date
JPS5954951A JPS5954951A (en) 1984-03-29
JPH023459B2 true JPH023459B2 (en) 1990-01-23

Family

ID=15815331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165595A Granted JPS5954951A (en) 1982-09-22 1982-09-22 Infrared ray gas analyzer

Country Status (1)

Country Link
JP (1) JPS5954951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554472U (en) * 1991-12-26 1993-07-20 古河機械金属株式会社 Coil tube winding device
JP2009014661A (en) * 2007-07-09 2009-01-22 Fuji Electric Systems Co Ltd Gas concentration measurement device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277763B2 (en) * 2008-07-14 2013-08-28 富士電機株式会社 Laser gas analyzer
JP5169586B2 (en) * 2008-07-30 2013-03-27 富士電機株式会社 Laser gas analyzer, oxygen gas concentration measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554472U (en) * 1991-12-26 1993-07-20 古河機械金属株式会社 Coil tube winding device
JP2009014661A (en) * 2007-07-09 2009-01-22 Fuji Electric Systems Co Ltd Gas concentration measurement device

Also Published As

Publication number Publication date
JPS5954951A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
US4310249A (en) Spectrophotometer
US4373818A (en) Method and device for analysis with color identification test paper
US3796887A (en) Photometric analyzer
US2761067A (en) Multi-component photometric analysis
SU604518A3 (en) Photoelectric device for analysis of liquids
US3162761A (en) Apparatus for analyzing a mixture of substances by selective absorption of infrared radiation
EP0194102A2 (en) Luminescence measuring arrangement
US3944834A (en) Pollution monitor with self-contained calibration and cell-block therefor
JPH022097B2 (en)
US2741703A (en) Multicomponent radiation gas analysers
JPH0220930B2 (en)
ATE112852T1 (en) CALIBRATION DEVICE FOR A NON-DISPERSIVE INFRARED PHOTOMETER.
US3781910A (en) Infrared absorption analysis method and apparatus for determining gas concentration
US4078896A (en) Photometric analyzer
US4279511A (en) Photometric absorption detector
US5672874A (en) Infrared oil-concentration meter
JPH023459B2 (en)
US4877583A (en) Fluorescent analyzer
US4971439A (en) Wavelength calibration method and apparatus
JP2000131233A (en) Optical in-process control type nephelometry analyzing and detecting unit
US3342099A (en) Scattered light spectrophotometer
EP0296354A2 (en) Gas analyzer
FI64464C (en) REFERENCES FOR USE OF CHEMICAL ANALYSIS
US3706497A (en) Method and apparatus for determining colorimetric concentrations
SU819641A1 (en) Automatic gas sample analyzer