JPS62197115A - Electrode of electroosmotic type dehydrator - Google Patents

Electrode of electroosmotic type dehydrator

Info

Publication number
JPS62197115A
JPS62197115A JP61039776A JP3977686A JPS62197115A JP S62197115 A JPS62197115 A JP S62197115A JP 61039776 A JP61039776 A JP 61039776A JP 3977686 A JP3977686 A JP 3977686A JP S62197115 A JPS62197115 A JP S62197115A
Authority
JP
Japan
Prior art keywords
electrode
anode
lead
electroosmotic
lead dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61039776A
Other languages
Japanese (ja)
Inventor
Mikimasa Yamaguchi
山口 幹昌
Toshitaka Arai
新井 利孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61039776A priority Critical patent/JPS62197115A/en
Publication of JPS62197115A publication Critical patent/JPS62197115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain mechanical strength and abrasion resistance capable of sufficiently withstanding slip squeezing load, by reducing the consumption of an anode due to an elution caused by current supply by constituting the electrode surface of the anode of a bonded body of lead dioxide particles. CONSTITUTION:An electrode segment 1a is used in a state mounted to the peripheral surface of the anode side rotary drum 1 of an electroosmotic type dehydrator. The electrode segment 1a is a short strip like plate having both flat front and back surfaces and a large number of the electrode segments 1a are arranged on the peripheral surface of the rotary drum 1, of which the outer peripheral surface forms a polyhedral flat surface, in parallel and clamped thereto by screws. The electrode surface of each electrode segment 1a is formed of a bonded body of lead oxide particles and this anode surface is formed by a method wherein a lead nitrate or lead sulfate solution is used as an electrolyte bath and the bonded body of the lead oxide particles is electrodeposited to the surface of an electrode substrate by anodic oxidation to cover said surface or a method wherein a lead oxide powder is bonded to the electrode substrate by a pressure molding method to cover said substrate. By this method, an electrode reduced in consumption due to an elution caused by current supply and excellent in durability and abrasion resistance is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、例えば下水処理場に発生した余剰汚泥、あ
るいは食品その他の工業分野で発生するスラリー状物質
の泥漿を被脱水処理物として、この被脱水処理物に電気
浸透と加圧濾過を同時に作用させて脱水処理する電気浸
透式脱水機の電極に関する。
This invention uses surplus sludge generated in sewage treatment plants or slurry-like sludge generated in food and other industrial fields as the material to be dehydrated, and simultaneously applies electroosmosis and pressure filtration to the material to be dehydrated. The present invention relates to an electrode for an electroosmotic dehydrator that performs dehydration treatment.

【従来技術とその問題点】[Prior art and its problems]

