JPS62196384A - Electrolytic protection method for metallic structure - Google Patents
Electrolytic protection method for metallic structureInfo
- Publication number
- JPS62196384A JPS62196384A JP61037260A JP3726086A JPS62196384A JP S62196384 A JPS62196384 A JP S62196384A JP 61037260 A JP61037260 A JP 61037260A JP 3726086 A JP3726086 A JP 3726086A JP S62196384 A JPS62196384 A JP S62196384A
- Authority
- JP
- Japan
- Prior art keywords
- sea water
- water
- atm
- corrosion
- coating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000000576 coating method Methods 0.000 claims abstract description 34
- 239000011248 coating agent Substances 0.000 claims abstract description 33
- 238000005260 corrosion Methods 0.000 claims abstract description 24
- 230000007797 corrosion Effects 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003792 electrolyte Substances 0.000 claims description 16
- 238000004210 cathodic protection Methods 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 abstract description 22
- 239000010959 steel Substances 0.000 abstract description 22
- 239000000463 material Substances 0.000 abstract description 12
- 239000013535 sea water Substances 0.000 abstract description 10
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 6
- 239000004570 mortar (masonry) Substances 0.000 abstract description 5
- 239000004925 Acrylic resin Substances 0.000 abstract description 2
- 229920000178 Acrylic resin Polymers 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011230 binding agent Substances 0.000 abstract description 2
- 239000011231 conductive filler Substances 0.000 abstract description 2
- 239000000843 powder Substances 0.000 abstract description 2
- 229910000838 Al alloy Inorganic materials 0.000 abstract 1
- 239000003822 epoxy resin Substances 0.000 abstract 1
- 229920000647 polyepoxide Polymers 0.000 abstract 1
- 229920005749 polyurethane resin Polymers 0.000 abstract 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 abstract 1
- 239000003973 paint Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005536 corrosion prevention Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、大気環境中と電解質環境中にまたがってい
る金属製構造物、たとえば、港湾施設における鋼管杭、
鋼矢板等の電気防食法に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to metal structures that span an atmospheric environment and an electrolyte environment, such as steel pipe piles in port facilities;
Concerning cathodic protection methods for steel sheet piles, etc.
海洋環境中における鋼管杭、鋼矢板等の干満帯や飛沫帯
は、乾湿の繰り返しを受け、酸素の供給が常に豊富であ
るために、最も激しく腐食する。The tidal zone and splash zone of steel pipe piles, steel sheet piles, etc. in the marine environment are subject to repeated drying and wetting, and are subject to the most severe corrosion because they are constantly supplied with abundant oxygen.
従来、このような腐食環境中において実用化されている
防食法としては、鋼管杭と繊維強化プラスチツク製型枠
との間にコンクリート、モルタルなどの防食材を注入し
た防食装置(たとえば、実公昭51−36341号公報
)やペトロラタム系防食材を被覆し、その外側にプラス
チック発泡体などの緩衝材を貼着した繊維強化プラスチ
ツク製保護カバーを>INした防食被覆体(たとえば、
実公昭56−9703号公報)などが実用に供され、ま
た、吸水保水性マントを被覆し、その上に流電陽極を取
り付けた電気防食装置(たとえば、実公昭51−172
10号公報)が提案されている。Conventionally, as a corrosion prevention method that has been put into practical use in such a corrosive environment, a corrosion prevention device (for example, the 51 -36341 Publication) or a corrosion-proof coating in which a protective cover made of fiber-reinforced plastic is coated with a petrolatum-based corrosion-proofing material and a cushioning material such as plastic foam is attached to the outside (for example,
Utility Model Publication No. 56-9703) etc. have been put into practical use, and cathodic protection devices covered with a water-absorbing and water-retaining mantle and having galvanic anodes attached thereto (for example, Utility Model Publication No. 51-172) have been put into practical use.
No. 10) has been proposed.
(発明が解決しようとする問題点〕
しかしながら、前記の防食装置は、防食材が海水に浸透
される性質を有するため、下端部の水蜜構造には特に性
急をはられなければならない。(Problems to be Solved by the Invention) However, in the above-mentioned anti-corrosion device, since the anti-corrosive material has the property of being penetrated by seawater, special attention must be paid to the water honey structure at the lower end.
