JPS62196375A - Method and device for forming deposited film by microwave plasma chemical vapor deposition process - Google Patents

Method and device for forming deposited film by microwave plasma chemical vapor deposition process

Info

Publication number
JPS62196375A
JPS62196375A JP61037360A JP3736086A JPS62196375A JP S62196375 A JPS62196375 A JP S62196375A JP 61037360 A JP61037360 A JP 61037360A JP 3736086 A JP3736086 A JP 3736086A JP S62196375 A JPS62196375 A JP S62196375A
Authority
JP
Japan
Prior art keywords
microwave
reaction vessel
substrate
deposited film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61037360A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61037360A priority Critical patent/JPS62196375A/en
Publication of JPS62196375A publication Critical patent/JPS62196375A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Abstract

PURPOSE:To stably and high speedily form a deposited film on the surface of a base material by arranging a microwave permeable base material extremely near to a window of a dielectric material and irradiating microwave from the outside and injecting a reacting gas for film formation to the base material from a reaction vessel side. CONSTITUTION:A window 3 of a dielectric material made of quartz glass wherein microwave is permeated therethrough and vacuum airtightness can be held is provided to a reaction vessel 1 constituted by providing an exhaust pipe 6 to a vacuum vessel 2. A base plate 9 consisting of a microwave permeable member is arranged extremely near to the above- mentioned window 3 of the dielectric material in the reaction vessel 1 side which is vacuumed and exhausted in the proper degree of vacuum. As the above-mentioned base plate 9, in such a case that microwave has >=500MHz frequency, a dielectric material such as quartz glass, Al2O3 and ceramic having >=0.0006 tandelta loss angle of the dielectric material is preferably used. The above-mentioned base plate 9 is made at the prescribed temp. by the radiation heat of a heater 10. Thereafter while discharging reaction gas for film formation to the neighborhood of the base plate 9 through the many discharge holes 7' of a feed pipe 7 for a gaseous raw material, film formation is performed on the base plate 9 by irradiating microwave 51 from an electric power source 5 for microwave, energizing and decomposing the above-mentioned gaseous raw material in a plasma generating region 11.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、特に半
導体デバイス、電子写真用感光体デバイス、画像入力用
ラインセンサー、撮像デバイス、光起電力素子等に用い
るアモルファス半導体膜を形成する方法及び該方法を実
施するに至適な装置に関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photoreceptor device for electrophotography, a line sensor for image input, an imaging device, an optical The present invention relates to a method for forming an amorphous semiconductor film used in an electromotive force element, etc., and an apparatus most suitable for carrying out the method.

〔従来技術の説明〕[Description of prior art]

従来、半導体デバイス、電子写真用感光体デバイス、画
像入力用ラインセンサー、撮像デバイス、光起電力素子
、その他各種のエレクトロニクス素子、光学素子等に用
いる素子部材として、アモルファスシリコン、例えば水
素(H)又は/及びハロゲン(X)(例えばフッ素、塩
素等)で補償されたアモルファスシリコン(以下、〔a
−8i (H,X)〕と記す。)等のアモルファス半導
r1ζ等の堆積膜が提案され、その中のいくつかは実用
に付されている。
Conventionally, amorphous silicon, such as hydrogen (H) or / and halogen (X) (e.g. fluorine, chlorine, etc.) compensated amorphous silicon (hereinafter, [a
−8i (H,X)]. ) and other amorphous semiconductor r1ζ deposited films have been proposed, and some of them have been put into practical use.

そして、そうした堆積膜については、プラズマCVD法
、即ち、原料ガスを直流又は高周波、マイクロ波グロー
放電によって分解し、ガラス、石英、耐熱性合成樹脂フ
ィルム、ステンレス、アルミニウムなどの基体上に薄膜
状の堆積膜を形成する方法により形成されることが知ら
れており、そのための装置も各種提案されている。
Such deposited films are produced using the plasma CVD method, in which raw material gas is decomposed by direct current, high frequency, or microwave glow discharge, and a thin film is deposited on a substrate such as glass, quartz, heat-resistant synthetic resin film, stainless steel, or aluminum. It is known to be formed by a method of forming a deposited film, and various apparatuses for this purpose have also been proposed.

特に、近年マイクロ波グロー放電分解を用いたプラダ7
 CVD法(以下、*Mw −PCVD法〃という。)
が工業的にも注目されている。
In particular, in recent years, Prada 7 has been developed using microwave glow discharge decomposition.
CVD method (hereinafter referred to as *Mw-PCVD method)
is also attracting attention from an industrial perspective.

そうした従来のMW−PCVD法による堆積膜の形成装
置は、代表的には、第2図の断面略図で示される装置構
成のものである。第2図において、1は反応容器全体を
示し、2は真空容器、3はアルミナセラミックス又は石
英等の誘電体窓、4は導波部、5はマイクロ波電源、5
1はマイクロ波、6は排気管、7はリング状の原料ガス
供給管、71はバルブ、8は基体保持板、9は基板、1
0はヒーター、11はプラズマ発生領域を示す。
Such a conventional apparatus for forming a deposited film using the MW-PCVD method typically has an apparatus configuration shown in the schematic cross-sectional view of FIG. In Fig. 2, 1 indicates the entire reaction vessel, 2 a vacuum vessel, 3 a dielectric window made of alumina ceramics or quartz, 4 a waveguide, 5 a microwave power source, 5
1 is a microwave, 6 is an exhaust pipe, 7 is a ring-shaped source gas supply pipe, 71 is a valve, 8 is a substrate holding plate, 9 is a substrate, 1
0 indicates a heater, and 11 indicates a plasma generation region.

こうした従来の、堆積膜形成装置による堆積膜形成は、
以下のようにして行われる。
Deposited film formation using such conventional deposited film forming equipment is
This is done as follows.

即ち、真空容器2内部を、排気管6を介して真空排気す
ると共に、基板9を基体保持板8に内蔵されたヒーター
10により所定温度に加熱、保持する。次に、原料ガス
供給管7に、例えばアモルファスシリコン堆積膜を形成
する場合であれば、シランガス、水素ガス等の原料ガス
を送入し、該原料ガス供給管に開口する複数のガス放出
孔7/ 、 7/、・・・を介して反応容器1内に放出
される。これと同時併行的に、マイクロ波電源5から周
波数500 Nff(z以上の、好ましくは2.45 
GHzのマイクロ波51を発生し、該マイクロ波は、導
波部4を通り誘電体窓3を介して反応容器1内に導入さ
れる。かくして反応容器l内の導入原料ガスは、マイク
ロ波のエネルギーにより励起されて解離し、中性ラジカ
ル粒子〜イオン粒子、電子等が生成され、それ等が相互
に反応して基体9の表面に堆積膜が形成される。
That is, the inside of the vacuum container 2 is evacuated via the exhaust pipe 6, and the substrate 9 is heated and held at a predetermined temperature by the heater 10 built into the substrate holding plate 8. Next, in the case of forming, for example, an amorphous silicon deposited film, a raw material gas such as silane gas or hydrogen gas is fed into the raw material gas supply pipe 7, and a plurality of gas discharge holes 7 are opened to the raw material gas supply pipe 7. / , 7/, . . . into the reaction vessel 1. Simultaneously, a frequency of 500 Nff (Z or more, preferably 2.45
A GHz microwave 51 is generated, and the microwave is introduced into the reaction vessel 1 through the waveguide 4 and the dielectric window 3 . In this way, the raw material gas introduced into the reaction vessel 1 is excited by the microwave energy and dissociated, producing neutral radical particles to ion particles, electrons, etc., which react with each other and deposit on the surface of the substrate 9. A film is formed.

ところで、このようなMW−PCVD法においては、一
般に周波数13.56 MHzの高周波電力を用いた高
周波プラズマCVD法(以下、これを’RF−PCVD
法“という。)と異なシ、無電極放電によってプラズマ
が生起する。すなわち、第1図に示すようにマイクロ波
51が導入される誘電体窓3を中心としてプラズマ11
が生起されることになる。また、電離したプラズマは電
気的導体として作用するため、誘電体内部を空間伝搬す
る性質を有するマイクロ波にとっては吸収体もしくは反
射体として作用する。しかも、プラズマの電界強度はそ
の表皮効果のため誘電体窓から遠ざかるに従って急激に
減少する。
By the way, in such a MW-PCVD method, a high-frequency plasma CVD method (hereinafter referred to as 'RF-PCVD) using high-frequency power with a frequency of 13.56 MHz is generally used.
Plasma is generated by an electrodeless discharge, which is different from the method (referred to as "method"). That is, as shown in FIG.
will occur. Furthermore, since the ionized plasma acts as an electrical conductor, it acts as an absorber or a reflector for microwaves that have the property of spatially propagating inside a dielectric material. Furthermore, the electric field strength of the plasma decreases rapidly as it moves away from the dielectric window due to the skin effect.

また電子温度も電界強度分布に比例して減少するため、
原料ガスの分解によって生成した励起原子の密度分布も
誘電体窓から遠ざかるに従って減少する。このような、
励起電子の密度分布は堆積膜の堆積速度に直接影響を及
ぼし、誘電体窓近傍では速く、遠ざかるに従って急速に
遅くなる。
In addition, since the electron temperature also decreases in proportion to the electric field strength distribution,
The density distribution of excited atoms generated by decomposition of the source gas also decreases as the distance from the dielectric window increases. like this,
The density distribution of excited electrons directly affects the deposition rate of the deposited film, which is fast near the dielectric window and rapidly slows down as it moves away from the dielectric window.

すなわち、誘電体窓から可成り離れた位置に基板が配設
されていた従来のMW−PCVD装置には、膜の堆積速
度が遅いという欠点があった。
That is, the conventional MW-PCVD apparatus in which the substrate is disposed at a considerable distance from the dielectric window has the disadvantage that the film deposition rate is slow.

また、同一構造の装置をa−8i :)(:x膜以外の
プラズマ処理、例えば電気絶縁膜の堆積やドライ−エツ
チング処理等に使用する場合にも、マイクロ波エネルギ
ーを十分に活用できないという欠点もあった。
Another disadvantage is that microwave energy cannot be fully utilized when an apparatus with the same structure is used for plasma processing other than a-8i:)(:x films, such as deposition of electrical insulating films or dry etching processing). There was also.

一方、前記素子材料として用いる3−8i:H:X膜の
ように誘電率の低い膜を堆積する場合、形成される堆積
膜はマイクロ波に対して吸収体あるいは反射体として作
用する。そのため、a−8i : H: X膜を連続し
て堆積させる場合、堆積が進行し、膜厚が厚くなるにつ
れてa−8i:H: X膜でのマイクロ波電力の反射量
が増加し、反応室内に進入してプラズマを生起させるた
めに使用されるマイクロ波電力が減少し、やがてはプラ
ズマを生起させるだけのマイクロ波電力を投入できなく
なシ、プラズマが消失してしまう。
On the other hand, when depositing a film with a low dielectric constant such as the 3-8i:H:X film used as the element material, the deposited film acts as an absorber or reflector for microwaves. Therefore, when a-8i: H: The microwave power used to enter the room and generate plasma decreases, and eventually it becomes impossible to input enough microwave power to generate plasma, and the plasma disappears.

すなわち、従来装置のように堆積速度の遅い場所に基板
を配設した構造では、基体上に所望の膜厚のa−8i:
H:X膜を堆積しようとする場合、誘電体窓にはそれ以
上の膜厚のa−8i:IにX膜が堆積し、基体上のa−
8i :H:X膜が所望の膜厚に達する前にプラズマが
消失するとい°う欠点があった。
That is, in a structure in which the substrate is disposed at a location where the deposition rate is slow as in the conventional apparatus, a desired film thickness of a-8i:
When attempting to deposit an H:X film, the X film is deposited on the dielectric window at a thickness of a-8i:I, which is even thicker than that of the a-8i:I film on the substrate.
The disadvantage was that the plasma disappeared before the 8i:H:X film reached the desired thickness.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述のごとき従来の装置における諸問
題を克服して、半導体デバイス、電子写真用感光デバイ
ス、画像入力用ラインセンサー、撮像デバイス、光起電
力素子、その他の各種エレクトロニクス素子、光学素子
等に用い・る素子部材としての堆積膜を、MW−PCV
D法により、安定して高速形成しうる方法及び該方法を
実施するに至適な装置を提供することにある。
An object of the present invention is to overcome the problems in the conventional devices as described above, and to improve semiconductor devices, photosensitive devices for electrophotography, line sensors for image input, imaging devices, photovoltaic devices, and other various electronic devices, as well as optical devices. The deposited film as an element member used in an element etc. is processed by MW-PCV.
The object of the present invention is to provide a method that can be formed stably and at high speed by method D, and an apparatus that is optimal for carrying out the method.

本発明の他の目的は、MW−PCVD法によりa−8i
:H:X膜を形成するについて、マイクロ波エネルギー
を効率的に利用してa−8i:H:X膜の堆積速度を向
上せしめる方法及び該方法を実施するに至適な装置を提
供することにある。
Another object of the present invention is to obtain a-8i by MW-PCVD method.
: H: It is in.

本発明の更に他の目的は、a−8i:H:X膜堆積中に
マイクロ波が遮断されることなく安定して堆積可能な堆
積膜形成方法及び該方法を実施するに至適な装置を提供
することにある。
Still another object of the present invention is to provide a method for forming a deposited film that can stably deposit an a-8i:H:X film without interruption of microwaves during deposition, and an apparatus most suitable for carrying out the method. It is about providing.

〔発明の構成〕[Structure of the invention]

本発明者らは、従来の方法、装置における前述の諸問題
を克服して、上述の本発明の目的を達成すべく鋭意研究
を重ねたところ、MW−PCVD法によりa−8i:H
:X膜を効率よく形成するについては、基体(支持体)
をマイクロ波導入窓たる誘電体部材のプラズマ側に出来
得るかぎシ近づけて配置することが最も好ましいことが
わかった。
The present inventors have conducted intensive research to overcome the above-mentioned problems in conventional methods and devices and to achieve the above-mentioned object of the present invention, and have found that a-8i:H
:For efficiently forming the X film, the substrate (support)
It has been found that it is most preferable to arrange the microwave as close as possible to the plasma side of the dielectric member serving as the microwave introduction window.

しかしその場合、その一方には上述する解決しなければ
ならない問題のあることがわかった。
However, in that case, it has been found that there is the above-mentioned problem that must be solved.

即ち、上述のようにする場合、構造上、基体の誘電体窓
と接する面と反対側の面にa−8i:H:X膜が堆積す
るようにすることから、反応容器内部でプラズマを生起
させるためには、誘電体窓を伝搬して来たマイクロ波は
、基体内部をも伝搬することが必要不可欠であるという
問題である。
That is, in the case described above, since the a-8i:H:X film is deposited on the surface of the substrate opposite to the surface in contact with the dielectric window, plasma is generated inside the reaction vessel. In order to achieve this, it is essential that the microwaves propagated through the dielectric window also propagate inside the base.

この点について本発明者はさらに鋭意研究を続けたとこ
ろ、周波数500MHz以上のマイクロ波を効率良く伝
搬する基体材料としては、誘電体損失角(tanδ)が
0.005以下で、比誘電率(Eγ)が10以下である
ような誘電体材料を使用するのが好ましい知見を得た。
As a result of further intensive research on this point, the present inventor found that a substrate material that efficiently propagates microwaves with a frequency of 500 MHz or higher has a dielectric loss angle (tan δ) of 0.005 or less and a relative permittivity (Eγ). ) is preferably 10 or less.

そしてそうした誘電体材料には、例えば、石英ガラス、
アルミナセラミックス、テフロン、ポリスチレン、ベリ
リア、ステアタイト等がちシ、これらは周波数2.45
 GHzのマイクロ波電力の半減深度は1m以上で極め
て効率良くマイクロ波が透過することがわかった。
Such dielectric materials include, for example, quartz glass,
Alumina ceramics, Teflon, polystyrene, beryllia, steatite, etc. have a frequency of 2.45.
It has been found that the half-life depth of GHz microwave power is 1 m or more, and microwaves can be transmitted extremely efficiently.

これに対して、tanδが0.006以上の誘電体材料
、例えばソーダガラスではマイクロ波の吸収が大きく、
周波数2.45 GHzのマイクロ波電力はわずか30
cmの深さでその半分が吸収され熱エネルギーとしてう
ばわれることか判明した。
On the other hand, dielectric materials with tan δ of 0.006 or higher, such as soda glass, have a large absorption of microwaves.
The microwave power at frequency 2.45 GHz is only 30
It turns out that half of that amount is absorbed at a depth of 1.5 cm and is used as heat energy.

さらば、基体として金属などの導電性材料を用いると、
マイクロ波が完全に反射されてしまうため、こうした材
料の使用によっては本発明の目的は達成することができ
ないことも判明した。
Farewell, when a conductive material such as metal is used as the base,
It has also been found that the object of the invention cannot be achieved by using such materials, since the microwaves are completely reflected.

然るに本発明は、上述の知見に基いて完成に至ったもの
であるところ、、 MW−P(’VD法による堆積膜形
成方法と、該方法を実施するについて至適な装置とを包
含するものである。
However, the present invention has been completed based on the above-mentioned knowledge, and includes a method for forming a deposited film by the MW-P ('VD method) and an optimal apparatus for carrying out the method. It is.

即ち本発明の、、MW−PCVD法による堆積膜形成方
法は、マイクロ波透過性部材を基体に使用し、該基体を
、マイクロ波発生源からするマイクロ波の透過窓の反応
容器側面に極近させて位置せしめ、該基体の反応容器側
の面の近傍から成膜用原料ガスを噴出せしめると同時に
マイクロ波エネルギーをそこに放射させて前記基体の反
応容器側の面上に膜堆積せしめることを特徴とするもの
である。
That is, the method of forming a deposited film by the MW-PCVD method of the present invention uses a microwave-transparent member as a substrate, and places the substrate very close to the side of the reaction vessel of the microwave transmission window from the microwave generation source. and eject a film-forming raw material gas from near the surface of the substrate on the reaction vessel side, and at the same time radiate microwave energy thereto to deposit a film on the surface of the substrate on the reaction vessel side. This is a characteristic feature.

そして本発明の装置は、前記本発明の、MW−PCVD
法による堆積膜形成方法を実施するに至適なものであっ
て、反応容器壁の一部を形成しマイクロ波発生源から伝
搬されるマイクロ波エネルギーを必噴器内に導入するマ
イクロ波透過窓の反応容器側壁面に極近させてマイクロ
波透過性部材からなる基体を設置し、その界面に該プラ
ズマが侵入しないようにされていて、成膜用原料ガスを
前記基体の近傍から前記基体の反応容器側の面全体に向
けて供給する手段を有することを特徴とするものである
The apparatus of the present invention includes the MW-PCVD of the present invention.
A microwave transmitting window which forms part of the wall of the reaction vessel and which introduces the microwave energy propagated from the microwave generation source into the injector, which is most suitable for carrying out the method of forming a deposited film by the method. A substrate made of a microwave-transparent member is installed very close to the side wall surface of the reaction vessel, and the plasma is prevented from entering the interface, and the raw material gas for film formation is introduced from the vicinity of the substrate into the substrate. It is characterized by having a means for supplying the liquid to the entire surface on the reaction vessel side.

そして、上記構成の本発明の方法並びに装置にあっては
、使用するマイクロ波について、その周波数が500M
Hz以上であるこ点から、基体に使用するマイクロ波透
過性部材は、そうした周波数のマイクロ波に対して誘電
体損失内体例として、石英ガラス、アルミナセラミック
ス、テフロン、ポリスチレン、ベリリア、ステアタイト
等の部材を挙げることができ、基体としてのこうした部
材は、その透過性機能そして支持体としての機能が充分
発揮される範囲内で可能な限り薄くすることができるが
、その製造上の点、取扱い上の点、そして機械的強度上
の点等からして、通常は10μ以上とされる。
In the method and apparatus of the present invention having the above configuration, the frequency of the microwave used is 500M.
Hz or higher, the microwave transparent material used for the substrate is a material such as quartz glass, alumina ceramics, Teflon, polystyrene, beryllia, steatite, etc., as examples of dielectric loss internal materials for microwaves at such frequencies. Such a member as a substrate can be made as thin as possible within a range that fully exhibits its permeability function and support function, but there are certain issues regarding manufacturing and handling. In terms of mechanical strength, etc., the thickness is usually 10μ or more.

そして基体としてのこうした部材は、その堆積膜形成用
面を、用途を考慮して例えばディンプル形状といった類
の凸凹形状のものにすることもできる。
The surface for forming a deposited film of such a member as a base body may be formed into an uneven shape, such as a dimple shape, depending on the intended use.

そしてまた上記構成の本発明の方法並びに装置にあって
は、堆積膜形成用原料ガスをマイクロ波エネルギーによ
り励起して解離して基体面上に堆積膜を形成せしめる際
に、該基体を適宜の手段を介して輻射熱により加熱し、
堆積膜形成効率を高めるようにすることも勿論可能であ
る。
Furthermore, in the method and apparatus of the present invention having the above-mentioned configuration, when the raw material gas for forming a deposited film is excited and dissociated by microwave energy to form a deposited film on the surface of the substrate, the substrate is heated by radiant heat through means,
Of course, it is also possible to increase the efficiency of deposited film formation.

以下、本発明のMW−P(、VD法〈よる堆積膜形成方
法、装置について図面の実施例により、更に詳しく説明
するが、本発明はこれにょシ何ら限定されるものではな
い。
Hereinafter, the method and apparatus for forming a deposited film using the MW-P (VD method) of the present invention will be explained in more detail with reference to the embodiments shown in the drawings, but the present invention is not limited thereto.

第1図は、本発明のMW−PCVD法による堆積膜形成
方法を実施する装置の至適な1例の断面略図である。
FIG. 1 is a schematic cross-sectional view of an optimal example of an apparatus for carrying out the method of forming a deposited film by the MW-PCVD method of the present invention.

図中、前述の従来装置前(第2図に図示)と同一機能の
装置構成部分については、第1図におけると同様の記号
にて示した。
In the figure, the components of the device having the same functions as those before the conventional device (shown in FIG. 2) are indicated by the same symbols as in FIG. 1.

図中、1は本発明の装置の反応容器全体を示す。2は、
該反応容器を真空気密とするための真空容器であり、3
はマイクロ波を反応容器内に効率良く透過し、かつ真空
気密を保持し得るような材料(例えば石英ガラス)で形
成された誘電体窓である。4は、マイクロ波の導波部で
主として金属製の矩形導波管からなっており、三本柱整
合器、アイソレーター(図示せず)を介してマイクロ波
電源5に接続されている。6は、一端が真空容器2内に
開口し、他端が排気装置(図示せず)に連通している排
気管である。
In the figure, 1 indicates the entire reaction vessel of the apparatus of the present invention. 2 is
A vacuum container for making the reaction container vacuum-tight, and 3
is a dielectric window made of a material (for example, quartz glass) that can efficiently transmit microwaves into the reaction vessel and maintain vacuum tightness. Reference numeral 4 denotes a microwave waveguide section, which is mainly made of a metal rectangular waveguide, and is connected to a microwave power source 5 via a three-pillar matching box and an isolator (not shown). Reference numeral 6 denotes an exhaust pipe whose one end opens into the vacuum container 2 and whose other end communicates with an exhaust device (not shown).

8は、基体9の保持部であり、基体9を誘電体窓3に密
接して保持する構造となっている。なお基体9は、マイ
クロ波を効率良く透過する前述の誘電体材料から形成さ
れたものでちる。
Reference numeral 8 denotes a holding portion for the base body 9, which has a structure to hold the base body 9 in close contact with the dielectric window 3. The base body 9 is made of the above-mentioned dielectric material that efficiently transmits microwaves.

基体9は、基板保持部8によって誘電体窓3に密接した
構造で保持されており、基体9と誘電体窓3の界面にお
いてはプラズマは生起しない0 10は、基体9をa−8i:H:X膜が堆積するのに好
適な温度に加熱保持するだめのヒーターである。本実施
例においては基体9の真空側に配置し、輻射熱によって
間接加熱する構造としたが、マイクロ波の伝送を阻げな
い位置であれば真空容器2の壁面に取付けて、基体9を
直接加熱する構造にしてもよい。
The base 9 is held in close contact with the dielectric window 3 by the substrate holder 8, and no plasma is generated at the interface between the base 9 and the dielectric window 3. : This is a heater that heats and maintains the temperature at a temperature suitable for depositing the X film. In this embodiment, it is placed on the vacuum side of the base 9 and is heated indirectly by radiant heat, but if it is in a position where microwave transmission cannot be blocked, it can be installed on the wall of the vacuum container 2 and the base 9 is heated directly. It is also possible to have a structure in which

7は、一端は反応容器の基板9近傍に開口し、他端はパ
ルプ手段71を介して原料ガス供給源(図示せず)に連
通している、原料ガス供給管である。
Reference numeral 7 denotes a raw material gas supply pipe whose one end opens near the substrate 9 of the reaction vessel and whose other end communicates with a raw material gas supply source (not shown) via a pulp means 71.

11は誘電体窓3と基板9を透過したマイクロ波51に
よって反応容器内に生起したプラズマであり、基体9の
誘電体窓3とは反対面側で生起する。
Reference numeral 11 denotes plasma generated in the reaction vessel by the microwave 51 transmitted through the dielectric window 3 and the substrate 9, and is generated on the side of the substrate 9 opposite to the dielectric window 3.

ところで、基体を、反応容器内の加熱手段により加熱す
る場合にあっては、その加熱温度が500℃程度乃至そ
れ以上になると、原料ガスはその熱エネルギーのみでも
分解しである種の反応生成物が生成され、それがa−8
i:H:Xといった膜の形成に好ましからざる影響を及
ぼしてしまうことがあるところ、本発明はこの問題の解
決手段を包含する。
By the way, when the substrate is heated by a heating means in a reaction vessel, if the heating temperature reaches about 500°C or higher, the raw material gas decomposes even with the thermal energy alone and some reaction products are generated. is generated, which is a-8
This may have an undesirable effect on the formation of a film such as i:H:X, and the present invention includes a solution to this problem.

即ち、そうした場合、基体を、マイクロ波エネルギーの
一部を利用して、成膜に好適な温度に加熱、保持する。
That is, in such a case, the substrate is heated and maintained at a temperature suitable for film formation using part of the microwave energy.

具体的には、誘電体損失角(tanδ)が大きい材料が
マイクロ波エネルギーを容器して発熱する性質を有する
ところを利用して、基体9として、tanδが0.00
6以上の誘電体材料部材を用いると、誘電体窓3を透過
したマイクロ波エネルギーのうち一部は該基体に吸収さ
れ、該基体はその内部から加熱され、成膜に好適な温度
に加熱、保持されるところとなる。
Specifically, by utilizing the fact that a material with a large dielectric loss angle (tan δ) has the property of containing microwave energy and generating heat, the base 9 is made of a material with a tan δ of 0.00.
When a dielectric material member of 6 or more is used, part of the microwave energy transmitted through the dielectric window 3 is absorbed by the base, and the base is heated from inside to a temperature suitable for film formation. It will be retained.

そして一方、マイクロ波エネルギーの余の部分は、該基
体を透過し、反応容器の成膜空間にプラズマを生起せし
めてa−8i:H:Xといった膜を該基体の表面に堆積
せしめるのに寄与する。
On the other hand, the remaining part of the microwave energy passes through the substrate, generates plasma in the film formation space of the reaction vessel, and contributes to depositing a film such as a-8i:H:X on the surface of the substrate. do.

もつともその場脅威、tanδの大き過ぎる材料を使用
すると、プラズマ生起に利用されるマイクロ波電力が減
衰するため、十分な堆積速度を達成することができない
。基体材料の選定には、基体温度の上昇そして堆積速度
の減衰とに十分考慮をはらうことが必要である。
However, if a material with a tan δ that is too large is used, the microwave power used for plasma generation will be attenuated, making it impossible to achieve a sufficient deposition rate. Selection of substrate material requires careful consideration of substrate temperature increase and deposition rate attenuation.

また、マイクロ波の吸収の大きくない基板材料を使用す
る場合は、補助的に他の加熱手段を使用することもでき
る。
Further, when using a substrate material that does not absorb microwaves to a large extent, other heating means may be used as an auxiliary method.

〔実施例〕〔Example〕

まず、バルブ71を閉じ排気管6から真空容器2内を脱
気し、反応容器内の圧力をI X 10−’Torr以
下に調整した。ついで、ヒーターlOに通電して基体9
の温度を250℃に加熱、保持した。そこに、パルプ7
1を開いて原料ガス供給管7を介して、シランガス50
0 secm 、水素ガス200 secmの混合ガス
からなる原料ガスを系内圧力がI X 1O−2Tor
rになるまで導入し、それと同時にマイクロ波電源5に
通電して周波数2.45 GHzのマイクロ波を誘電体
窓3および誘電体基体9を介して反応容器内に放射し、
プラズマを生起させて所定時開成膜を行った。その後、
基体の加熱、ガスの供給、マイクロ波の放射等を中止し
、基体を放冷した後、該基体を系外に搬出した。同様の
操作を、誘電体窓3はそのままにして、基体9のみを別
のものに交換し、合計10回の堆積膜形成を行った。
First, the valve 71 was closed and the inside of the vacuum container 2 was degassed through the exhaust pipe 6, and the pressure inside the reaction container was adjusted to below I.times.10-' Torr. Next, the heater lO is energized to heat the base 9.
The temperature was heated to and maintained at 250°C. There, Pulp 7
1 is opened and silane gas 50 is supplied via the raw material gas supply pipe 7.
The raw material gas consisting of a mixed gas of 0 secm and hydrogen gas of 200 secm was heated at an internal pressure of I
At the same time, the microwave power source 5 is energized to radiate microwaves with a frequency of 2.45 GHz into the reaction vessel through the dielectric window 3 and the dielectric base 9,
Plasma was generated to perform open film formation at predetermined times. after that,
After stopping heating the substrate, supplying gas, and irradiating microwaves, and allowing the substrate to cool, the substrate was carried out of the system. The same operation was carried out to form a deposited film 10 times in total, leaving the dielectric window 3 as it was and replacing only the substrate 9 with another one.

このようにして、900Wのマイクロ波電力を放射して
堆積を行った場合の基体9の表面とそれから遠ざかる位
置での堆積速度変化の分布を第3図に示した。
FIG. 3 shows the distribution of deposition rate changes at the surface of the substrate 9 and at positions farther away from the surface of the substrate 9 when deposition was performed by radiating microwave power of 900 W in this manner.

第3図から明らかなように、誘電体窓近傍にある基体9
の表面では堆積膜形成速度が75X/secであるのに
対して、基体かられずか10cIrL離れた位置での堆
積速度は、15A/seeであった。すなわち従来例に
おいて基体を配置していた場所と比べて、基体を誘電体
窓に極近に設置した場合は堆積膜形成速度が実に5倍に
向上した。
As is clear from FIG. 3, the base 9 near the dielectric window
The deposition rate was 75X/sec on the surface of the substrate, while the deposition rate at a position only 10 cIrL away from the substrate was 15A/sec. That is, compared to the location where the substrate was placed in the conventional example, when the substrate was placed very close to the dielectric window, the rate of deposited film formation was increased five times.

しかも、10枚の基体について、その表面に堆積された
堆積膜をテストしたところ、いずれのものも極めて緻密
組成の膜質で膜全体が均質であり、電気的、光学的、光
導電的特性に極めて侵れていた。
Moreover, when we tested the deposited films on the surfaces of 10 substrates, we found that all of them had extremely dense compositions, were homogeneous throughout, and had excellent electrical, optical, and photoconductive properties. It was invaded.

また、基体に1μm程度のa−8i :H:X膜を堆積
させ、10回の堆積膜形成を行った後でも、誘電体窓の
基体と接した表面にはa−8i : H:x膜が堆積し
た形跡は見られなかった。これは、基板が膜堆積時に誘
電体窓に対する膜付着防市板としての効果を発揮してい
ることを表わしている。一般に、光電変換デバイスに使
用するような低電気抵抗率のa−8i:H:X膜を従来
方法で形成させた場合は、デバイスとして必要な膜厚で
ある1μmの膜を堆積させると誘電体窓には5μmの膜
厚のa−8i:H:X膜が堆積する。
Furthermore, even after depositing an a-8i:H:X film of about 1 μm on the substrate and performing the deposition film formation 10 times, the a-8i:H:x film remains on the surface of the dielectric window in contact with the substrate. No evidence of accumulation was seen. This indicates that the substrate is effective as a film adhesion barrier for the dielectric window during film deposition. In general, when a-8i:H:X films with low electrical resistivity, such as those used in photoelectric conversion devices, are formed by conventional methods, if a film is deposited with a thickness of 1 μm, which is the film thickness required for the device, the dielectric A 5 μm thick a-8i:H:X film is deposited on the window.

a−8t:H:X膜がマイクロ波の伝送系路に存在する
場合、その膜厚が4〜5μm以上になると膜でのマイク
ロ波の吸収、反射が無視できなくなる。
When an a-8t:H:X film is present in a microwave transmission path, if the film thickness exceeds 4 to 5 μm, absorption and reflection of microwaves by the film cannot be ignored.

その点、本発明によれば仮りに多くあったとしてもせい
ぜい1μm程度であり、そうしたと°ころで新たな基体
に交換されるわけであるので、a−8i:H:X膜での
マイクロ波電力の減衰を無視できる。実際、本実施例に
おいては1回目と10回目の膜堆積時のマイクロ波の反
射電力の増加は見られず、また、堆積速度の変化も見ら
れず、きわめて安定した成膜ができた。
On the other hand, according to the present invention, even if there is a large amount, it is only about 1 μm at most, and at that point it is replaced with a new substrate. Power attenuation can be ignored. In fact, in this example, no increase in the reflected power of microwaves was observed during the first and tenth film depositions, and no change in the deposition rate was observed, so extremely stable film formation was achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波を透過する誘電体基体をマ
イクロ波導入用誘電体窓に極近させて配置することで、
該窓と接する面と反対の基板表面に高蓮でa−8i:H
:X膜を堆積することができ、該基体を該窓にa−8i
:H:X膜が付着することを防止する防着板としての機
能を合わせてもたせることで反応容器内でプラズマを長
期安定して生起させることができ、a−8i:H:X膜
を安定して堆積することができる。
According to the present invention, by arranging the dielectric substrate that transmits microwaves in close proximity to the dielectric window for introducing microwaves,
A-8i:H with high lotus on the surface of the substrate opposite to the surface in contact with the window.
:X film can be deposited and the substrate is a-8i on the window.
By having the function of an anti-adhesion plate that prevents the adhesion of the :H:X film, plasma can be generated stably for a long period of time in the reaction vessel, and the a-8i:H:X film can be stabilized. can be deposited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例装置の断面略図である。第2
図は、従来のMW−PCVD法による堆積膜の形成装置
の断面略図である。第3図は、本発明により堆積膜形成
を行った場合の、マイクロ波導入窓からの距離に対する
堆積膜形成速度を表わしたグラフである。 図において、 1・・・反応容器     2・・・真空容器3・・・
誘電体窓(マイクロ波導入窓)4・・・導波部    
  5・・・マイクロ波電源51・・・マイクロ波  
  6・・・排気管7・・・原料ガス供給管 71・・
・バルブ8・・・基体保持板    9・・・基板10
・・・ヒーター 11・・・プラズマ発生領域
FIG. 1 is a schematic cross-sectional view of an apparatus according to an embodiment of the present invention. Second
The figure is a schematic cross-sectional view of a deposition film forming apparatus using the conventional MW-PCVD method. FIG. 3 is a graph showing the rate of deposited film formation with respect to the distance from the microwave introduction window when the deposited film is formed according to the present invention. In the figure, 1... Reaction container 2... Vacuum container 3...
Dielectric window (microwave introduction window) 4... waveguide section
5...Microwave power supply 51...Microwave
6... Exhaust pipe 7... Raw material gas supply pipe 71...
・Valve 8...Base holding plate 9...Substrate 10
...Heater 11...Plasma generation area

Claims (6)

【特許請求の範囲】[Claims] (1)マイクロ波透過性部材を基体に使用し、該基体を
、マイクロ波発生源からするマイクロ波の透過窓の反応
容器側面に極近させて位置せしめ、該基体の反応容器側
の面の近傍から成膜用原料ガスを噴出せしめると同時に
マイクロ波エネルギーをそこに放射させて前記基体の反
応容器側の面上に堆積膜を形成せしめることを特徴とす
るマイクロ波プラズマCVD法による堆積膜形成方法。
(1) A microwave transparent member is used as a base, and the base is positioned very close to the side of the reaction vessel of the microwave transmission window from the microwave generation source, and the surface of the base on the reaction vessel side is Deposited film formation by a microwave plasma CVD method, characterized in that a deposited film is formed on the surface of the substrate on the reaction vessel side by ejecting a film-forming raw material gas from nearby and simultaneously radiating microwave energy thereto. Method.
(2)前記基体を、輻射熱により成膜に好適な温度に加
熱する、特許請求の範囲第1項に記載の堆積膜形成方法
(2) The deposited film forming method according to claim 1, wherein the substrate is heated to a temperature suitable for film formation using radiant heat.
(3)前記基体として、マイクロ波の周波数が500メ
ガ・ヘルツ以上である時、誘電体損失角(tanδ)が
0.006以上である誘電体部材を使用する、特許請求
の範囲第1項に記載の堆積膜形成方法。
(3) According to claim 1, the substrate is a dielectric member having a dielectric loss angle (tan δ) of 0.006 or more when the microwave frequency is 500 megahertz or more. The deposited film forming method described above.
(4)反応容器壁の一部を形成しマイクロ波発生源から
伝搬されるマイクロ波エネルギーを反応容器内に導入す
るマイクロ波透過窓の反応容器側壁面に極近させてマイ
クロ波透過性部材からなる基体を設置し、その界面に該
プラズマが侵入しないようにされていて、成膜用原料ガ
スを前記基体の近傍から前記基体の反応容器側の面全体
に向けて供給する手段を有することを特徴とするマイク
ロ波プラズマCVD法による堆積膜形成装置。
(4) A microwave transparent member is placed in close proximity to the side wall surface of the reaction vessel of the microwave transmission window that forms part of the wall of the reaction vessel and introduces microwave energy propagated from the microwave generation source into the reaction vessel. A base body is installed, the plasma is prevented from entering the interface thereof, and means is provided for supplying the raw material gas for film formation from the vicinity of the base body to the entire surface of the base body on the side of the reaction vessel. Deposited film forming apparatus using the microwave plasma CVD method.
(5)前記基体を、薄膜の堆積に好適な温度に輻射熱に
よつて加熱する手段を、該マイクロ波透過窓の大気側近
傍のマイクロ波エネルギの伝送を阻げない位置に有する
、特許請求の範囲第4項に記載の堆積膜形成装置。
(5) A means for heating the substrate by radiant heat to a temperature suitable for thin film deposition is provided at a position near the atmosphere side of the microwave transmission window where transmission of microwave energy cannot be obstructed. The deposited film forming apparatus according to scope 4.
(6)前記基体として、マイクロ波の周波数が500メ
ガ・ヘルツ以上である時、誘導体損失角(tanδ)が
0.006以上である誘導体部材を使用する、特許請求
の範囲第4項に記載の堆積膜形成装置。
(6) The base body is a dielectric member having a dielectric loss angle (tan δ) of 0.006 or more when the microwave frequency is 500 MHz or more. Deposited film forming device.
JP61037360A 1986-02-24 1986-02-24 Method and device for forming deposited film by microwave plasma chemical vapor deposition process Pending JPS62196375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037360A JPS62196375A (en) 1986-02-24 1986-02-24 Method and device for forming deposited film by microwave plasma chemical vapor deposition process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037360A JPS62196375A (en) 1986-02-24 1986-02-24 Method and device for forming deposited film by microwave plasma chemical vapor deposition process

Publications (1)

Publication Number Publication Date
JPS62196375A true JPS62196375A (en) 1987-08-29

Family

ID=12495373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037360A Pending JPS62196375A (en) 1986-02-24 1986-02-24 Method and device for forming deposited film by microwave plasma chemical vapor deposition process

Country Status (1)

Country Link
JP (1) JPS62196375A (en)

Similar Documents

Publication Publication Date Title
TWI407843B (en) Plasma processing device
US4653428A (en) Selective chemical vapor deposition apparatus
CA1317644C (en) Large area microwave plasma apparatus
KR101012910B1 (en) Plasma treatment apparatus, and substrate heating mechanism to be used in the apparatus
EP0874386A2 (en) Apparatus and process for remote microwave plasma generation
JPH04123257U (en) Bias ECR plasma CVD equipment
JPH04362091A (en) Plasma chemical vapor deposition apparatus
JPH0510428B2 (en)
JP2722070B2 (en) Plasma processing apparatus and plasma processing method
EP0841838B1 (en) Plasma treatment apparatus and plasma treatment method
KR20080029844A (en) Microwave plasma processing apparatus, integral slot forming member, method of manufacturing and using a microwave plasma processing apparatus
US4909184A (en) Apparatus for the formation of a functional deposited film using microwave plasma chemical vapor deposition process
US6092486A (en) Plasma processing apparatus and plasma processing method
US5449880A (en) Process and apparatus for forming a deposited film using microwave-plasma CVD
JPS62196375A (en) Method and device for forming deposited film by microwave plasma chemical vapor deposition process
US5510088A (en) Low temperature plasma film deposition using dielectric chamber as source material
KR950013426B1 (en) Micro plasma enhance cud apparatus an thin film transistor and application apparatus thereof
JPS62294181A (en) Method and device for forming functional deposited film by microwave plasma cvd (chemical vapor deopsition)
JPH0544798B2 (en)
JP2002008982A (en) Plasma cvd system
JPS6240380A (en) Deposited film forming device by plasma cvd method
JP3092559B2 (en) Plasma processing apparatus and gas introduction method for the apparatus
JPS6350479A (en) Device for forming functional deposited film by microwave plasma cvd method
JP4355490B2 (en) Deposited film forming equipment
JPH055897B2 (en)