まず第3図によりこの発明の実施対象である電気浸透式
脱水機の概要を説明する0図において、1はその外周面
に陽極側電極1aを装着した回転ドラムであり、この回
転ドラム1の周域に対向してフィルタベルト2と重ね合
わせた陰極電極を兼ねるプレスベルト3を配置し、回転
ドラム1との対向面に泥漿圧搾通路4を画成している。 また前記プレスベルト3はスプロケット58〜5dの間
に張架され、かつ泥漿圧搾通路4の背後側にはプレス装
置6が配備されている。さらに7は駆動モータ、8は道
路4の入口側に設置した泥漿供給ホッパ、9は濾水受皿
、10は通路4の出口側に設置した脱水ケーキ分離用の
スクレーパであり、さらに前記した陽極側の回転ドラム
1と陰極側のプレスベルト3との間には直流電源装置1
1が接続されている。 なお陽極側電極1aは短冊状の電極セグメントを回転ド
ラム1の周面に配列して固定したものである。 上記の構成で電源装置11より電圧を印加した状態でホ
ッパ8を通じて泥漿圧搾通路4内に泥漿12を供給する
と、泥漿12は回転ドラム1とフィルタベルト2との間
に挟まれ、通路内を出口側に向けて矢印P方向に搬送さ
れる。この搬送過程で泥漿12には機械的な圧搾力に加
えて、対向電極間に形成された電場により電気浸透脱水
が作用するようになる。これにより泥漿の含有水は正に
帯電して陰極側に流動し、陰極側で放電するとともにフ
ィ)り<#ト2を透過して脱水濾過され・さらに濾水受
皿9を経て系外に排水処理される。一方、道路4内で脱
水処理された泥漿は低含水率となってケーキ化され、そ
の脱水ケーキ13は通路4の出口側からスクレーパ10
を経て分離回収された上で、焼却処分、ないしはコンポ
スト化し肥料として再利用される。 ところで従来では、電気浸透式脱水機の陽極電極1aは
ステンレス鋼、ニッケル鋼、軟鋼等の金属製電極が一般
的に採用されている。しかして電気浸透式脱水機の運転
実績から得た知見によれば、これら材料で作られた陽極
電極では次記のような欠点のあることが明らかになって
いる。すなわち前記材料で作られた陽極電極は通電によ
りその組成成分がイオン化して泥漿内に溶出し、運転時
間の経過とともに電極が消耗する。しかもその溶出量が
多いために電極の寿命が短く、比較的短時間の運転で電
極を新しいものと交換しなければならずその保守管理に
手間が掛かる。さらにステンレス鋼、ニッケル鋼等の電
極では、通電により電極から溶出した重金属イオンが被
脱水処理物、濾水に混入して二次公害を引き起こす恐れ
がある。なお同じ金属の電極材料でも白金等の貴金属は
不溶性にすぐれた性質をもっているが高価であるために
実用には供し得ない、また炭素製の電極も試みたが、炭
素製電極は金属製電極に比べて電極の溶出消耗量が少な
い反面、固有抵抗が大きくて通電特性が低く、かつ機械
的強度も弱いために使用中の圧搾荷重によって破損がす
ることが多い欠点がある。 また電気浸透式脱水機の電極として前述のように電極に
消耗が生じると、陽極と陰極との対向電極間の距離が微
妙に変化することになり、このままでは長期間に互って
効率の良い電気浸透脱水を維持することが困難となる。 このために従来では長期運転の途中で電源電圧等の通電
条件を変えたり、電極間距離を再調整し直す等の手段を
講じたり、ないしは電極を新しい電極に交換する等して
対処していたが、その都度脱水機の運転を中断しなけれ
ばならず運転稼働率が低下する。 このように電極の特性、特にその電気化学的な耐久性は
電気浸透式脱水機の運転性能維持を図る上で大きな比重
を占めており、この面から電極材料の選定、改良が極め
て重要な課題となっている。
First, in Fig. 3, which explains the outline of the electroosmotic dehydrator to which the present invention is applied, reference numeral 1 denotes a rotating drum having an anode side electrode 1a attached to its outer circumferential surface. A press belt 3, which also serves as a cathode electrode and overlapped with a filter belt 2, is disposed facing the area, and a slurry squeezing passage 4 is defined on the surface facing the rotating drum 1. Further, the press belt 3 is stretched between sprockets 58 to 5d, and a press device 6 is provided behind the slurry squeezing passage 4. Furthermore, 7 is a drive motor, 8 is a slurry supply hopper installed on the entrance side of the road 4, 9 is a filtered water tray, 10 is a scraper for separating dehydrated cakes installed on the exit side of the passage 4, and furthermore, the above-mentioned anode side A DC power supply device 1 is installed between the rotating drum 1 and the press belt 3 on the cathode side.
1 is connected. The anode side electrode 1a is made up of strip-shaped electrode segments arranged and fixed on the circumferential surface of the rotating drum 1. With the above configuration, when the slurry 12 is supplied into the slurry squeezing passage 4 through the hopper 8 with voltage applied from the power supply 11, the slurry 12 is sandwiched between the rotating drum 1 and the filter belt 2, and exits the passage. It is transported toward the side in the direction of arrow P. During this transport process, in addition to mechanical squeezing force, electroosmotic dehydration is applied to the slurry 12 by an electric field formed between opposing electrodes. As a result, the water contained in the slurry becomes positively charged and flows toward the cathode, and as it is discharged on the cathode side, it passes through Gt 2 and is dehydrated and filtered, and then drained out of the system through the filtered water receiver 9. It is processed. On the other hand, the dewatered slurry in the road 4 has a low moisture content and is turned into a cake, and the dehydrated cake 13 is passed through the scraper 10 from the exit side of the passage 4.