また、前記防食被覆体は、単体の形鋼や鋼管では防食層
中−1の海水の浸入を阻止することができるが、単体の
鋼材を連結部で連結して構成される鋼矢板や鋼管矢板で
は防食層と保護カバーとの間に隙間を生じ、防食層中に
海水が浸入して防食材の性能を劣化させるという問題が
ある。In addition, the anti-corrosion coating can prevent the intrusion of seawater into the anti-corrosion layer in the case of single steel sections and steel pipes, but steel sheet piles and steel pipe sheet piles that are constructed by connecting single steel materials at connecting parts. However, there is a problem in that a gap is created between the anti-corrosion layer and the protective cover, allowing seawater to enter the anti-corrosion layer and deteriorating the performance of the anti-corrosion layer.
そして、これら両者には、防食効果を継続して確認する
手段がないのが現状で、防食モニタリング技術の開発が
おくれでいるというメンテナンス上の問題点が残ってい
る。Currently, there is no means for continuously confirming the anticorrosion effect of both of these methods, and maintenance problems remain in that the development of anticorrosion monitoring technology is slow.
一方、前記電気防食装置は、飛沫帯に巻き付ける吸水保
水性771・の水分吸上げ高さに限度があり、たとえ、
電気防食が可能な状態にあっても水分と酸素が豊富に供
給されるため、必要以上の高防食電気密度が要求される
という欠点がある。On the other hand, in the electrolytic protection device, there is a limit to the height at which the water absorption and water retention property 771 wrapped around the splash band can absorb moisture.
Even when cathodic protection is possible, moisture and oxygen are abundantly supplied, so there is a drawback that a higher than necessary corrosion protection electrical density is required.
この発明は、従来のものがもつ、以上のような問題点を
解消させ大気環境中と、電解質環境中とにまたがる金属
製構造物に対し、水密構造を必要とせず、低防食電流密
度による経済的な電気防食を可能とし、さらに簡IJv
な電位測定Gこよって防食効果の判定をも容易にする極
めて効果的な電気防食法を提供することを目的とする。This invention solves the above-mentioned problems of conventional structures, and provides an economical solution to metal structures that span both atmospheric and electrolytic environments without requiring a watertight structure and with a low corrosion protection current density. Enabling cathodic protection and further simplifying IJv
It is an object of the present invention to provide an extremely effective cathodic protection method that makes it easy to determine the corrosion protection effect by measuring electric potential G.
この発明は大気環境中の金属製構造物に対し、理論上不
可能とされていた電気防食法の通用を可能にすることに
よって、前記目的を達成することに成功したもので、次
のような構成としている。This invention succeeded in achieving the above objective by making it possible to apply cathodic protection methods to metal structures in the atmospheric environment, which was theoretically impossible. It is structured as follows.
すなわち、この発明に係る金属製構造物の防食方法は、
大気環境中の前記構造物表面を電解質性被覆物で被覆し
、その上を導電性被覆物で被覆し、さらにこの導電性被
覆物にまたがって電解質環境中の前記構造物表面を吸水
保水性マットで被覆すると共に、電解質環境中の前記構
造物に電気防食装置を設置し、前記構造物に流入する一
部の防食電流が吸水保水性マットを通って導電性被覆物
を経由するようにする。That is, the corrosion prevention method for metal structures according to the present invention is as follows:
The surface of the structure in the atmospheric environment is coated with an electrolyte coating, the electrolyte coating is coated on top of the electrolyte coating, and the surface of the structure in the electrolyte environment is coated with a water-absorbing and water-retaining mat covering the conductive coating. At the same time, a cathodic protection device is installed on the structure in an electrolyte environment so that a part of the anticorrosive current flowing into the structure passes through the water-absorbing water-retaining mat and the conductive coating.
このように構成された電気防食法においては、電気防食
による防食電流iは電解質環境中の金属製構造物表面に
直接流入して該表面を良好な防食状態に保持するが、そ
の一部の防食電流五1は、一旦、電解質環境中の吸水保
水性マットを通って大気環境中の導電性被覆物の外表面
に流入し、電解質性被覆物を経由して大気環境中の前記
構造物表面に流入して、該表面に対し均一な電位分布を
与える。In the cathodic protection method configured in this way, the corrosion protection current i due to cathodic protection flows directly into the surface of the metal structure in the electrolyte environment and maintains the surface in a good corrosion protection state. The current 51 first flows through the water-absorbing and water-retaining mat in the electrolytic environment to the outer surface of the conductive coating in the atmospheric environment, and then flows through the electrolytic coating to the surface of the structure in the atmospheric environment. flows to provide a uniform potential distribution to the surface.
