JPS62196624A - Production of wedge type liquid crystal cell - Google Patents

Production of wedge type liquid crystal cell

Info

Publication number
JPS62196624A
JPS62196624A JP4074286A JP4074286A JPS62196624A JP S62196624 A JPS62196624 A JP S62196624A JP 4074286 A JP4074286 A JP 4074286A JP 4074286 A JP4074286 A JP 4074286A JP S62196624 A JPS62196624 A JP S62196624A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
substrates
thickness
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4074286A
Other languages
Japanese (ja)
Inventor
Kenichi Nakagawa
謙一 中川
Kojiro Tsubota
坪田 耕次郎
Yozo Narutaki
陽三 鳴瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4074286A priority Critical patent/JPS62196624A/en
Publication of JPS62196624A publication Critical patent/JPS62196624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain simply and inexpensibly the prescribed and highly accurate gradient of cell thickness and to reduce the deformation of transparent substrates due to external force of the like by deflecting a pair of transparent substrates with a prescribed deflection curve by previously applied stress. CONSTITUTION:In a wedge type liquid crystal cell 10, spacers 15, 16 are inserted between both the ends of the transparent substrates 11, 12 consisting of glass plates or plastic plates and external force is applied to the center part of the substrates 11, 12 until both the substrates 11, 12 are bent to form the cell thickness gradient of liquid crystal 13 in inside the substrates 11, 12. Since stress is applied to the substrates 11, 12 under said structure, the substrates 11, 12 are partially sticked to each other by bonding agents 21, 22 or pressure is impressed from the outside to hold the shape of the wedge type liquid crystal cell 10. Since the thickness of the cell, i.e. the cell gap, is set up by a deflection curve obtained by bending the substrates 11, 12 by the stress, the required cell gap can be inexpensively, simply and highly accurately required cell gap can be inexpensively, simply and highly accurately obtained and stabilized against the external force or the like because internal stress is previously applied to the substrates 11, 12 so as to stretch them.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セル厚に勾配のある模型の液晶セルの新規な
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel structure of a model liquid crystal cell having a gradient in cell thickness.

本発明に係る模型の液晶セルは、従来の模型の液晶セル
と同じ用途に用いることができろ。4゛なわら、コレス
テリック液晶のピッチの測定、液晶を用いたレターデー
ンヨノ勾配のある補償板などに用いられる他、種々の液
晶デバイスにおけるセル厚の効果を研究するのに用いら
れる。
The model liquid crystal cell according to the present invention can be used for the same purpose as the conventional model liquid crystal cell. However, in addition to being used to measure the pitch of cholesteric liquid crystals, compensating plates with a retarded slope using liquid crystals, and to study the effect of cell thickness in various liquid crystal devices.

〈従来の技術〉 従来、模型の液晶セルは、次の2つの方法て作成されて
いた。
<Prior Art> Conventionally, model liquid crystal cells have been created using the following two methods.

■ 線形の模型の液晶セル この液晶セルは、第8図に示すように、表面に液晶を配
向させるための処理を施した2枚のガラス基板!、2を
、一端部にスペーサ3を挾んで対向させ、その間隙に液
晶5を注入するものである。
■ Linear model liquid crystal cell As shown in Figure 8, this liquid crystal cell consists of two glass substrates that have been treated to orient the liquid crystal on their surfaces! , 2 are placed facing each other with a spacer 3 interposed between their ends, and liquid crystal 5 is injected into the gap.

この構造のメリットは、液晶セルの位置と、そこでのセ
ル厚の関係が線形であるため、位置からセル厚を計算す
るのが容易であることが挙げられる。
The advantage of this structure is that since the relationship between the position of the liquid crystal cell and the cell thickness there is linear, it is easy to calculate the cell thickness from the position.

しかし、デメリットとしては、ガラス基板1.2が僅か
な外力や液晶5の表面張力によって変形し、ガラス基板
!、2を平面に保つことが難しく、所期の線形なセル厚
勾配が得られない点が挙げられる。このようなデメリッ
トは、精密な測定を行う上では致命的である。
However, the disadvantage is that the glass substrate 1.2 is deformed by a slight external force or the surface tension of the liquid crystal 5. , 2 are difficult to keep flat, and the desired linear cell thickness gradient cannot be obtained. Such disadvantages are fatal to accurate measurements.