After being separated and collected, it is incinerated or composted and reused as fertilizer. Conventionally, an electrode made of metal such as stainless steel, nickel steel, or mild steel is generally used as the anode electrode 1a of an electroosmotic dehydrator. However, according to knowledge obtained from operating results of electroosmotic dehydrators, it has become clear that anode electrodes made of these materials have the following drawbacks. That is, when an anode electrode made of the above material is energized, its constituent components are ionized and eluted into the slurry, and the electrode wears out over time. Moreover, since the amount of elution is large, the life of the electrode is short, and the electrode must be replaced with a new one after a relatively short period of operation, making maintenance and management time-consuming. Furthermore, with electrodes made of stainless steel, nickel steel, etc., there is a risk that heavy metal ions eluted from the electrodes when energized may mix into the dehydrated material and filtrate, causing secondary pollution. Although noble metals such as platinum have excellent insolubility properties for the same electrode materials, they are expensive and cannot be used for practical use. Carbon electrodes have also been tried, but carbon electrodes are not as good as metal electrodes. Although the amount of elution and consumption of the electrode is smaller than that, it has a disadvantage that it has a high specific resistance, low current carrying properties, and weak mechanical strength, so it is often damaged by the compressing load during use. In addition, when the electrodes of an electroosmotic dehydrator wear out as mentioned above, the distance between the opposing electrodes (anode and cathode) changes slightly, and if left as is, it will not be possible to maintain efficiency over a long period of time. Electroosmotic dehydration becomes difficult to maintain. Conventionally, this was dealt with by changing the power supply voltage and other energizing conditions during long-term operation, readjusting the distance between the electrodes, or replacing the electrodes with new ones. However, the operation of the dehydrator must be interrupted each time, resulting in a decrease in operating efficiency. As described above, the characteristics of the electrodes, especially their electrochemical durability, play a large role in maintaining the operational performance of electroosmotic dehydrators, and from this perspective, selection and improvement of electrode materials are extremely important issues. It becomes.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、前
述した課題に対処して通電に伴う溶出消耗が少なく、か
つ電気的1機械的にも電気浸透式脱水機の電極として要
求される緒特性を充分に清足できる耐久性の高い陽極電
極を提供することを目的とする。
This invention has been made in consideration of the above points, and has solved the above-mentioned problems by reducing elution and consumption due to energization, and also has electrical and mechanical characteristics required for electrodes of electroosmotic dehydrators. The purpose is to provide a highly durable anode electrode that can provide sufficient cleanliness.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は陽極電極の電極
面を二酸化鉛粒子の結合体と成して構成することにより
、電気浸透式脱水機の電極として電気化学的および機械
的耐久性の高い陽極電極を得るようにしたものである。 なおこの二酸化鉛粒子の結合体は、硝酸鉛溶液ないしは
硫酸鉛溶液等を電解浴として陽極の電極基体表面に電着
して形成するか、ないしは二酸化鉛の粉末を加圧成形し
て被着形成することができる。
In order to achieve the above object, the present invention has an electrode surface of an anode made of a combination of lead dioxide particles, thereby providing high electrochemical and mechanical durability as an electrode for an electroosmotic dehydrator. This is to obtain an anode electrode. This combination of lead dioxide particles can be formed by electrodeposition on the surface of the electrode base of the anode using a lead nitrate solution or lead sulfate solution in an electrolytic bath, or it can be formed by pressure molding lead dioxide powder. can do.