導電性被覆物は、広範囲にわたる電流の分布電極として
働くから、陽極電流密度は低くなり、導電性被漬物の消
耗の度合は極度に少ないものになる。Since the conductive coating acts as a wide current distribution electrode, the anodic current density is low and the degree of consumption of the conductive coating is extremely low.
以下、この発明の一実jA例を図面に基づいて説明する
。Hereinafter, an example of the present invention will be explained based on the drawings.
第1図は、桟橋鋼管杭の概略断面図である。第1図にお
いて、鋼管杭1の被覆が施される部分、すなわら、上端
部より満潮位ぐらいまでワイヤーブラシによる第3種研
練程度の表面処理を行って浮錆、海洋生物及び藻類等を
取除き、この表面に電解質性被覆物2、たとえば有機系
樹脂等が添加された密着性の良好なモルタル系塗覆物(
商品名)0ツクスラリー、昭和石油θ荀製)を2〜3曹
膳の膜厚で噴射溶着する。この電解質性被覆物2は、多
孔質保水性の優れたものが良く、高アルカリ性を有する
ものであれば防食電流の低減が計れるので最適である。FIG. 1 is a schematic cross-sectional view of a pier steel pipe pile. In Fig. 1, the part of the steel pipe pile 1 to be coated, that is, the surface treatment is applied to the level of Type 3 polishing with a wire brush from the upper end to about the high tide level to remove floating rust, marine organisms, algae, etc. is removed, and an electrolytic coating 2, such as a mortar-based coating with good adhesion to which an organic resin or the like is added, is applied to the surface.
Spray and weld 0x slurry (product name) manufactured by Showa Sekiyu θ-sun) to a film thickness of 2 to 3 coats. The electrolytic coating 2 should preferably be porous and have excellent water retention properties, and it is optimal if it has high alkalinity since it can reduce the anti-corrosion current.
この電解質性被覆物2は、モルタル系塗覆物の他、吸水
性高分子、ベントナイトと石膏のlJ1合物オーハーグ
ラウl−等も1吏用できる。The electrolytic coating 2 may be a mortar-based coating or a water-absorbing polymer, a compound of bentonite and gypsum, Ohergrau, or the like.
さらに、電解質層の表面に導電性被覆物3、たとえば導
電性塗料を塗装する。この導電性塗料は導電性フィラー
としてグラファ・イt−ワ)、カーボン粉、ニッケル粉
、過酸化鉛粉あるいは亜鉛末等を混入したウレタン、エ
ボキン、アクリル系樹脂バインダーからなる耐候性に優
れた塗料を使用する。Furthermore, a conductive coating 3, such as a conductive paint, is applied to the surface of the electrolyte layer. This conductive paint is a highly weather-resistant paint made of urethane, Evokin, and acrylic resin binder mixed with conductive fillers such as grapha (Grapha®), carbon powder, nickel powder, lead peroxide powder, or zinc dust. use.
これら塗料の塗膜厚は300〜500μ程度で良く、ま
た、この塗料を塗装する場合は、適宜の大きさ、間隔で
電位測定用の穴を塗り残しておき、露出したモルタル表
面に基準電極を押し当て、電位を計測することによって
大気環境中の鋼管杭の防食効果の判定をする。The film thickness of these paints may be approximately 300 to 500μ, and when applying this paint, leave holes for potential measurement at appropriate sizes and intervals, and place a reference electrode on the exposed mortar surface. The corrosion protection effect of steel pipe piles in atmospheric environment is determined by pressing against them and measuring the potential.
前記導電性被覆物3は、導電性塗料の他、シーl状の導
電性樹脂や耐食性金E (Ti、Ta、Nb、Cu )
などが使用でき、またこれら自然電位の異なる導電性複
合被覆物、たとえば耐食性全屈シーI・に導電性塗料を
塗布したものや導電性樹脂シートと耐食性全屈シートを
はり合わせたものなどを使用することもできる。The conductive coating 3 is made of a conductive paint, a seal-shaped conductive resin, or a corrosion-resistant gold E (Ti, Ta, Nb, Cu).