■ レンズによる模型の液晶セル この液晶セルは、第9図に示すように、球面または円筒
面レンズ6と平面板ガラス7を配置し、その間隙に液晶
8を注入している。この構造の液晶セルのセル厚の精度
はレンズの加工精度によりて決まる。一般に、この方式
で必要となる曲率半径10〜100mの精度の良いレン
ズは、高価であることが大きなデメリットである。
(2) Model liquid crystal cell using lenses As shown in FIG. 9, this liquid crystal cell has a spherical or cylindrical lens 6 and a flat plate glass 7 arranged, and liquid crystal 8 is injected into the gap between them. The accuracy of the cell thickness of a liquid crystal cell with this structure is determined by the processing accuracy of the lens. Generally, a major disadvantage of this method is that the highly accurate lens with a radius of curvature of 10 to 100 m is expensive.

〈発明の目的〉 そこで、この第1の発明の目的は、簡単、安価に、所期
のセル厚勾配を精度高く得ることができ、かつ、外力等
による透明基板の変形が少ない模型の液晶セルを提供す
ることにある。
<Objective of the Invention> Therefore, the object of the first invention is to provide a model liquid crystal cell that can easily and inexpensively obtain a desired cell thickness gradient with high precision, and that causes less deformation of the transparent substrate due to external forces. Our goal is to provide the following.

また、第2の発明の目的は、上記模型の液晶セルを簡単
に製造できる製造装置を提供することにある。
A second object of the invention is to provide a manufacturing apparatus that can easily manufacture the liquid crystal cell of the above model.

〈発明の構成〉 上記目的を達成するため、第1の発明の模型の液晶セル
は、一対の透明基板を予め与えられた応力により所定の
撓み曲線で撓ませると共に、上記一対の透明基板を、そ
の間に挾まれた液晶層が少なくとも一方の端部の層厚が
一定値で、内部の層厚が少なくとも一ケ所以上で実質的
に零になるように固着してなることを特徴としている。
<Structure of the Invention> In order to achieve the above object, the liquid crystal cell of the model of the first invention bends a pair of transparent substrates along a predetermined deflection curve by a stress given in advance, and also bends the pair of transparent substrates by The liquid crystal layer sandwiched between them is characterized by being fixed so that the layer thickness at at least one end portion is a constant value, and the internal layer thickness is substantially zero at at least one place or more.

また、第2の発明の製造装置は、台と、上記台に固定さ
れて、一対の透明基板が挿入される開口部を有する門型
のフレームと、上記開口部に挿入された一対の透明基板
を押圧する押え板と、上記押え板を台板に向けて押し付
けるネジ部材とを備えたことを特徴としている。
Further, the manufacturing apparatus of the second invention includes a table, a gate-shaped frame fixed to the table and having an opening into which a pair of transparent substrates are inserted, and a pair of transparent substrates inserted into the opening. The device is characterized by comprising a presser plate that presses the presser plate, and a screw member that presses the presser plate toward the base plate.

く作用〉 第1の発明の模型の液晶セルによれば、透明基板に応力
を与えて撓ませ、撓み曲線によりセル厚つまりセルギャ
ップを設定するので、安価、簡単に所期のセルギャップ
が精度高(得られろ。また、透明基板に内部応力を予め
生じさせて、張った状態にしているから、外力等に対し
て安定となる。
According to the model liquid crystal cell of the first invention, stress is applied to the transparent substrate to cause it to bend, and the cell thickness, that is, the cell gap, is set by the bending curve, so that the desired cell gap can be easily and accurately set at low cost. Also, since internal stress is generated in the transparent substrate in advance and the transparent substrate is kept in a tensioned state, it becomes stable against external forces.

また、第2の発明の製造装置によれば、台に透明基板を
押え板を介してネジ部材で押し付けて、簡単に撓ませて
固定できる。
Further, according to the manufacturing apparatus of the second aspect of the invention, the transparent substrate can be easily bent and fixed by pressing the transparent substrate against the stand with the screw member through the holding plate.