【発明の実施例】[Embodiments of the invention]

以下この発明の実施例を述べる。まず第1図。 第2図にこの発明の実施例による陽極側電極の電極セグ
メントを示す、該電極セグメント1aは第3図に示した
電気浸透式脱水機の陽極側回転ドラム1の周面上に装着
して使用されるもので、該電極セグメン)laは表、裏
の両面が平坦な短冊形の板として成り、外周面が多角形
の平坦面をなす回転ドラム1の周面上に並べてねじ止め
締結される。 ここで前記電極セグメント1aは、その電極面が二酸化
鉛粒子の結合体として構成されている。このような陽極
電極の製作法としては、硝酸鉛、硫酸鉛溶液を電解浴と
して陽極酸化によりあらかじめ第1図、第2図のように
短冊形に作られた電極基体の表面に二酸化鉛粒子結合体
を電着させて被着形成するか、あるいは加圧成形法によ
り電極基体に二酸化鉛粉末を結着して被覆形成される。 このような製作法を採用することにより二酸化鉛粒子の
結合体に対しては殆ど機械的な加工が不要であり有利で
ある。 次に上記陽極電極の特性評価を行うために、他の材料で
製作した陽極電極と対比して発明者が行った電気浸透脱
水の通電に伴う電極消耗特性の実験結果に付いて述べる
。なおこの実験にはバッチ式電気浸透脱水装置に各種材
料で作られた電極を組み込み、電気浸透脱水を所定時間
行った後に電極を取出してその重量を秤量し、当初の重
量と対比して通電量に対する電極の溶出消耗量を算出し
て求めた。 ここで上記実験に使用した各種電極の材料組成成分を試
料側に表記し、電気浸透脱水の実験結果から得られた各
試料の消耗特性を第1表に示す。 なお各試料の組成成分に添字した数字はその成分の重量
%を表す。 試料1ニステンレス鋼5US304 (Fe 70. 
Cr 19.5゜Ni 10. CO,0B ) 試料2ニステンレス鋼5US430 (Fe 82. 
Cr 1B)試料3:ニッケル鋼(Ni 100) 試料4:チタン鋼 (Ti 100) 試料5=インコネル600 (Nl 76、 Cr 1
6. Fe7.2゜11n  O,2,310,2,C
o  0.1)試料6:インコロイ800 (N132
. Fe 46. Cr2O,6゜31 0.35. 
 Cu O,27,CO,04)試料7:二酸化鉛粒子
の結合体(Pb 100)なお試料7については、チタ
ン板にチタンのエキスバンドをスポット溶接したものを
電極基体として、この電極基体の電極面に白金メッキを
施した上で二酸化鉛を電着して構成した。 第1表 上記した第1表の実験結果から明らかなように各試料1
〜7のうち、試料7で示した二酸化鉛粒子の結合体は他
の試料1〜6に比べて重量減少量が極めて少なく、電気
化学的な耐蝕性の高いことが認められる。なおこの微少
な重量減少量に見合う分だけ電極より二酸化鉛が溶出し
て被脱水処理物、減水中に混入することになるが、その
量は自然界に通常含有されている量よりも邊かに少ない
量であり、電気浸透式脱水機の運転に伴う二次公害の発
生は殆ど無視できる。また二酸化鉛粒子結合体の機械的
強度はモース硬度5〜6であり、第3図に示した電気浸
透式脱水機に組込んて使用した際に電極に加わる圧搾荷
重に対しても充分に耐えられる強度と耐摩耗性が得られ
ることが判る。 一方、本発明者は上記実験結果を基にさらに二酸化鉛粒
子の結合体で作られた陽極側電極の実用性を確認するた
めに、第1図、第2図の電極セグメン)laを第3図に
示した電気浸透式脱水機の回転ドラム1の周面上に装着
して実機試験を行った。 なおこの電極セグメント1aとしては、□前記の基礎実
験の場合と同様にチタン板を陽極電極基体として、この
チタン板の電極面側にはチタンのエキスバンドネットを
スポット溶接により固定し、さらに白金メッキを施した
上で電着法により二酸化鉛粒子の結合体を被着形成した
ものを採用した。ここでチタンのエキスバンドネットを
固定したのは電極面に二酸化鉛粒子の結合体と電極基体
との結合強度を高めるためであり、かつ白金メッキは電
極基体の材料であるチタンの酸化を防止して二酸化鉛粒
子の結合体と電極基体との間で高い導電性を維持するた
めである。またこの試験に使用した電気浸透式脱水機の
回転ドラムの寸法は直径69cm+。 ドラム幅26clllであり、かつ試験運転条件として
は被脱水処理物である泥漿濃度を20%、電源装置から
の供給電流を9OA、脱水処理時間を100時間として
試験を行った。 かかる条件で電気浸透脱水試験を行った結果によれば、
泥漿は含水率60〜65%まで脱水することができた。 また試験後に陽極側の電極セグメントを回転ドラムから
取り外して検査を行ったところによれば、外見上で何等
の機械的損傷は認められず、また電極の重量消耗量は回
転ドラムに装着した電極セグメントの全体で6.2gで
あった。一方、回転ドラムの外周全表面積は56d−で
あるが、このうち陰極側電極と対向する脱水領域の面積
は全表面積の半分以下の25dnfであり、したがって
電流平均密度は90A /25 d nf −3,6A
/ d rrfとなる。 また各電極セグメントが実際に電気浸透脱水に関与する
実効時間は回転ドラムの回転に伴って電極が泥漿通路の
領域を通過する時間であり、したがって脱水機の運転時
間100時間に対する陽極側電極の実効使用時間は、 (脱水領域の面積/電極の全表面積)×運転時間= (
25d ryr156d rrr) X  100Hr
#44.6Hrである。 したがって単位通電電流、単位運転時間当たりの陽極電
極の重量減少量は先記した全体重量消耗量6.2g、供
給電流90A、実効使用時間44.6■rから、6.2
g/ 90A X 44.6Hr−1,511g/ A
 −Hr−d rrlとなる。 なおこの計算による算出値は第1表の実験結果と比べて
多少大きな値を示しているが、これはバッチ処理方式と
連続処理方式との相違に基づくものと推察される。 一方、前記した脱水機の運転条件における電極の重量消
耗量6.2gを基に、二酸化鉛粒子の結合体の比重を9
.8g/cdとして、年間を通じて脱水機を連続運転し
たと仮定した場合の各電極セグメントの厚さ減少量を算
出したところによれば、その厚さ減少量は僅か2.2m
mとなる。しかも年間を通じての連続運転で陽極電極の
厚さ減少量がこの程度であれば、陰極との間の対向電極
間間隙の拡大変動は微々たるものであり、運転期間の途
中で行う通電条件の変更、泥漿通路間隙の再調整、ある
いは陽極電極セグメントの交換等の特別な手段を講じな
くても年間を通じて高い電気浸透脱水性能を維持するこ
とが可能である。なお前記した電極の厚さ減少量は通電
電流密度が3.6A/ d nfである場合であり、仮
に脱水機の運転条件をこの電流密度より低く設定して運
転することにより、さらに陽極電極の消耗、厚さ減少量
は少なくなり、電極の寿命をより一層延ばすことが可能
である。
Examples of this invention will be described below. First, Figure 1. FIG. 2 shows an electrode segment of an anode side electrode according to an embodiment of the present invention, and the electrode segment 1a is used by being mounted on the circumferential surface of the anode side rotating drum 1 of the electroosmotic dehydrator shown in FIG. The electrode segments (la) are formed as rectangular plates with flat front and back surfaces, and are arranged and fastened with screws on the circumferential surface of the rotating drum 1 whose outer circumferential surface is a polygonal flat surface. . Here, the electrode segment 1a has an electrode surface configured as a combination of lead dioxide particles. The manufacturing method for such an anode electrode is to bond lead dioxide particles to the surface of an electrode base made in advance into a rectangular shape as shown in Figures 1 and 2 by anodic oxidation using a lead nitrate or lead sulfate solution in an electrolytic bath. The electrode body is formed by electrodeposition, or the electrode base is coated with lead dioxide powder by a pressure molding method. By employing such a manufacturing method, almost no mechanical processing is required for the combined body of lead dioxide particles, which is advantageous. Next, in order to evaluate the characteristics of the above-mentioned anode electrode, the inventors will discuss the results of an experiment on the electrode wear characteristics associated with energization for electroosmotic dehydration in comparison with anode electrodes made of other materials. In this experiment, electrodes made of various materials were installed