In addition, conductive composite coatings with different natural potentials can be used, such as those coated with conductive paint on corrosion-resistant fully-flexible sheet I, or those made by gluing a conductive resin sheet and a corrosion-resistant fully-flexible sheet. You can also.
この導電性複合被覆物は卑電位を有する導電性被覆物(
導電性塗料あるいは導電性11脂シー1−)が電解質性
被覆物側に、また貴電位を有する導電性被覆物(耐食性
全屈シート)が電解質環境側になるように装着すること
により、起電力が増加するので高抵抗環境中における使
用に最適である。This conductive composite coating is a conductive coating having a base potential (
The electromotive force can be reduced by attaching the conductive paint or conductive resin sheet 1-) on the electrolyte coating side and the conductive coating with a noble potential (corrosion-resistant fully flexible sheet) on the electrolyte environment side. is ideal for use in high resistance environments.
また、前記導電性被覆物の外測をさらに、繊維強化プラ
スチツク製カバーなどを被覆して強化することは有効で
ある。Further, it is effective to further strengthen the outer surface of the conductive coating by covering it with a fiber-reinforced plastic cover or the like.
つぎに、吸水保水性マ、1・6を導電性被覆物3の下部
外表面より少なくとも千〜1位くらいまでの鋼管杭1表
面にかけて被覆する。Next, a water-absorbing and water-retaining material 1.6 is applied to the surface of the steel pipe pile 1 from the lower outer surface of the conductive covering 3 to at least about 1,000 to 1,000 yen.
このマンl−6は、ボリウレクン樹脂、合成繊維紙など
の吸水性高分子などが使用される。This Man 1-6 is made of water-absorbing polymers such as Polyurekne resin and synthetic fiber paper.
一方、海中部における鋼管杭の表面に、八1合金Zn合
金、Mg合金等の流電陽極4を、その鋼製心金5を溶接
することによって取り付ける。この流電陽極式の電気防
食の他、外部電源式の電気防食でも同等の効果を有する
ことはいうまでもない。On the other hand, a galvanic anode 4 made of 81 alloy, Zn alloy, Mg alloy, etc. is attached to the surface of a steel pipe pile in the sea by welding its steel core 5. It goes without saying that in addition to this galvanic anode type cathodic protection, an external power source type cathodic protection has the same effect.
以上の実施例においては桟橋鋼管杭を例に説明したが、
本発明はこれに限定されるものではなく腐食性液体を入
れたタンク内面あるいは陸上タンクの外壁と底板など大
気環境中と電解質環境中にまたがる金IFS製構造物に
使用され得る。In the above example, the pier steel pipe pile was explained as an example, but
The present invention is not limited thereto, and can be used for structures made of gold IFS that span an atmospheric environment and an electrolyte environment, such as the inner surface of a tank containing a corrosive liquid or the outer wall and bottom plate of a land tank.
以上説明したように、この発明の方法によれば導電性被
覆物が電気防食の分布電極及び大気との遮蔽物として作
用するので大気環境中の鋼材表面を広範囲にわたって均
一に防食することができる。As explained above, according to the method of the present invention, the conductive coating acts as a distributed electrode for cathodic protection and as a shield from the atmosphere, so that the steel surface in the atmospheric environment can be uniformly protected from corrosion over a wide range.
したがって、大気環境中と電解質環境中にまたがる構造
的に対し、−貫として電気防食を通用できるので、水密
構造の必要は全くなく、また、施工後は電位を測定する
だけで防食状態が維持されているかどうか簡単に確認で
きる。Therefore, cathodic protection can be applied as a through-hole for structures that span both atmospheric and electrolytic environments, so there is no need for a watertight structure, and the corrosion-protected state can be maintained simply by measuring the potential after construction. You can easily check if it is.
また、酸素等が遮断されるので、大気環境における鋼材
の防食電流密度が低減可能になり、電解質性被覆物にモ
ルタル系ml物を使用すればさらに低減される。Furthermore, since oxygen and the like are blocked, the corrosion protection current density of steel materials in an atmospheric environment can be reduced, and can be further reduced if a mortar-based ml material is used as the electrolyte coating.
第1図は、この発明の一実施例を示す概鴫断面図である
。FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention.