〈実施例〉 第1図に示すように、この模型の液晶セル10は、ガラ
ス板やプラスチック板からなる透明基板11.12の両
端にスペーサ15.16を挾み、透明基1!i、ll、
12の中間部に外力をかけて密着させるまで撓ませて、
内部に液晶l→のセル厚勾配を作り出している。
<Example> As shown in FIG. 1, the liquid crystal cell 10 of this model has spacers 15, 16 sandwiched between transparent substrates 11, 12 made of glass plates or plastic plates at both ends, and a transparent substrate 1! i,ll,
Apply external force to the middle part of 12 and bend it until it fits tightly.
A cell thickness gradient of liquid crystal l→ is created inside.

この構造では、透明基板11.12に応力がかかってい
るので、模型の液晶セルIOの形を保持するためには、
第2図のように透明基板11.12を部分的に接着剤2
1.22で接着するか、外部から圧力を印加する。圧力
をかける方法としては、第3図のようにクリップ25を
用い、透明基板11.12の一端部を互いに押し付けて
固着してもよく、また、第4図に示す製造装置を用いて
もよい。
In this structure, stress is applied to the transparent substrates 11 and 12, so in order to maintain the shape of the model liquid crystal cell IO,
As shown in Figure 2, the transparent substrates 11 and 12 are partially covered with adhesive 2.
1. Glue in step 22 or apply pressure from the outside. As a method of applying pressure, a clip 25 may be used as shown in FIG. 3, and one end of the transparent substrates 11 and 12 may be pressed and fixed together, or a manufacturing apparatus shown in FIG. 4 may be used. .

この製造装置では、台31の一端部に門型のフレーム3
2を固定し、この凹型のフレーム32と台31との間の
開口部34に、重ね合わされた一対の透明基板11.1
2の端部を挿入する。そして、上記開口部34において
、透明基板ll上の幅方向の全長にわたって、押え板3
3を当接し、フレーム32の水平部に螺着したネジ部材
35を回すことによって、上記押え板33を圧下して、
押え板33と台31の間に透明基板11.12の端部を
挾み、それに応力を生じさせて撓ませた状態で固定する
In this manufacturing device, a gate-shaped frame 3 is attached to one end of the table 31.
A pair of overlapping transparent substrates 11.1
Insert the end of 2. Then, in the opening 34, the presser plate 3 is extended over the entire length in the width direction on the transparent substrate ll.
3, and by turning the screw member 35 screwed into the horizontal part of the frame 32, the presser plate 33 is pushed down,
The ends of the transparent substrates 11 and 12 are sandwiched between the holding plate 33 and the stand 31, and are fixed in a bent state by applying stress to them.

このように、この製造装置は、簡単な構造てらって、透
明基板11.12に外力を与え、それに内部応力を生じ
させ、撓んだ状態て固定することができる。
In this way, this manufacturing apparatus has a simple structure, and can apply an external force to the transparent substrates 11, 12, generate internal stress therein, and fix the transparent substrates 11, 12 in a bent state.

また、この模型の液晶セル10は、第1.2図に示すよ
うに、セル厚の厚い側のスペーサ15としては、厚さが
均一で、剛性の高い材料であれば良く、有機材料では、
ポリエステル、ポリアミド、ポリカーボネート、ポリイ
ミド、ポリオレフィン、テフロン、ポリスチレンなど、
はとんどのポリマーが利用でき、無機材料では、金属や
金属酸化物の蒸着膜、気相反応堆積膜、微粒子焼結体、
ガラスやセラミックの薄片などが利用でき、また、透明
基板である基材ガラスをエツチングして、スペーサとな
る部分を残すという方法によってらできる。
In addition, in the liquid crystal cell 10 of this model, as shown in FIG. 1.2, the spacer 15 on the thicker side of the cell may be made of any material that has a uniform thickness and high rigidity.
Polyester, polyamide, polycarbonate, polyimide, polyolefin, Teflon, polystyrene, etc.
Most polymers can be used, and inorganic materials include vapor-deposited films of metals and metal oxides, vapor-phase reaction-deposited films, fine particle sintered bodies,
A thin piece of glass or ceramic can be used, or it can be made by etching the base glass, which is a transparent substrate, to leave a portion that will become a spacer.

また、接着剤21.22に粒状またはロッド状のスペー
サを混練したものを用いてら良い。そして、最もセル厚
の薄い部分に、スペーサを挾まずに2枚の基板が接する
ように対向させて、セル厚を0μmと1−る。
Further, it is preferable to use adhesives 21 and 22 mixed with granular or rod-shaped spacers. Then, the two substrates are made to face each other so as to be in contact with each other without interposing the spacer at the part where the cell thickness is the thinnest, and the cell thickness is set to 0 μm.

透明基板としてのガラス基板等の厚さは、セル厚勾配に
よって適当な厚さを決めるべきである。
The thickness of the glass substrate or the like as the transparent substrate should be determined appropriately depending on the cell thickness gradient.

すなわち、セル厚勾配の小さい液晶セルは、透明基板1
1.12の撓みが小さいので、たとえば5mm厚といっ
た厚い板ガラスやそれ以上の厚さのものが好ましく、セ
ル厚勾配の大きいセルには2mm厚またはそれ以下の薄
いガラスでも良い。
In other words, a liquid crystal cell with a small cell thickness gradient has a transparent substrate 1
Since the deflection of 1.12 is small, a thick plate glass such as 5 mm thick or thicker is preferable, and for cells with a large cell thickness gradient, a thin glass plate 2 mm thick or less may be used.

ガラス基板やプラスチック板等の透明基板の平滑度は、
目的とするセル厚精度によって異なるが、平面研磨ガラ
スやフロート・ガラスなどが好ま(2い。
The smoothness of transparent substrates such as glass substrates and plastic plates is
Although it depends on the desired cell thickness accuracy, flat polished glass or float glass is preferable (2).

この構造の模型の液晶セルは、従来技術に比べて、次の
ような特徴がある。
The model liquid crystal cell with this structure has the following features compared to the conventional technology.

■ 第1に、用いるガラス基板等の透明基板11.12
が安価である。透明基板は目的に応じた平滑度に仕上げ
てあればよく、たとえ平面研磨を施したとしても、レン
ズに研磨するよりはるかに安価である。
■ First, transparent substrates such as glass substrates 11.12
is cheap. The transparent substrate only needs to be finished to a level of smoothness that suits the purpose, and even if it is flat polished, it is much cheaper than polishing the lens.

■ 第2に、液晶セルのセル厚が外からの圧力に対して
安定している。これはこの構造では、透明基板11.1
2にプリロードをかけて応力がかかって張った状態にな
っているために、外からの圧力や注入する液晶13の表
面張力による変形を受けにくいからである。
■Secondly, the cell thickness of the liquid crystal cell is stable against external pressure. In this structure, the transparent substrate 11.1
This is because the liquid crystal 13 is preloaded and is in a tensioned state, so it is less susceptible to deformation due to external pressure or the surface tension of the liquid crystal 13 to be injected.

このような利点を充分に発揮するためには、第1図にお
いて、透明基板11.12がその撓みy(μm)、厚さ
【(醋)、模型の液晶セルの長さ、M(nun)が、 y t3/克3≧ o、oot なる条件を満たしていることか望ましい。この条件は、
Yは片持ち梁の材料のヤング率、bは片持ち梁の巾とし
、この片持ち梁の自重か無視できるとして、この片持ち
梁の自由端に、力Fを加えたときの撓みyを与える式、 bt3 を変形した式、 y t’/4’ =4 F、/Yb の右辺の値を実験的に決定したものである。こうすれば
、外力や液晶の表面張力に対して、透明基板11.$2
が安定した。
In order to fully utilize these advantages, the transparent substrates 11 and 12 in FIG. It is desirable that the condition yt3/k3≧o,oot be satisfied. This condition is
Y is the Young's modulus of the material of the cantilever, b is the width of the cantilever, and assuming that the cantilever's own weight can be ignored, the deflection y when force F is applied to the free end of this cantilever is The value of the right side of the equation, y t'/4' = 4 F, /Yb, which is a modified version of the equation bt3 given, was determined experimentally. In this way, the transparent substrate 11. $2
has stabilized.

本発明の模型の液晶セルは、この点において、線形模型
セルより優れている。すなわち、〈従来の技術〉の項で
述べたように、線形模型セルはわずかな外力で変形しや
すいために、期待する直線性の良いセル厚勾配が得られ
にくい。第5図は、〈比較例〉に記した液晶セルのセル
厚勾配を示したものであるが、不規則な形の曲線である
ことがわかる。それに対して、本発明のく実験例1〉の
セルのセル厚勾配は、第6図に示したように、理論的な
予想曲線に非常に近い勾配となっている。
The model liquid crystal cell of the present invention is superior to the linear model cell in this respect. That is, as described in the <Prior Art> section, the linear model cell is easily deformed by a slight external force, making it difficult to obtain the expected cell thickness gradient with good linearity. FIG. 5 shows the cell thickness gradient of the liquid crystal cell described in <Comparative Example>, and it can be seen that the curve has an irregular shape. On the other hand, the cell thickness gradient of the cell of Experimental Example 1 of the present invention, as shown in FIG. 6, is very close to the theoretically predicted curve.

この理論的予想の曲線は、片持ち梁の変形を表わす式か
ら誘導した次の式(1)によって表わされる。
This theoretically predicted curve is expressed by the following equation (1) derived from the equation expressing the deformation of a cantilever beam.

ここに、 Xは液晶層厚すなわちセル厚0μmを原点とし、スペー
サの位置を端点とする線分上の位置、 dは位置x mmにおけるセル厚、 児は原点から端点までの距離、 d、は端点のセル厚 を表わす。
where, Represents the cell thickness at the end point.

このように、理論式が良くあてはまるので、セル厚を補
間法で推定する際に、誤差が小さいという利点がある。
As described above, since the theoretical formula fits well, there is an advantage that the error is small when estimating the cell thickness by the interpolation method.

■ 第3に、この模型の液晶セル10は、レンズによる
模型の液晶セルに比べて、一般に曲率が小さく、より直
線に近いセル厚勾配が得られるという利点がある。第7
図のグラフにおいて、破線は、断面が円のレンズを用い
た模型の液晶セルのセル厚分布であり、実線は、本発明
による模型セルのセル厚分布である。両者とも、位1i
5 Q mmで、セル厚が10μmとなるように計算し
たものであるが、本発明の模型セルの方がセル厚勾配の
曲率が小さく、より直線に近いことがわかる。模型の液
晶セルlOにおいては、ある位置でのセル厚を、予め決
定した位置とセル厚の関係式から算出して求めるのであ
るから、位置測定における誤差がセル厚の推定値の誤差
となる。したがって、セル厚勾配が直線に近いほど、セ
ル厚推定値の誤差が位置によらず一定であるので、本発
明の模型の液晶セルは、レンズによる模型の液晶セルよ
りセル厚推定値に含まれる誤差の位置によるちがいが小
さく、優れている。
(3) Thirdly, this model liquid crystal cell 10 has the advantage that it generally has a smaller curvature and can obtain a cell thickness gradient closer to a straight line than a liquid crystal cell model using lenses. 7th
In the graph of the figure, the broken line is the cell thickness distribution of a model liquid crystal cell using a lens with a circular cross section, and the solid line is the cell thickness distribution of the model cell according to the present invention. Both rank 1i
The cell thickness was calculated to be 5 Q mm and the cell thickness was 10 μm, but it can be seen that the model cell of the present invention has a smaller curvature of the cell thickness gradient and is closer to a straight line. In the model liquid crystal cell IO, the cell thickness at a certain position is calculated from a predetermined relational expression between the position and the cell thickness, so an error in position measurement becomes an error in the estimated value of the cell thickness. Therefore, the closer the cell thickness gradient is to a straight line, the more constant the error in the estimated cell thickness is regardless of the position. Therefore, the liquid crystal cell of the model of the present invention is included in the estimated cell thickness more than the liquid crystal cell of the model using a lens. The difference depending on the position of the error is small, which is excellent.

〈実験例1〉 厚さtが3mmの2枚の長方形のガラス基板に液晶配向
のための処理を施し、両端に厚さ30μmのポリエステ
ルフィルムを挾んで、第4図に示す製造装置に設置した
。ネジ35をまわして圧力を加えることにより、模型の
液晶セルとした。セル厚を数ケ所にわたって、2波干渉
法により測定した結果、第6図のグラフに示したように
、理論値と良い一致を示した。模型の液晶セルの長さL
は50fflffl、セル厚の厚い端点のセル厚d。=
32μmであったので、yは16μmである。したがっ
て、を用いて、コレステリック液晶のピッチを精度良く
測定できた。
<Experimental Example 1> Two rectangular glass substrates with a thickness t of 3 mm were treated for liquid crystal alignment, a polyester film with a thickness of 30 μm was sandwiched between both ends, and the substrates were installed in the manufacturing equipment shown in Figure 4. . A model liquid crystal cell was prepared by turning the screw 35 and applying pressure. The cell thickness was measured at several locations using two-wave interferometry, and as shown in the graph of FIG. 6, it was found to be in good agreement with the theoretical value. Model liquid crystal cell length L
is 50fffffl, and the cell thickness d at the thick end point of the cell thickness. =
Since it was 32 μm, y is 16 μm. Therefore, the pitch of cholesteric liquid crystal could be measured with high accuracy using .

〈実験例2〉 ガラス基板を貼り合せるために、少量のエポキシ樹脂接
着剤を用いること以外はく実験例1〉と同様に、第4図
の製造装置を用いて、模型の液晶セルを作成し、150
℃で2時間加熱して接着剤を硬化させた後、セルを上記
製造装置からはずした。セル厚を数ケ所にわたって2波
干渉法により測定したところ、理論値と良い一致を示し
た。この模型の液晶セルにネマチック液晶を注入して、
波長板を作成した。
<Experiment Example 2> A model liquid crystal cell was created using the manufacturing equipment shown in Figure 4 in the same manner as in Experiment Example 1, except that a small amount of epoxy resin adhesive was used to bond the glass substrates. , 150
After curing the adhesive by heating at .degree. C. for 2 hours, the cell was removed from the manufacturing apparatus. When the cell thickness was measured at several locations using two-wave interferometry, it showed good agreement with the theoretical value. Injecting nematic liquid crystal into the liquid crystal cell of this model,
I created a wave plate.

〈実験例3〉 酸化インジウム−酸化スズの透明電極を設けたガラス基
板2枚の3111111厚ガラス基板に、SiO斜蒸着
と垂直配向処理を施し、〈実験例2〉と同様にして模型
の液晶セルとし、負の誘電率異方性を有するネマチック
液晶を注入した後、複屈折干渉色が見られるように液晶
セルの両面に偏光板を設け、液晶表示装置を作成した。
<Experimental Example 3> Two 3111111 thick glass substrates provided with transparent electrodes of indium oxide and tin oxide were subjected to SiO oblique evaporation and vertical alignment treatment, and a model liquid crystal cell was prepared in the same manner as in <Experimental Example 2>. After injecting a nematic liquid crystal with negative dielectric anisotropy, polarizing plates were placed on both sides of the liquid crystal cell so that birefringent interference colors could be seen, and a liquid crystal display device was created.

この液晶表示装置は、透明電極に電圧を印加すると、そ
の実効値に従って複屈折干渉色の縞模様が滑らかに変化
した。
In this liquid crystal display device, when a voltage was applied to the transparent electrode, the striped pattern of the birefringent interference color changed smoothly according to the effective value.

〈比較例〉 厚さ3mmのガラス基板2枚に、液晶配向のための処理
を施し、模型の液晶セルとなるように、一方の端に厚さ
15μmのポリエステルフィルムを挾んで静かに対向さ
せ、周辺を数ケ所にわたってエポキシ樹脂接着剤を用い
て固定した。セル厚を2波干渉法で測定したところ、第
5図のグラフに示したように、・不規則なセル厚勾配で
あることがわかった。
<Comparative example> Two glass substrates with a thickness of 3 mm were treated for liquid crystal alignment, and a polyester film with a thickness of 15 μm was sandwiched between one end and gently placed facing each other to form a model liquid crystal cell. The periphery was fixed at several points using epoxy resin adhesive. When the cell thickness was measured by two-wave interferometry, it was found that the cell thickness gradient was irregular, as shown in the graph of FIG.

〈発明の効果〉 第1の発明の模型の液晶セルの構造によれば、透明基板
に内部応力を与えて撓み曲線によりセル厚を設定するの
で、従来法よりも安価、簡単に、所期のセル厚勾配に製
作でき、かつ、外力等による変形が少なくて、安定した
品質の模型の液晶セルを得ることができる。したがって
、本発明によれば、液晶セルを物理測定用のみならず他
の用途に使用でき、従来、実用的ではないとされてきた
模型の液晶セルを用いる表示装置をMμγミすることら
可能となる。
<Effects of the Invention> According to the structure of the liquid crystal cell of the model of the first invention, internal stress is applied to the transparent substrate and the cell thickness is set by the deflection curve. A model liquid crystal cell can be manufactured with a cell thickness gradient, has little deformation due to external forces, etc., and has stable quality. Therefore, according to the present invention, the liquid crystal cell can be used not only for physical measurements but also for other purposes, and it is now possible to make a display device using a model liquid crystal cell, which has conventionally been considered impractical, by using Mμγ. Become.

また、第2の発明の製造装置によれば、簡単な構造てら
って、一対の透明基板を押し付けて、内部応力を生じさ
せて、撓んだ状態で固定できる。
Further, according to the manufacturing apparatus of the second aspect of the invention, the pair of transparent substrates can be pressed together to generate internal stress and fixed in a bent state using a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図はこの発明の横型の液晶セルの実施例の断面
図、第3図はクリップで一対の透明基板を挾んだ状態を
示す図、第4図はこの発明の製造装置の斜視図、第5図
は従来の模型の液晶セルのセルギャップを示す図、第6
図はこの発明の模型の液晶セルのセルギャップを示す図
、第7図は本発明の横型の液晶セルと円筒レンズの横型
の液晶セルとのセルギャップを示す図、第8図、第9図
は夫々従来の液晶セルの断面図である。 11.12・・・透明基板、13・・・液晶、15,1
6・・スペーサ、21.22・・接着剤、31・台、3
2・・・フレーム、35・・・ネジ。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  前出 葆 外28第81!! 第9図 1Zim!@ でルAヤ・シフlPm1 セルペ薔ツブ(pm)
Fig. 1.2 is a sectional view of an embodiment of the horizontal liquid crystal cell of the present invention, Fig. 3 is a view showing a pair of transparent substrates held between clips, and Fig. 4 is a perspective view of the manufacturing apparatus of the invention. Figure 5 is a diagram showing the cell gap of a conventional model liquid crystal cell, Figure 6 is a diagram showing the cell gap of a conventional model liquid crystal cell.
The figure shows the cell gap of the liquid crystal cell of the model of the present invention, Figure 7 shows the cell gap between the horizontal liquid crystal cell of the present invention and the horizontal liquid crystal cell of the cylindrical lens, Figures 8 and 9. are sectional views of conventional liquid crystal cells. 11.12...Transparent substrate, 13...Liquid crystal, 15,1
6. Spacer, 21. 22. Adhesive, 31. Stand, 3
2...Frame, 35...Screw. Patent applicant: Sharp Corporation Agent
Patent Attorney Maeda Ao Soto 28 No. 81! ! Figure 9 1Zim! @ De Lua Ya Shifu lPm1 Serpe Rose Tsubu (pm)

Claims (3)

【特許請求の範囲】[Claims] (1)一対の透明基板の間に液晶層が模型に挾まれた模
型の液晶セルにおいて、 上記一対の透明基板は予め与えられた応力により所定の
撓み曲線で撓んでいて、上記一対の透明基板は、少なく
とも一方の端部の液晶層厚が一定値で、内部の液晶層厚
が少なくとも一ケ所以上で実質的に零になるように固着
されていることを特徴とする楔型の液晶セル。
(1) In a model liquid crystal cell in which a liquid crystal layer is sandwiched between a pair of transparent substrates, the pair of transparent substrates are bent in a predetermined bending curve due to stress applied in advance, and the pair of transparent substrates are A wedge-shaped liquid crystal cell, characterized in that the thickness of the liquid crystal layer at at least one end is a constant value, and the thickness of the liquid crystal layer inside is fixed to be substantially zero at at least one place.
(2)lは上記透明基板が液晶と接する曲面において、
セル厚の薄い端点での接平面から、セル厚の厚い端点ま
での距離[単位mm]、 yは最も薄いセル厚の位置から最ら厚いセル厚の位置ま
での変位[単位μm]、 tは透明基板の厚さ[単位mm]として、 上記透明基板の撓み方が、不等式 yt^3/l^3≧0.001 を満足している特許請求の範囲第1項に記載の楔型の液
晶セル。
(2) l is the curved surface where the transparent substrate contacts the liquid crystal,
The distance from the tangent plane at the end point of the thin cell thickness to the end point of the thick cell thickness [unit: mm], y is the displacement from the position of the thinnest cell thickness to the position of the thickest cell thickness [unit: μm], t is the distance The wedge-shaped liquid crystal according to claim 1, wherein the thickness of the transparent substrate [unit: mm] is such that the way the transparent substrate is bent satisfies the inequality yt^3/l^3≧0.001. cell.
(3)台と、上記台に固定されて、一対の透明基板が挿
入される開口部を有する門型のフレームと、上記開口部
に挿入された一対の透明基板を押圧する押え板と、上記
押え板を台板に向けて押し付けるネジ部材とを備えたこ
とを特徴とする製造装置。
(3) a base, a gate-shaped frame fixed to the base and having an opening into which a pair of transparent substrates are inserted; a presser plate that presses the pair of transparent substrates inserted into the opening; A manufacturing device comprising: a screw member for pressing a presser plate toward a base plate.
JP4074286A 1986-02-25 1986-02-25 Production of wedge type liquid crystal cell Pending JPS62196624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074286A JPS62196624A (en) 1986-02-25 1986-02-25 Production of wedge type liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074286A JPS62196624A (en) 1986-02-25 1986-02-25 Production of wedge type liquid crystal cell

Publications (1)

Publication Number Publication Date
JPS62196624A true JPS62196624A (en) 1987-08-31

Family

ID=12589083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074286A Pending JPS62196624A (en) 1986-02-25 1986-02-25 Production of wedge type liquid crystal cell

Country Status (1)

Country Link
JP (1) JPS62196624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128141A (en) * 2009-12-18 2011-06-30 Korea Electronics Telecommun Lab-on-chip and method of driving the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128141A (en) * 2009-12-18 2011-06-30 Korea Electronics Telecommun Lab-on-chip and method of driving the same
US8628951B2 (en) 2009-12-18 2014-01-14 Electronics And Telecommunications Research Institute Lab-on-a-chip and method of driving the same

Similar Documents

Publication Publication Date Title
KR100709221B1 (en) Flexible Display Device
JP2001242469A (en) Liquid crystal display device and method of manufacture
JPH10512058A (en) Insensitive liquid crystal cell
WO1994011779A2 (en) Liquid crystal device
EP0871059A3 (en) Liquid crystal display device
JPS62196624A (en) Production of wedge type liquid crystal cell
JPH01195421A (en) Manufacture of liquid crystal display device
JPS56167125A (en) Liquid crystal display element and its manufacture
JPH0194318A (en) Liquid crystal display element
JPH07301790A (en) Liquid crystal display device and preparation thereof
JPS5937527A (en) Liquid crystal display element
JPH0222626A (en) Liquid crystal display element
JPH01114822A (en) Manufacture of liquid crystal display device
JPH07168195A (en) Liquid crystal display element and its production
JPS63188118A (en) Liquid crystal device
KR101112558B1 (en) Liquid crystal display
JPH02304527A (en) Liquid crystal display device for overhead projector and production of curved surface panel
JP2903136B2 (en) Manufacturing method of liquid crystal electro-optical device
JPH0229624A (en) Production of oriented film of ferroelectric liquid crystal element
JPS63220115A (en) Liquid crystal display element
JP4158890B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3517947B2 (en) Liquid crystal display device and method of manufacturing the same
JPH04372931A (en) Manufacture of liquid crystal display element
JPS6132035A (en) Production of liquid crystal display element
JPS62217222A (en) Liquid crystal display element