in a batch-type electroosmotic dehydration device, and after performing electroosmotic dehydration for a predetermined period of time, the electrodes were taken out and weighed, and the amount of current applied was compared to the initial weight. The amount of elution consumption of the electrode was calculated. Here, the material composition of the various electrodes used in the above experiment is indicated on the sample side, and Table 1 shows the wear characteristics of each sample obtained from the electroosmotic dehydration experiment results. Note that the number subscripted to the compositional component of each sample represents the weight percent of that component. Sample 1: Stainless steel 5US304 (Fe 70.
Cr 19.5°Ni 10. CO, 0B) Sample 2 Stainless steel 5US430 (Fe 82.
Cr 1B) Sample 3: Nickel steel (Ni 100) Sample 4: Titanium steel (Ti 100) Sample 5 = Inconel 600 (Nl 76, Cr 1
6. Fe7.2゜11n O,2,310,2,C
o 0.1) Sample 6: Incoloy 800 (N132
.. Fe 46. Cr2O, 6°31 0.35.
Cu O, 27, CO, 04) Sample 7: Combined lead dioxide particles (Pb 100) For sample 7, a titanium plate with a titanium expanded band spot welded was used as the electrode base, and the electrode of this electrode base was The surface was plated with platinum and lead dioxide was electrodeposited on top. Table 1 As is clear from the experimental results in Table 1 above, each sample 1
7, the lead dioxide particle bond shown in sample 7 had a very small amount of weight loss compared to other samples 1 to 6, and was recognized to have high electrochemical corrosion resistance. In addition, lead dioxide will be eluted from the electrode in an amount commensurate with this slight weight loss and will be mixed into the dehydrated material and reduced water, but the amount will be lower than the amount normally contained in nature. The amount is small, and the generation of secondary pollution caused by the operation of the electroosmotic dehydrator can be almost ignored. In addition, the mechanical strength of the lead dioxide particle combination is 5 to 6 on the Mohs scale, and it can withstand the compressive load applied to the electrode when used in the electroosmotic dehydrator shown in Figure 3. It can be seen that the strength and abrasion resistance can be obtained. On the other hand, based on the above experimental results, the present inventor further confirmed the practicality of the anode side electrode made of a combination of lead dioxide particles by replacing the electrode segment (la) in Figs. An actual machine test was carried out by mounting it on the circumferential surface of the rotating drum 1 of the electroosmotic dehydrator shown in the figure. As for this electrode segment 1a, □A titanium plate is used as the anode electrode base as in the case of the basic experiment described above, a titanium expanded band net is fixed to the electrode surface side of this titanium plate by spot welding, and further platinum plated. After that, a composite of lead dioxide particles was applied by electrodeposition. The purpose of fixing the titanium expanded band net here is to increase the bonding strength between the lead dioxide particle combination and the electrode base on the electrode surface, and the platinum plating prevents the oxidation of titanium, which is the material of the electrode base. This is to maintain high electrical conductivity between the lead dioxide particle bond and the electrode base. Additionally, the rotating drum of the electroosmotic dehydrator used in this test had a diameter of 69 cm+. The drum width was 26 clll, and the test operating conditions were that the slurry concentration as the material to be dehydrated was 20%, the current supplied from the power supply was 9OA, and the dehydration treatment time was 100 hours. According to the results of an electroosmotic dehydration test under these conditions,
The slurry could be dehydrated to a water content of 60-65%. Furthermore, after the test, the electrode segment on the anode side was removed from the rotating drum and inspected, and no mechanical damage was observed. The total weight was 6.2g. On the other hand, the total outer surface area of the rotating drum is 56 d-, but the area of the dehydration region facing the cathode side electrode is 25 dnf, which is less than half of the total surface area, so the average current density is 90 A/25 dnf-3. ,6A
/drrf. Furthermore, the effective time during which each electrode segment actually participates in electroosmotic dehydration is the time during which the electrode passes through the area of the slurry passage as the rotating drum rotates, and therefore the effective time of the anode side electrode for 100 hours of operation of the dehydrator The operating time is (area of dehydration area/total surface area of electrode) x operating time = (
25d ryr156d rrr) X 100Hr
#44.6 hours. Therefore, the weight reduction of the anode electrode per unit current and unit operation time is 6.2 from the above-mentioned total weight consumption of 6.2 g, supply current of 90 A, and effective operating time of 44.6 ■r.
g/90A X 44.6Hr-1,511g/A
-Hr-d rrl. Note that the values calculated by this calculation are somewhat larger than the experimental results shown in Table 1, but this is presumably due to the difference between the batch processing method and the continuous processing method. On the other hand, based on the weight consumption of the electrode of 6.2 g under the operating conditions of the dehydrator described above, the specific gravity of the combined body of lead dioxide particles was determined to be 9.
.. According to the calculation of the thickness reduction of each electrode segment assuming that the dehydrator is operated continuously throughout the year at 8g/cd, the thickness reduction is only 2.2m.
m. Moreover, if the thickness of the anode electrode decreases to this extent during continuous operation throughout the year, the increase in the gap between the opposing electrodes and the cathode will be negligible. It is possible to maintain high electroosmotic dewatering performance throughout the year without taking special measures such as readjusting the slurry passage gap or replacing the anode electrode segment. Note that the amount of electrode thickness reduction described above is when the current density is 3.6 A/dnf, and if the operating conditions of the dehydrator are set lower than this current density, the anode electrode thickness will be further reduced. The amount of wear and thickness reduction is reduced, making it possible to further extend the life of the electrode.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、電気浸透式脱水機
に組み込んだ陽極側電極の電極面を二酸化鉛粒子の結合
体と成して構成したことにより、(1)通電に伴う陽極
側電極の溶出消耗量が少なく、したがって電極の交換を
行うことなく高い電気浸透脱水性能を維持して長期間の
連続運転が可能となり、それだけ電気浸透式脱水機の高
い信転性と稼働率が得られる。 (2)電極材料である二酸化鉛粒子の結合体は、電気浸
透脱水運転に伴う溶出量が殆ど無視できる程度の微量で
あることから、電極消耗分が被脱水処理物、瀘水に混入
しても二次公害発生のおそれは殆どない。 (3)二酸化鉛粒子の結合体は機械的に高い強度と耐摩
耗性を有し、脱水運転時に電極に加わる泥漿圧搾荷重に
も充分に耐えることができる。 (4)電着ないし加圧成形法等により電極基体の電極面
に二酸化鉛粒子の結合体を被着形成することができ、大
面積の電極も容易に製作できる。 等の利点が得られ、電気浸透式脱水機の陽極側電極とし
て要求される機械的、電気的な特性を充分に満足する耐
久性に優れた電極を提供することができる。
As described above, according to the present invention, by configuring the electrode surface of the anode side electrode incorporated in the electroosmotic dehydrator as a combination of lead dioxide particles, (1) the anode side electrode when energized Since the amount of elution consumption is small, it is possible to maintain high electroosmotic dehydration performance without replacing the electrodes and operate continuously for a long period of time, which increases the reliability and operation rate of the electroosmotic dehydrator. . (2) The amount of the lead dioxide particle bond that is the electrode material elutes during electroosmotic dehydration operation is negligible, so the amount of electrode consumption is likely to be mixed into the dehydrated material and filtered water. There is also little risk of secondary pollution occurring. (3) The combined body of lead dioxide particles has high mechanical strength and wear resistance, and can sufficiently withstand the slurry squeezing load applied to the electrode during dehydration operation. (4) A bond of lead dioxide particles can be deposited on the electrode surface of the electrode base by electrodeposition or pressure molding, and a large-area electrode can be easily produced. It is possible to provide a highly durable electrode that fully satisfies the mechanical and electrical properties required for the anode side electrode of an electroosmotic dehydrator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による陽極側電極の電極セグ
メントの平面図、第2図は第1図の矢視n−n断面図、
第3図は連続処理方式の電気浸透式脱水機の構成図であ
る。各図において、1:陽極側の回転ドラム、1a:電
極セグメント、3:陰極側電極を兼ねたプレスベルト、
4:泥漿通路、11:電源装置、12:被脱水処理物と
しての第1図
FIG. 1 is a plan view of an electrode segment of an anode side electrode according to an embodiment of the present invention, FIG. 2 is a sectional view taken along arrow nn in FIG.
FIG. 3 is a block diagram of a continuous treatment type electroosmotic dehydrator. In each figure, 1: a rotating drum on the anode side, 1a: an electrode segment, 3: a press belt that also serves as a cathode side electrode,
4: Slurry passageway, 11: Power supply device, 12: Figure 1 as material to be dehydrated

Claims (1)

【特許請求の範囲】 1)陽極と陰極との対向電極の間に被脱水処理物を供給
し、前記電極間に直流電圧を印加して被脱水処理物の脱
水濾過を行う電気浸透式脱水機において、陽極側電極の
電極面を二酸化鉛粒子の結合体と成して構成したことを
特徴とする電気浸透式脱水機の電極。 2)特許請求の範囲第1項記載の電極において、硝酸鉛
溶液ないし硫酸鉛溶液を電解浴として電着法により陽極
側電極基体の電極面に二酸化鉛粒子の結合体を形成した
ことを特徴とする電気浸透式脱水機の電極。 3)特許請求の範囲第2項記載の電極において、電極基
体がチタン板であり、かつその電極面側にチタンのエキ
スバンドネットをスポット溶接固定しさらに白金メッキ
を施した上で、該電極面に二酸化鉛粒子を電着したこと
を特徴とする電気浸透式脱水機の電極。 4)特許請求の範囲第1項記載の電極において、二酸化
鉛の粉末を加圧成形法により陽極側電極基体の電極面に
結着して二酸化鉛粒子の結合体を成形したことを特徴と
する電気浸透式脱水機の電極。
[Scope of Claims] 1) An electroosmotic dehydrator that supplies a material to be dehydrated between opposing electrodes, an anode and a cathode, and applies a DC voltage between the electrodes to dewater and filtrate the material to be dehydrated. An electrode for an electroosmotic dehydrator, characterized in that the electrode surface of the anode side electrode is made of a combination of lead dioxide particles. 2) The electrode according to claim 1, characterized in that a bond of lead dioxide particles is formed on the electrode surface of the anode side electrode substrate by electrodeposition using a lead nitrate solution or a lead sulfate solution as an electrolytic bath. electrodes for electroosmotic dehydration machines. 3) In the electrode according to claim 2, the electrode base is a titanium plate, and a titanium expanded band net is spot welded and fixed to the electrode surface side, and further platinum plating is applied, and the electrode surface is plated with platinum. An electrode for an electroosmotic dehydrator characterized by having lead dioxide particles electrodeposited on the electrode. 4) The electrode according to claim 1, characterized in that lead dioxide powder is bound to the electrode surface of the anode side electrode base by a pressure molding method to form a combined body of lead dioxide particles. Electroosmotic dehydrator electrode.
JP61039776A 1986-02-25 1986-02-25 Electrode of electroosmotic type dehydrator Pending JPS62197115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039776A JPS62197115A (en) 1986-02-25 1986-02-25 Electrode of electroosmotic type dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039776A JPS62197115A (en) 1986-02-25 1986-02-25 Electrode of electroosmotic type dehydrator

Publications (1)

Publication Number Publication Date
JPS62197115A true JPS62197115A (en) 1987-08-31

Family

ID=12562333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039776A Pending JPS62197115A (en) 1986-02-25 1986-02-25 Electrode of electroosmotic type dehydrator

Country Status (1)

Country Link
JP (1) JPS62197115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2146936A1 (en) * 2007-05-14 2010-01-27 Korea Water Technology Inc. The electroosmotic dehydrator
CN102642895A (en) * 2012-04-26 2012-08-22 南京大学 Lead dioxide electrode, preparation method of lead dioxide electrode and application of lead dioxide electrode in treatment of reactive dyes
CN106966469A (en) * 2017-04-10 2017-07-21 中国铝业股份有限公司 A kind of processing method of containing sulfate radicals waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2146936A1 (en) * 2007-05-14 2010-01-27 Korea Water Technology Inc. The electroosmotic dehydrator
JP2010526660A (en) * 2007-05-14 2010-08-05 コリア ウォーター テクノロジー アイエヌシー. Electroosmosis dehydrator
EP2146936A4 (en) * 2007-05-14 2011-08-03 Korea Water Technology Inc The electroosmotic dehydrator
CN102642895A (en) * 2012-04-26 2012-08-22 南京大学 Lead dioxide electrode, preparation method of lead dioxide electrode and application of lead dioxide electrode in treatment of reactive dyes
CN106966469A (en) * 2017-04-10 2017-07-21 中国铝业股份有限公司 A kind of processing method of containing sulfate radicals waste water

Similar Documents

Publication Publication Date Title
US4470892A (en) Planar carbon fiber electrode structure
US4445990A (en) Electrolytic reactor for cleaning wastewater
US4226685A (en) Electrolytic treatment of plating wastes
US6871744B2 (en) Apparatus for electrodewatering
ES2175124T3 (en) INTENSE PROCEDURE AND AT THE SAME EFFICIENT TIME ENERGY, FOR THE ELECTRODEPOSICION OF ZINC IN MILK OF MOBILE PARTICLES.
US5192413A (en) Electroosmotic dewaterer
US4556469A (en) Electrolytic reactor for cleaning wastewater
JPS62197115A (en) Electrode of electroosmotic type dehydrator
CN106025421B (en) A kind of plating stripping recovery method of electrode of lithium cell
EP0079058B1 (en) Reticulate electrode for recovery of metal ions and method for making
JPS62254817A (en) Anodic electrode for electroosmosis type dehydrator
EP0286714B1 (en) Electroosmotic dewaterer
JPH0346162B2 (en)
JPH0433484B2 (en)
US5092974A (en) Electrode and method for compressive and electro-osmotic dehydration
JPH04126507A (en) Sludge dehydrator
JPS60147208A (en) Electrode of electroosmotic dehydrator
KR200287526Y1 (en) Apparatus to dispose dirty and waste water by electrolyzation
CN218865778U (en) Anode material dispersion device and anode material vibration sieve device
JPS63256113A (en) Electroosmotic dehydrator
CA1166603A (en) Reactor electrode with porous portion and titanium portion
JPS6345605B2 (en)
EP0892086A1 (en) Anode on a basis of lead
SU1763500A1 (en) Method of accumulator scrap processing
SU1129678A1 (en) Collector for d.c.micromachine