Claims (1)
物の防食方法であって、大気環境中の前記構造物表面を
電解質性被覆物を介して導電性被覆物で被覆し、この導
電性被覆物にまたがって電解質環境中の前記構造物表面
を吸水保水性マットで被覆すると共に、電解質環境中の
前記構造物に電気防食装置を設置し、前記構造物に流入
する一部の防食電流が吸水保水性マットを通って導電性
被覆物を経由するようにすることを特徴とした金属製構
造物の電気防食法。A method for preventing corrosion of a metal structure that spans an atmospheric environment and an electrolyte environment, the method comprising: coating the surface of the structure in the atmospheric environment with a conductive coating via an electrolyte coating; The surface of the structure in an electrolyte environment is covered with a water-absorbing and water-retaining mat, and a cathodic protection device is installed on the structure in the electrolyte environment so that some of the corrosion protection current flowing into the structure absorbs water. A method for cathodic protection of metal structures, characterized by passing through a water-retaining mat and a conductive coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037260A JPS62196384A (en) | 1986-02-24 | 1986-02-24 | Electrolytic protection method for metallic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037260A JPS62196384A (en) | 1986-02-24 | 1986-02-24 | Electrolytic protection method for metallic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62196384A true JPS62196384A (en) | 1987-08-29 |
JPH0224914B2 JPH0224914B2 (en) | 1990-05-31 |
Family
ID=12492686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61037260A Granted JPS62196384A (en) | 1986-02-24 | 1986-02-24 | Electrolytic protection method for metallic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62196384A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173287A (en) * | 1992-12-01 | 1994-06-21 | Nittetsu Boshoku Kk | Corrosion resistant structure for offshore steel structure |
CN106087927A (en) * | 2016-07-13 | 2016-11-09 | 江苏慧天新能源科技有限公司 | A kind of anticorrosion cladding construction technology |
JP2019163505A (en) * | 2018-03-20 | 2019-09-26 | 株式会社Ihi | Corrosion prevention electrodeposition film formation method of in-water metal structure |
-
1986
- 1986-02-24 JP JP61037260A patent/JPS62196384A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173287A (en) * | 1992-12-01 | 1994-06-21 | Nittetsu Boshoku Kk | Corrosion resistant structure for offshore steel structure |
CN106087927A (en) * | 2016-07-13 | 2016-11-09 | 江苏慧天新能源科技有限公司 | A kind of anticorrosion cladding construction technology |
JP2019163505A (en) * | 2018-03-20 | 2019-09-26 | 株式会社Ihi | Corrosion prevention electrodeposition film formation method of in-water metal structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0224914B2 (en) | 1990-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2092304C (en) | Prevention method of aquatic attaching fouling organisms and its apparatus | |
JPS62196384A (en) | Electrolytic protection method for metallic structure | |
JPH10249357A (en) | Antifouling method | |
JPS62196383A (en) | Electrolytic protection method for metallic structure | |
JP3349119B2 (en) | Long-term corrosion protection for offshore steel structures | |
JP2520779B2 (en) | Anticorrosion and antifouling method for underwater steel structures | |
JPS62196381A (en) | Electric anticorrosive method for structure made of metal | |
JPH0454753B2 (en) | ||
JPH052601Y2 (en) | ||
JPH06173287A (en) | Corrosion resistant structure for offshore steel structure | |
JP3823922B2 (en) | Steel pipe sheet pile and sheet pile wall | |
JPH0470397B2 (en) | ||
JPS63101464A (en) | Electrically conductive coating film for use in electrolysis of sea water | |
JPH0454752B2 (en) | ||
JP3881417B2 (en) | Marine steel structures with excellent long-term durability | |
JPH0423406Y2 (en) | ||
TW302413B (en) | Construction method for the corrosion prevention of steel plate piles or steel pipe piles by external electric current | |
JPH0752167Y2 (en) | Replaceable energizing antifouling cover for offshore structures | |
JP2005113167A (en) | Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure | |
CN106087927A (en) | A kind of anticorrosion cladding construction technology | |
JPH0725047U (en) | Protective cover for anticorrosion and antifouling of steel structures | |
JP3207718B2 (en) | Marine organism adhesion prevention coating | |
JPH0743461U (en) | Coated anticorrosion structure for steel structures | |
JP3107709U (en) | Steel with anti-corrosion protection coating | |
JPS5858429B2 (en) | Corrosion prevention method for steel structures in marine environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |