JPS62197066A - Block bone growing material for living body - Google Patents

Block bone growing material for living body

Info

Publication number
JPS62197066A
JPS62197066A JP61040645A JP4064586A JPS62197066A JP S62197066 A JPS62197066 A JP S62197066A JP 61040645 A JP61040645 A JP 61040645A JP 4064586 A JP4064586 A JP 4064586A JP S62197066 A JPS62197066 A JP S62197066A
Authority
JP
Japan
Prior art keywords
block
porous sintered
living body
silicon nitride
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61040645A
Other languages
Japanese (ja)
Other versions
JPH029826B2 (en
Inventor
玉利 信幸
今西 久是律
大鳥 盛嗣
正勝 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61040645A priority Critical patent/JPS62197066A/en
Publication of JPS62197066A publication Critical patent/JPS62197066A/en
Publication of JPH029826B2 publication Critical patent/JPH029826B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生体用のプロマク造骨材に関するもので、生
体の各部分の欠損部や、抜歯後の歯根の形成部等、遺骨
を必要とする部分に埋め込み、その部分で生体に遺骨材
自体を新生骨の一成分に取込む遺骨作用を起させ、また
生体の遺骨作用を促すのに利用される。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a promac aggregate for living bodies, and is used to create bone materials for use in living bodies, such as missing parts of various parts of living bodies, tooth root formation parts after tooth extraction, etc. It is implanted in the desired area, and is used to cause the living body to take in the ashes material itself as a component of new bone, and to promote the ashes action of the living body.

(従来の技術) 従来、遺骨材としては、アパタイト単体の顆粒が市販さ
れているし、窒化ケイ素の単体粉末やリン酸三カルシウ
ムの単体粉末が用いられることもある。
(Prior Art) Conventionally, as ashes materials, granules of simple apatite are commercially available, and simple powders of silicon nitride and simple powders of tricalcium phosphate are sometimes used.

(発明が解決しようとする問題点) 従来の遺骨材は、顆粒や粉末であるため、飛敗しやすく
取扱いにくい。補助液を使ってペースト状にして用いる
と、骨の欠損部や抜歯後の歯根形成部等に合った形の集
合体として埋設しまた付着させることはできる。しかし
それ自体の保形性がほとんどないために、埋入部に安定
しにくく生体とのなじみが今1つであるのと相俟ち生体
に炎症を起こさせることがある。また生体の動きによっ
て変形したり崩れたりして、不適正な形や部分での遺骨
を生じさせてしまうこともある。これらの点に対処する
のは困難である。
(Problems to be Solved by the Invention) Conventional ashes are in the form of granules or powder, so they are easily blown away and difficult to handle. When used in the form of a paste using an auxiliary liquid, it can be embedded or attached as an aggregate in a shape suitable for bone defects, tooth root formation areas after tooth extraction, etc. However, since it has almost no shape retention, it is difficult to stabilize at the implanted site and is not compatible with the living body, and together with this, it may cause inflammation in the living body. Furthermore, the remains may be deformed or collapsed due to the movement of the living body, resulting in remains in inappropriate shapes or parts. These points are difficult to address.

(問題点を解決するための手段とその作用)本発明は前
記問題点を解決するために、第1の発明として、窒化ケ
イ素と、アパタイトやリン酸三カルシウム等のリン酸カ
ルシウム系化合物とを成分とした多孔質焼結ブロックよ
るなる生体用のブロック遺骨材を特徴とするものである
(Means for Solving the Problems and Their Effects) In order to solve the above-mentioned problems, the present invention, as a first invention, contains silicon nitride and a calcium phosphate compound such as apatite or tricalcium phosphate as a component. This material is characterized by a block ashes material for living bodies made of porous sintered blocks.

また、前記問題点の解決を生体へのなじみがさらによい
もので達成する第2の発明として、第1の発明の多孔質
焼結ブロックを母体とし、その空孔に、コラーゲン繊維
溶解液およびムコ多tI類溶解液の少なくとも一方を充
填固化させたものであることを特徴としている。
In addition, as a second invention that solves the above-mentioned problems by using a material that is more compatible with the living body, the porous sintered block of the first invention is used as a matrix, and the pores are filled with a collagen fiber solution and mucolyte. It is characterized by being filled and solidified with at least one of the multi-tI class solutions.

第1の発明では、成分とされる窒化ケイ素と、アパタイ
トやリン酸三カルシウム等のリン酸カルシウム系化合物
とが、共に生体になじみがあり、特にリン酸カルシウム
系化合物は生体に遺骨作用を起こさせまたその作用を促
進する。
In the first invention, silicon nitride as a component and calcium phosphate compounds such as apatite and tricalcium phosphate are both familiar to living organisms, and especially calcium phosphate compounds cause living bodies to have cremation effects and their effects. promote.

それら成分からなる多孔質焼結ブロックは、削り加工し
やすいもので、生体の遺骨が必要な骨の欠損部や、抜歯
後の歯根形成部に合った形にたやすく加工することがで
きるし、窒化ケイ素の靭性によって生体内で変形したり
崩れたりするこ、!:のない充分な保形性を持っている
。しかも前記成分が共存する相乗作用として、それら単
体の場合に比し生体へのなじみがさらに向上する。これ
によって、生体の遺骨させたい遺骨対象領域を、その形
や大きさに合った状態に削り加工した多孔質焼結ブロッ
クの遺骨材で埋めることができ、生体の動きによっても
変形や崩れ脱落なく遺骨対象領域で遺骨が適正に安定し
て進行し、遺骨材と生体とが新生骨の発生を伴って早期
に結合する。遺骨材がブロックであっても、その各部は
無数の空孔を通じて生体に同時的に作用し遺骨対象領域
全範囲で一挙に効率よく遺骨を計っていける。
Porous sintered blocks made of these components are easy to machine and can be easily processed into shapes that suit bone defects where living remains are needed or tooth root formation areas after tooth extraction. Due to the toughness of silicon nitride, it can deform or collapse in vivo! : Has sufficient shape retention without any. Furthermore, due to the synergistic effect of the coexistence of the above-mentioned components, compatibility with the living body is further improved compared to when they are used alone. This makes it possible to fill the area where you want the remains of a living person to be filled with porous sintered block cremation material that has been machined to match the shape and size of the remains, and will not deform or collapse or fall off due to the movement of the living body. The remains progress properly and stably in the remains target area, and the remains material and the living body are bonded together at an early stage with the generation of new bone. Even if the ashes material is a block, each part of the block simultaneously acts on the living body through countless holes, making it possible to efficiently measure the remains in the entire area covered by the remains at once.

第2の発明では、第1の発明に加え、多孔質焼結ブロッ
クの空孔に充填固化されたコラーゲン繊維やムコ多I!
類によって、多孔質焼結ブロックの生体へのなじみをさ
らに向上し、新生骨の発生とそれによる生体との結合を
さらに促進することができる。
In the second invention, in addition to the first invention, collagen fibers filled and solidified into the pores of the porous sintered block and Mukota I!
The compatibility of the porous sintered block with the living body can be further improved, and the generation of new bone and its bonding with the living body can be further promoted.

第1の発明のブロック遺骨材は、窒化ケイ素の粉末と、
アパタイトやリン酸三カルシウム等のリン酸カルシウム
系化合物の粉末とを、エチルアルコールやブチルアルコ
ールなどを用いてボールミルや振動ミルにより混合した
後、その混合物を乾燥させ、次いでホットプレス法や常
圧焼結法によって焼結させることで得られる。
The block ashes material of the first invention includes silicon nitride powder,
After mixing powder of calcium phosphate compounds such as apatite and tricalcium phosphate in a ball mill or vibration mill using ethyl alcohol or butyl alcohol, the mixture is dried, and then hot press method or pressureless sintering method is used. It can be obtained by sintering.

多孔質焼結ブロックは、その各部が生体とよく作用し合
い、その各部が新生骨の一部成分に取込むように新生骨
を効率よく発生させていくためおよび加工性をよくする
ために、気孔率を高くする方がよい、また、生体に埋入
したとき変形したり崩れたりずないための適度な強度も
要求される。これらは相客れないが、本発明者等は種々
な条件での多孔質焼結ブロックを製作し、動物実験や臨
床実験を繰返したところ、リン酸カルシウム系化合物の
粉末は0.1μm以下の粒径のものを40〜90svt
%、窒化ケイ素の粉末は0.5μm以下の粒径のものを
10〜60wt%混合し、900〜1300℃の温度範
囲で焼結したものが、生体とのなじみや遺骨性能、さら
に加工性や保形性および強度を満足するものであった。
The porous sintered block is designed to efficiently generate new bone so that each part interacts well with the living body and incorporates some of the components of new bone, and to improve workability. It is better to have a high porosity, and appropriate strength is also required to prevent deformation or collapse when implanted in a living body. Although these are not comparable, the present inventors produced porous sintered blocks under various conditions and repeated animal and clinical experiments, and found that powder of calcium phosphate compounds has a particle size of 0.1 μm or less. 40~90svt
%, silicon nitride powder is a mixture of 10 to 60 wt % of particles with a particle size of 0.5 μm or less and sintered at a temperature range of 900 to 1300°C. The shape retention and strength were satisfied.

特にリン酸カルシウム系化合物が40wt%以下である
と、生体組織との結合が劣る。これは窒化ケイ素にリン
酸カルシウム系化合物を適度に混合させることで生体と
のなじみが向上することを示している。
In particular, if the content of the calcium phosphate compound is 40 wt% or less, the bonding with biological tissues will be poor. This indicates that compatibility with living organisms is improved by appropriately mixing a calcium phosphate compound with silicon nitride.

なお、焼結は、その方法がホットプレス法である場合は
、100〜500kg /−の加圧下でなされ、常圧焼
結法の場合では真空中かアルゴン等の不活性ガス中でな
された。但し常圧焼結法ではIt/−以下の加圧を伴う
金型ブレス成形か、5t/−以下−の加圧を伴うラバー
プレス成形かを行っている。
The sintering was performed under a pressure of 100 to 500 kg/- when the hot press method was used, and in a vacuum or an inert gas such as argon when the pressureless sintering method was used. However, in the pressureless sintering method, either mold press molding is performed with a pressure of It/- or less, or rubber press molding is performed with a pressure of 5 T/- or less.

焼結温度は、900℃であると気孔率は高いが取扱い、
使用するに充分な強度が得られなかったし、1300℃
以上であるとリン酸カルシウム系化合物が分解し、気孔
率も低くなって遺骨性能を低下させるほか、硬く加工し
にくいものであった。
When the sintering temperature is 900℃, the porosity is high, but it is difficult to handle.
It was not strong enough to be used, and at 1300℃
If it is more than that, the calcium phosphate compound decomposes, the porosity becomes low, and the performance of the remains deteriorates, and the remains are hard and difficult to process.

ちなみに、焼結温度と得られた多孔質焼結ブロックの密
度との関係を代表例で見てみると、下表の通りである。
Incidentally, a representative example of the relationship between the sintering temperature and the density of the obtained porous sintered block is shown in the table below.

表 さらに好ましくは、各成分の粉末粒径は小さいほどよい
し、混合割合もリン酸カルシウム系化合物の粉末を50
〜70w t%、窒化ケイ素の粉末を30〜50wt%
とするのがよい。
It is more preferable that the powder particle size of each component is smaller, and the mixing ratio is 50% of the powder of calcium phosphate compound.
~70 wt%, 30-50 wt% silicon nitride powder
It is better to

次に第2の発明のものは、第1の発明の多孔質焼結ブロ
ックに、コラーゲン繊維を水に溶解したもの、およびム
コ多lji類を水に溶解したものの少なくとも何れか1
つを充填固化させて得られる。
Next, in the second invention, the porous sintered block of the first invention is combined with at least one of collagen fibers dissolved in water and mukopolylji dissolved in water.
It is obtained by filling and solidifying two.

充填させる方法は、前記溶解液に多孔質焼結体を浸漬す
るのみでもよいが、これでは全空孔内に溶解液を充分に
充填できない。全空孔内に溶解液を充分充填するには、
多孔質焼結体を真空にして溶解液中に入れるか、それと
は逆に溶解液を加圧により全空孔内に圧入することで達
成できる。多孔質焼結ブロックの空孔は、溶解液が内部
まで充分浸入できる大きさを与えるとよいが多孔質焼結
ブロックの強度上制限があり、前記条件で得られる範囲
であればよい。
The filling method may be to simply immerse the porous sintered body in the solution, but this method does not allow sufficient filling of the solution into all the pores. To fully fill all the pores with the solution,
This can be achieved by evacuating the porous sintered body and placing it in the solution, or conversely, by pressurizing the solution and forcing it into all the pores. The pores of the porous sintered block should preferably have a size that allows the solution to penetrate sufficiently into the inside, but there is a limit on the strength of the porous sintered block, so any pores within the range that can be obtained under the above conditions are sufficient.

多孔質焼結ブロックに空孔に充填されるコラーゲン繊維
溶解液は、濃度が30〜80%のものが利用される。こ
れより稀薄なものは、乾燥固化した後の空孔に充填され
るコラーゲン繊維量が少なくなり、多孔質焼結ブロック
の新生骨形成作用を余り促進することはできない。コラ
ーゲン繊維が空孔を充分埋めることが必要であるので、
コラーゲン繊維溶解液は濃い方が望ましい。また、ムコ
多糖溶解液、例えばコンドロイチン溶液の場合も上記と
同じことが言え、液濃度としては30%以上が望ましい
The collagen fiber solution used to fill the pores of the porous sintered block has a concentration of 30 to 80%. If it is more dilute than this, the amount of collagen fibers that will fill the pores after drying and solidification will be small, and the new bone formation effect of the porous sintered block will not be promoted much. Since it is necessary for collagen fibers to sufficiently fill the pores,
It is desirable that the collagen fiber solution be concentrated. The same thing can be said for mucopolysaccharide solutions, such as chondroitin solutions, and the solution concentration is preferably 30% or more.

(実施例) 実施例 1 水酸アパタイト粉末(粒径0.05μm) 50wt%
と窒化ケイ素粉末(粒径0.3μm)50wt%とをエ
チルアルコール中で24時間湿式混合した後、1000
℃、10m1n 、 200kg /−の条件下でホッ
トプレス法により焼結形成した。その結果、相対密度5
4%の多孔質焼結ブロックが得られた。
(Example) Example 1 Hydroxyapatite powder (particle size 0.05 μm) 50 wt%
and 50 wt% silicon nitride powder (particle size 0.3 μm) were wet mixed in ethyl alcohol for 24 hours, and then
It was sintered and formed by a hot press method under the conditions of ℃, 10 m1n, and 200 kg/-. As a result, the relative density 5
A 4% porous sintered block was obtained.

実施例 2 水酸アパタイト粉末(粒径0.05μm)60wt%と
窒化ケイ素粉末(粒径0.3μm) 30wt%と、リ
ン酸三カルシウム粉末(粒径0,1 μ11 ) 10
vt%とを、ブチルアルコール中で24時間湿式混合し
た後、1100℃、10m1n 、 200kg /c
alの条件下でホットプレス法により焼結形成した。そ
の結果、相対密度65%の多孔質焼結ブロックが得られ
た。
Example 2 60 wt% hydroxyapatite powder (particle size 0.05 μm), 30 wt% silicon nitride powder (particle size 0.3 μm), and tricalcium phosphate powder (particle size 0.1 μm) 10
After wet mixing with vt% in butyl alcohol for 24 hours, 1100 ° C., 10 m1n, 200 kg / c
It was sintered and formed by a hot press method under al conditions. As a result, a porous sintered block with a relative density of 65% was obtained.

実施例3 実施例2の場合と同じ条件の混合粉末を、3t/−の条
件でラバープレス成形した後、アルゴン中、1200℃
、60m1nの条件で焼結形成した。その結果、相対密
度70%の多孔質焼結体が得られた。
Example 3 A mixed powder under the same conditions as in Example 2 was rubber press molded under 3t/- conditions, and then heated at 1200°C in argon.
, 60 m1n. As a result, a porous sintered body with a relative density of 70% was obtained.

実施例4 実施例1の多孔質焼結ブロックから径3鶴、長さ12f
iの母体を切出し、これを50%のコラーゲン繊維溶液
に浸漬し、乾燥した。
Example 4 From the porous sintered block of Example 1, a diameter of 3 cranes and a length of 12 f
The mother body of i was cut out, immersed in a 50% collagen fiber solution, and dried.

実施例5 実施例2の多孔質焼結ブロックから径3fl、長さ12
1mの母体を切出し、これを70%のコンドロイチン溶
液(ムコ多I!類溶解液の一例である、)に浸漬し、乾
燥した。
Example 5 From the porous sintered block of Example 2, a diameter of 3 fl and a length of 12
A 1 m long mother body was cut out, immersed in a 70% chondroitin solution (an example of a solution for Mukota I!), and dried.

実施例6 実施例3の多孔質焼結ブロックから径31g、長さ12
龍の母体を切出し、これを70%のコラーゲン溶解液に
浸漬し、乾燥した。
Example 6 From the porous sintered block of Example 3, a diameter of 31 g and a length of 12
The mother body of the dragon was cut out, immersed in a 70% collagen solution, and dried.

前記実施例1〜6の多孔質焼結ブロックを犬の下あごに
埋入して、臨床実験をした。
A clinical experiment was conducted by implanting the porous sintered blocks of Examples 1 to 6 into the lower jaws of dogs.

この結果、各実施例1〜6のものは、何れも生体によく
なじみ、各部が新生骨の成分となる新生骨の発生が全域
で効率よく生じるし、生体との結合も早期に得られ、生
体の動きによって変形したり、崩れたり脱落したりする
ことがないし、生体に炎症を生じることもなかった。実
施例4〜6のものは、特に生体とのなじみがよく、新生
骨の発生とそれによる生体との結合性が一段と優れてい
た。
As a result, each of Examples 1 to 6 is compatible with the living body, and new bone in which each part becomes a component of new bone occurs efficiently in the entire area, and bonding with the living body is achieved at an early stage. It did not deform, collapse, or fall off due to the movement of the living body, and it did not cause any inflammation to the living body. The materials of Examples 4 to 6 had particularly good compatibility with the living body, and were even more excellent in the generation of new bone and the resulting bonding with the living body.

(発明の効果) 第1の発明によれば、窒化ケイ素と、アパタイトやリン
酸三カルシウム等のリン酸カルシウム化合物とが併存し
ていることによって生体とのなじみが従来品よりも一層
よく、しかも加工性のよい多孔質のブロック体であって
適度な強度も有し、遺骨を必要とする部分に合せた大き
さおよび形に加工して埋め込み、生体の動きによるも変
形したり崩れたり、脱落したすせず、無数の空孔を通じ
各部が同時的に生体と作用して効率よく遺骨作用を営ま
せることができ、また新生骨の発生を伴う生体との結合
も早期に達成できる。
(Effects of the Invention) According to the first invention, the coexistence of silicon nitride and calcium phosphate compounds such as apatite and tricalcium phosphate makes it more compatible with living organisms than conventional products, and is easy to process. It is a highly porous block body with moderate strength, and it can be processed into a size and shape that matches the area where the remains are needed, and then implanted. Instead, each part simultaneously interacts with the living body through countless pores, allowing the cremation to function efficiently, and bonding with the living body accompanied by the generation of new bone can be achieved at an early stage.

第2の発明によれば、第1の発明に加え、多孔質焼結ブ
ロックの空孔内に充填固化したコラーゲン繊維やムコ多
tieの存在によって、生体とのなじみがさらに向上し
、新生骨の発生とそれによる生体との結合をさらに促進
することができる。
According to the second invention, in addition to the first invention, the presence of collagen fibers and mukotiae filled and solidified within the pores of the porous sintered block further improves the compatibility with the living body, thereby promoting new bone formation. Development and thereby bonding with living organisms can be further promoted.

Claims (1)

【特許請求の範囲】 (1)窒化ケイ素と、アパタイトやリン酸三カルシウム
等のリン酸カルシウム系化合物とを成分とした多孔質焼
結ブロックよりなることを特徴とする生体用のブロック
造骨材。 (2)多孔質焼結ブロックは、900℃〜1300℃で
焼結したものである特許請求の範囲第1項記載の生体用
のブロック造骨材。 (3)多孔質焼結ブロックは窒化ケイ素を40〜90w
t%、リン酸カルシウム系化合物を10〜60wt%混
合したものである特許請求の範囲第1項または第2項記
載の生体用のブロック造骨材(4)窒化ケイ素と、アパ
タイトやリン酸三カルシウム等のリン酸カルシウム系化
合物とを成分とした多孔質焼結ブロックをを母体とし、
その空孔に、コラーゲン繊維溶解液およびムコ多糖類溶
解液の少なくとも一方を充填固化させたものであること
を特徴とする生体用のブロック造骨材。 (5)多孔質焼結ブロックは、900℃〜1300℃で
焼結したものである特許請求の範囲第4項記載の生体用
のブロック造骨材。 (6)多孔質焼結ブロックは窒化ケイ素を40〜90w
t%、リン酸カルシウム系化合物を10〜60wt%混
合したものである特許請求の範囲第4項または第5項記
載の生体用のブロック造骨材
[Scope of Claims] (1) A block aggregate for living bodies, characterized by comprising a porous sintered block containing silicon nitride and a calcium phosphate compound such as apatite or tricalcium phosphate. (2) The block aggregate for living bodies according to claim 1, wherein the porous sintered block is sintered at 900°C to 1300°C. (3) Porous sintered block contains 40~90w of silicon nitride
(4) A block-building aggregate for living organisms according to claim 1 or 2, which is a mixture of 10 to 60 wt% of a calcium phosphate compound (4) silicon nitride, apatite, tricalcium phosphate, etc. The base material is a porous sintered block containing a calcium phosphate compound of
A block aggregate for living bodies, characterized in that the pores are filled and solidified with at least one of a collagen fiber solution and a mucopolysaccharide solution. (5) The block aggregate for living bodies according to claim 4, wherein the porous sintered block is sintered at 900°C to 1300°C. (6) Porous sintered block contains 40~90w of silicon nitride
The block aggregate for biological use according to claim 4 or 5, which is a mixture of 10 to 60 wt% of calcium phosphate compound.
JP61040645A 1986-02-26 1986-02-26 Block bone growing material for living body Granted JPS62197066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040645A JPS62197066A (en) 1986-02-26 1986-02-26 Block bone growing material for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040645A JPS62197066A (en) 1986-02-26 1986-02-26 Block bone growing material for living body

Publications (2)

Publication Number Publication Date
JPS62197066A true JPS62197066A (en) 1987-08-31
JPH029826B2 JPH029826B2 (en) 1990-03-05

Family

ID=12586290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040645A Granted JPS62197066A (en) 1986-02-26 1986-02-26 Block bone growing material for living body

Country Status (1)

Country Link
JP (1) JPS62197066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306673A (en) * 1989-04-10 1994-04-26 Stiftelsen Centrum For Dentalteknik Och Biomaterial I Huddinge Composite ceramic material and method to manufacture the material
EP0727231A3 (en) * 1995-02-15 1999-07-21 MERCK PATENT GmbH Process for the preparation of spongiosa bone ceramic articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832761A (en) * 1981-08-22 1983-02-25 朝倉 由純 Artificial bone
JPS5957971A (en) * 1982-10-30 1984-04-03 株式会社イナックス Mineral fiber-apatite baked composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832761A (en) * 1981-08-22 1983-02-25 朝倉 由純 Artificial bone
JPS5957971A (en) * 1982-10-30 1984-04-03 株式会社イナックス Mineral fiber-apatite baked composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306673A (en) * 1989-04-10 1994-04-26 Stiftelsen Centrum For Dentalteknik Och Biomaterial I Huddinge Composite ceramic material and method to manufacture the material
EP0727231A3 (en) * 1995-02-15 1999-07-21 MERCK PATENT GmbH Process for the preparation of spongiosa bone ceramic articles

Also Published As

Publication number Publication date
JPH029826B2 (en) 1990-03-05

Similar Documents

Publication Publication Date Title
JP3679570B2 (en) Bone prosthetic material and manufacturing method thereof
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
JP2001224679A (en) Porous ceramic body
GB2348872A (en) Calcium phosphate porous sintered body and production thereof
FR2776282A1 (en) Surgical or dental hydroxyapatite-based biomaterial preparation
KR101268408B1 (en) Composition and Manufacturing method for porous calcium phosphate granules by physical foaming
JPS62295666A (en) Continuous two-dimensional porous implant material and its production
TWI275386B (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
JP4215884B2 (en) Calcium phosphate cement and calcium phosphate cement composition
JPWO2005039544A1 (en) Calcium phosphate ceramics porous body and method for producing the same
JPS62197066A (en) Block bone growing material for living body
CA3107290C (en) Biomimetic biomaterial and production method thereof
CN104984401B (en) A kind of preparation method of temperature-sensitive hydrogel/tricalcium phosphate material
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
JPS63229058A (en) Production of bone forming material
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
JPH0244050A (en) Hydraulic pellet
JP2018153300A (en) Calcium phosphate cement composition, calcium phosphate cement kit and method for producing calcium phosphate cement cured body
JP5793045B2 (en) Method for producing ceramic porous body
JP4206282B2 (en) Method for producing filler in bone defect or void, method for producing porous cured body, and porous cured body produced by the method
JP2576404B2 (en) Bone defect, bone void and bone resorbing part manufacturing method
JPS61242978A (en) Vital body substitute ceramic material
JPH0665635B2 (en) Molding material
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material
JPH0848583A (en) Production of porous ceramics and green compact used for the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term