JPS62196310A - Method for adjusting quality of gas generated in melt reduction furnace - Google Patents

Method for adjusting quality of gas generated in melt reduction furnace

Info

Publication number
JPS62196310A
JPS62196310A JP61038497A JP3849786A JPS62196310A JP S62196310 A JPS62196310 A JP S62196310A JP 61038497 A JP61038497 A JP 61038497A JP 3849786 A JP3849786 A JP 3849786A JP S62196310 A JPS62196310 A JP S62196310A
Authority
JP
Japan
Prior art keywords
gas
temp
temperature
furnace
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038497A
Other languages
Japanese (ja)
Inventor
Shigeki Sasahara
笹原 茂樹
Isao Kobayashi
勲 小林
Reijiro Nishida
西田 ▲禮▼次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61038497A priority Critical patent/JPS62196310A/en
Publication of JPS62196310A publication Critical patent/JPS62196310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To adjust the temp. and reduction potential of the high-temp. produced gas subjected to secondary combustion in a melt reduction furnace for iron making so at to be made suitable for the progression of a preliminary reduction reaction by adding the gas obtd. by the heating cracking of a hydrocarbon to the produced gas. CONSTITUTION:A by-produced gas is subjected to secondary combustion in the melt reduction furnace 2 at the time of successively conveying said gas to a preliminary reduction furnace 1 and the furnace 2 and reducing iron ore. The gas formed in such a manner has no reducing power any longer but has a high temp. and much heat energy. Such gas is conducted into a reformer 9. For example, CH4 is not conducted directly to the reformer 9 at ordinary temp. state and the cracked gas (gaseous mixture composed of C, H2 and unreacted CH4, etc.) formed by heating and cracking the CH4 in a heating and cracking device 12 is conducted to the reformer. Then the above- mentioned cracking reaction is an endothermic reaction and therefore, the high-temp. gas from the furnace 2 is decreased to the suitable temp. by the heating temp. control of the device 12 and the reforming reaction is satisfactorily progressed. The gas of the temp. and reducing power suitable for the introduction into the furnace 1 is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶融還元炉内で2次燃焼されることによって
温度が上昇し且つ還元ポテンシャルの下った発生ガスに
ついて、その温度及び還元ポテンシャルを、予備還元に
適したものに調整することのできる方法に関するもので
ある。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to evaluating the temperature and reduction potential of generated gas whose temperature has increased and reduction potential has decreased due to secondary combustion in a smelting reduction furnace. , relates to a method that can be adjusted to be suitable for preliminary reduction.

[従来の技術] 高炉によらないで銑鉄を製造する技術としていわゆる直
接製鉄法が脚光を浴びつつあり、これまでKR法、C0
IN法、用鉄法、住金法等が開発されてきた。これらの
方法は、第2図に記す如く予備還元炉1及び溶融還元炉
2を順次搬送することによって鉄鉱石を還元しようとす
るものであって、予備還元炉1においては、矢印3の如
く装入された鉄鉱石が後述の改質ガスによって予備還元
される。該予備還元炉1内で予備還元された鉄鉱石は、
引き続き溶融還元炉2へ導かれるのであるが(矢印5)
、該鉄鉱石は、外部から吹き込まれる微粉炭及び酸素(
矢印6)によって更に還元され銑鉄として取り出される
(矢印7)。ところで溶融還元炉2内の鉄浴上には溶融
還元に伴う副生ガスとしてCOガス(但しCO2,H2
,H20ガス等も含まれる)が存在するが、該COガス
やH2ガス等のエネルギーを有効に活用する目的で、矢
印8に示す如く酸素ガスを吹き込んでc。
[Conventional technology] The so-called direct steel manufacturing method is attracting attention as a technology for manufacturing pig iron without using a blast furnace.
The IN Law, the Steel Works Law, the Sumitomo Metal Law, etc. have been developed. These methods attempt to reduce iron ore by sequentially transporting it through a preliminary reduction furnace 1 and a smelting reduction furnace 2 as shown in FIG. The introduced iron ore is preliminarily reduced by the reformed gas described below. The iron ore pre-reduced in the pre-reduction furnace 1 is
It is then guided to the melting reduction furnace 2 (arrow 5).
, the iron ore is blown into pulverized coal and oxygen (
It is further reduced by arrow 6) and extracted as pig iron (arrow 7). By the way, CO gas (however, CO2, H2
, H20 gas, etc.), but in order to effectively utilize the energy of the CO gas, H2 gas, etc., oxygen gas is blown in as shown by arrow 8.

を燃やすという処理、いわゆるポストコンパッション処
理が行なわれ前記鉄浴の昇温を図る場合がある。該ポス
トコンパッション処理が行なわれると、上記COガスや
H2ガスはCO2及びH20ガスになるが、これらのガ
スは還元能力を喪失しているが高温であり熱エネルギー
に富んでいる。そこでこれらを矢印4の如くリフオーマ
−9へ導き炭化水素や炭素との接触によって改質し還元
能力を回復させてから前記予備還元炉1ヘリサイクルし
ている(矢印10)。
In some cases, a so-called post-compassion process is performed to raise the temperature of the iron bath. When the post-compassion treatment is performed, the CO gas and H2 gas become CO2 and H20 gases, and although these gases have lost their reducing ability, they are at high temperature and rich in thermal energy. Thereupon, these are guided to the reformer 9 as indicated by arrow 4, reformed by contact with hydrocarbons and carbon to recover the reducing ability, and then recycled to the preliminary reduction furnace 1 (arrow 10).

ところで上記改質法に関する技術としては、特開昭59
−222508号公報を挙げることができる。即ち上記
開示方法は、前記ポストコンパッションにより生じた高
温のCo2及びH20ガス(約t、aoo℃)に、矢印
11で示す如く化石燃料(石炭や炭化水素等、以下CH
4で代表する)を導入して下記(1)及び(2)の如く
反応せしめ、これによフて上記Co2ガス等の温度を低
下させる(約850℃)と共に還元ポテンシャルの上昇
を図って改質ガスとしようとするものである。
By the way, the technology related to the above-mentioned reforming method is disclosed in Japanese Patent Application Laid-open No. 59
-222508 can be mentioned. That is, in the disclosed method, fossil fuels (coal, hydrocarbons, etc., hereinafter referred to as CH
4) is introduced and reacted as described in (1) and (2) below, thereby lowering the temperature of the Co2 gas etc. (about 850°C) and increasing the reduction potential. It is intended to be a quality gas.

CO2+ Cl14 =2GO+2)12−5’1lG
OKcafL/kg ・moJZe++20 +C)1
4 =CD+3112          (2)この
様な過程を経て改質された改質ガスは、前述した如く予
備還元炉1へ導かれ(矢印10)、予備還元用ガスとし
て前述の如く用いられることとなる。
CO2+ Cl14 =2GO+2)12-5'1lG
OKcafL/kg ・moJZe++20 +C)1
4 = CD + 3112 (2) The reformed gas reformed through such a process is led to the preliminary reduction furnace 1 (arrow 10) as described above, and is used as the preliminary reduction gas as described above.

[発明が解決しようとする問題点コ 上記改質反応[即ち(1)及び(2)の反応]はいずれ
も吸熱反応であるから、上記改質反応の進行に従ってリ
フオーマ−反応系の温度は低下する。
[Problems to be Solved by the Invention] Since the above-mentioned reforming reactions [namely, the reactions (1) and (2)] are both endothermic reactions, the temperature of the reformer reaction system decreases as the above-mentioned reforming reactions progress. do.

一方予備還元反応は約850℃において有利に進行する
ことが分かっているから、上記吸熱反応に伴なう温度低
下は、それ自体予備還元反応にとりて好ましいことであ
る。しかし予備還元反応にとっては好ましい低温がリフ
オーマニ反応に対してはかえって弊害をもたらすことが
分かった。即ち上記リフオーマ−反応系における改質反
応は、950℃付近から著じるしく緩慢になり、900
℃以下になるとほとんど停止してしまう。このことは、
900℃以下では還元ポテンシャルの上昇が期待できな
いことを意味している。
On the other hand, since it is known that the pre-reduction reaction proceeds advantageously at about 850° C., the temperature reduction accompanying the endothermic reaction is itself favorable for the pre-reduction reaction. However, it has been found that the low temperature, which is preferable for the pre-reduction reaction, has a negative effect on the LiFohman reaction. That is, the reforming reaction in the reformer reaction system becomes significantly slow from around 950°C, and at around 900°C.
When the temperature drops below ℃, it almost stops. This means that
This means that an increase in reduction potential cannot be expected at temperatures below 900°C.

従って改質反応の進行を主体に考えれば温度降下の方は
さして期待できず、他方温度降下の方を主体に考えれば
改質反応の進行が不十分になるとし)うジレンマに陥し
1す、リフオーマ−9としては所期の目的を十分に果し
得ていないというのが実情である。この点をより明瞭に
する為、リフオーマ−の入口温度(上記高温発生ガスの
温度)を1600℃、リフオーマ−の出口温度(改質後
のガス温度)を850℃、改質用CH4ガスの温度を常
温という様に夫々を固定し、リフオーマ−への導入ガス
(高温発生ガス)組成[(CO2+1120 ) /(
CO2+ 820 +GO+ H2)で求められる酸化
度]を変化させて(必要により当該導入ガス及びCH4
ガスの量を変化させて)改質反応を強行し、前記酸化度
がリフオーマ−人口側と出口側でどの様に変るかを調べ
た。その結果は第3図に示す通りであり、入口側酸化度
(η1)と出口側酸化度(η2)の間にはほぼ完全な1
次関数的関係が認められた。そしてこの1次関数の勾配
はグラフから約坏と読み取れ、酸化度が高くなるほど温
度低下のためにガス改1τか困難なことが分かった。
Therefore, if we mainly consider the progress of the reforming reaction, we cannot expect much from the temperature drop, but on the other hand, if we mainly consider the temperature drop, the progress of the reforming reaction will be insufficient. The reality is that the Reformer 9 has not been able to fully achieve its intended purpose. To make this point clearer, we set the inlet temperature of the reformer (temperature of the high-temperature generated gas) to 1600°C, the outlet temperature of the reformer (gas temperature after reforming) to 850°C, and the temperature of the CH4 gas for reforming. are fixed at room temperature, and the composition of the gas introduced into the reformer (high temperature generated gas) [(CO2 + 1120) / (
CO2+ 820 +GO+ H2)] (if necessary, the introduced gas and CH4
The reforming reaction was forced by changing the amount of gas, and it was investigated how the degree of oxidation changes between the reformer population side and the outlet side. The results are shown in Figure 3, where there is almost complete unity between the inlet side oxidation degree (η1) and the outlet side oxidation degree (η2).
A functional relationship was observed. The slope of this linear function can be read from the graph as being approximately equal, and it was found that the higher the degree of oxidation, the more difficult it is to obtain a gas correction of 1τ due to the temperature drop.

結局改質の進行による還元ポテンシャルの向上と改質後
の最適温度への調節ということを同時に達成することは
、従来技術では達成されておらなかったのである。
In the end, it has not been possible in the prior art to simultaneously improve the reduction potential through the progress of reforming and adjust the temperature to the optimum temperature after reforming.

本発明はこうした事情を考慮してなされたものであって
、溶融還元炉内でポテトコンパッションされた高温の発
生ガスを予備還元反応の進行に最適な温度まで低下させ
ると共に還元ポテンシャルをも同時に上昇させることの
できる品質調整方法を提供しようとするものである。
The present invention has been made in consideration of these circumstances, and is capable of lowering the high-temperature generated gas subjected to potato compaction in the smelting reduction furnace to the optimum temperature for the progress of the preliminary reduction reaction, and simultaneously increasing the reduction potential. The purpose of this paper is to provide a quality adjustment method that can improve

[問題点を解決するための手段] 本発明に係る溶融還元炉発生ガスの品質調整方法とは、
溶融還元製鉄法の実施に当たり溶融還元炉内で2次燃焼
された高温の発生ガスを予備還元に適したガスに改質す
る方法であって、炭化水素の加熱分解によって得られる
ガスを、上記高温の発生ガスに加えることによフて予備
還元炉への導入に適した温度及び還元力に改質するとこ
ろにその要旨が存在するものである。
[Means for solving the problem] The quality adjustment method of gas generated by a smelting reduction furnace according to the present invention is as follows:
This is a method of reforming high-temperature generated gas that is secondary-combusted in a smelting reduction furnace during the implementation of the smelting reduction ironmaking process into a gas suitable for preliminary reduction, in which the gas obtained by thermal decomposition of hydrocarbons is The gist of this is that by adding it to the generated gas, the gas is reformed to a temperature and reducing power suitable for introduction into the preliminary reduction furnace.

[作用] 本発明は、CH4を常温のままで直接リフオーマ−へ導
くのではなく、第1図に示す如く上記CH4を加熱分解
した状態でリフオーマ−へ導くところに最大の特徴を有
するものである。加熱装置12にCH4ガスを導入する
とCH4は下記(3)の如き分解反応を呈する。
[Function] The greatest feature of the present invention is that the CH4 is not directly guided to the reformer at room temperature, but is guided to the reformer in a thermally decomposed state as shown in Fig. 1. . When CH4 gas is introduced into the heating device 12, CH4 undergoes a decomposition reaction as shown in (3) below.

[:)14−C+2H2−17780kcaJ2/kg
−moJ2e  (3)この反応は吸熱反応であるから
リフオーマ−への導入ガスの温度低下を来たすという懸
念も生じるが、元々熱分解の為の入熱もあるので、加熱
装置12における加熱温度を調節することによって上記
懸念は容易に解消される。こうしてリフオーマ−9へは
、上記反応(3)によった生成された高温のC及びH2
並びに未反応のCH4が導入されることとなる。この温
度調節によって、リフオーマ−9内では前記(1)及び
(2)の改質反応が円滑に進行し、従ってリフオーマ−
9からは、前記(1)及び(2)の改質反応が進行した
結果生じるco及びH2に、上記(3)によって生じた
C及びH2等が加わって還元ポテンシャルの極めて高い
改質ガスが排出されるのである。以上の作用・効果はC
H4を加熱分解する場合のみならずc2H5等の炭化水
素ガスの加熱分解の場合についても同様である。
[:)14-C+2H2-17780kcaJ2/kg
-moJ2e (3) Since this reaction is an endothermic reaction, there is a concern that the temperature of the gas introduced into the reformer will drop, but since there is also heat input for thermal decomposition, the heating temperature in the heating device 12 is adjusted. By doing so, the above concerns can be easily resolved. In this way, high-temperature C and H2 generated by the above reaction (3) are delivered to the reformer-9.
In addition, unreacted CH4 will be introduced. By this temperature adjustment, the reforming reactions (1) and (2) described above proceed smoothly in the refformer 9, and therefore the refformer 9
From 9 onwards, the co and H2 produced as a result of the progress of the reforming reactions in (1) and (2) above are combined with the C, H2, etc. produced in the above (3), and a reformed gas with an extremely high reduction potential is discharged. It will be done. The above actions and effects are C
The same applies not only to the thermal decomposition of H4 but also to the thermal decomposition of hydrocarbon gases such as c2H5.

[実施例] 加熱分解装置12から排出される分解ガス(前記(3)
式の反応によって生成されたC、H2゜及び未反応CH
4等の混合ガス)の温度Tが1.000℃以上となる様
に該加熱分解装置12を制御した。そして上記分解ガス
をリフオーマ−9へ導くと共に一方はポストパッション
後のCo2及びH20等を上記リフオーマ−9へ導いた
。次いで上記Co2及び)(20等のリフオーマ−9へ
の人口側酸化度η1を出口において0とする様な上記分
解ガス温度Tを求めた。その結果は第4図に示す通りで
あり、人口酸化度が40%という低還元性のものであっ
ても、分解ガス温度を1150℃付近に調節してやるこ
とによって出口側酸化η2を0にすることができたこと
が分かる。更には出口側については希望する任意の酸化
度η2値に応じて第3図の如き関係式を予め求めておく
と、上記任意の酸化度η2を得る為の炭化水素熱分解ガ
ス温度Tを知ることができる。或は、リフオーマ−の入
口温度1600℃、出口温度850℃のみならず任意の
温度を設定して上記第3図と同様の関係を求めておけば
、リフオーマ−出口温度を入口温度及び上記分解ガス温
度Tで規制することもできる。以上のことは、予備還元
炉導入ガスの酸化度(還元ポテンシャルの逆数に相当)
及び温度を自在に制御できることを意味する。
[Example] Decomposition gas discharged from the thermal decomposition device 12 ((3) above)
C, H2゜ and unreacted CH produced by the reaction of formula
The thermal decomposition device 12 was controlled so that the temperature T of the mixed gas (e.g. No. 4) was 1.000° C. or higher. Then, the decomposed gas was guided to the reformer 9, and on the other hand, Co2, H20, etc. after post-passion were guided to the reformer 9. Next, the cracked gas temperature T was determined such that the degree of oxidation η1 on the artificial side to the reformer 9 such as Co2 and )(20) was set to 0 at the outlet.The results are shown in FIG. It can be seen that even with a low-reducing substance with a temperature of 40%, the exit side oxidation η2 could be reduced to 0 by adjusting the cracked gas temperature to around 1150°C. If a relational expression as shown in FIG. 3 is obtained in advance according to an arbitrary oxidation degree η2 value, it is possible to know the hydrocarbon pyrolysis gas temperature T for obtaining the above-mentioned arbitrary oxidation degree η2.Alternatively, If you set not only the inlet temperature of the reformer at 1600°C and the outlet temperature at 850°C but also any temperature and obtain the same relationship as shown in Fig. 3 above, the reformer outlet temperature can be determined by the inlet temperature and the cracked gas temperature T. It is also possible to regulate the degree of oxidation (corresponding to the reciprocal of the reduction potential) of the gas introduced into the preliminary reduction furnace.
This means that the temperature can be controlled freely.

[発明の効果コ 本発明は上述の如く構成されているので以下の如き優れ
た効果が発揮される。
[Effects of the Invention] Since the present invention is constructed as described above, the following excellent effects are exhibited.

(1)ポストコンパッションされた高温発生ガスの温度
及び還元ポテンシャルを、予備還元反応の進行に最適な
ものとすることができる。
(1) The temperature and reduction potential of the post-compassioned high-temperature generated gas can be optimized for the progress of the preliminary reduction reaction.

(2)予備還元反応の高効率化を図り、ひいては溶融還
元製鉄の高効率化及び生産の低コスト化に寄与すること
ができる。
(2) It is possible to improve the efficiency of the pre-reduction reaction, which in turn can contribute to increasing the efficiency of smelting reduction iron manufacturing and lowering production costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す為の説明図、第2
図は従来のりフォーマ一方法を示す為の説明図、第3図
は従来のりフォーマ一方法が実施される場合におけるリ
フオーマ−人口ガスの酸化度η1と出口ガスの酸化度η
2との関係を示す図、第4図は本発明方法を実施した場
合におけるリフオーマ−ガスの入口酸化度η1と分解ガ
ス温度との関係を示す図である。
Fig. 1 is an explanatory diagram for showing one embodiment of the method of the present invention, Fig. 2
The figure is an explanatory diagram to show the conventional glue former method, and Figure 3 shows the oxidation degree η1 of the reformer artificial gas and the oxidation degree η of the outlet gas when the conventional glue former method is implemented.
FIG. 4 is a diagram showing the relationship between the inlet oxidation degree η1 of the reformer gas and the cracked gas temperature when the method of the present invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 溶融還元製鉄法の実施に当たり溶融還元炉内で2次燃焼
された高温の発生ガスを予備還元に適したガスに改質す
る方法であって、炭化水素の加熱分解によって得られる
ガスを、上記高温の発生ガスに加えることによって予備
還元炉への導入に適した温度及び還元力に改質すること
を特徴とする溶融還元炉発生ガスの品質調整方法。
This is a method of reforming high-temperature generated gas that is secondary-combusted in a smelting reduction furnace during the implementation of the smelting reduction ironmaking process into a gas suitable for preliminary reduction, in which the gas obtained by thermal decomposition of hydrocarbons is A method for adjusting the quality of gas generated from a smelting reduction furnace, characterized in that the gas is reformed to a temperature and reducing power suitable for introduction into a pre-reduction furnace by adding the gas to the gas generated from a smelting reduction furnace.
JP61038497A 1986-02-24 1986-02-24 Method for adjusting quality of gas generated in melt reduction furnace Pending JPS62196310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038497A JPS62196310A (en) 1986-02-24 1986-02-24 Method for adjusting quality of gas generated in melt reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038497A JPS62196310A (en) 1986-02-24 1986-02-24 Method for adjusting quality of gas generated in melt reduction furnace

Publications (1)

Publication Number Publication Date
JPS62196310A true JPS62196310A (en) 1987-08-29

Family

ID=12526898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038497A Pending JPS62196310A (en) 1986-02-24 1986-02-24 Method for adjusting quality of gas generated in melt reduction furnace

Country Status (1)

Country Link
JP (1) JPS62196310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331411A (en) * 1989-06-28 1991-02-12 Kobe Steel Ltd Production of reducing gas
WO2000020648A1 (en) * 1998-10-07 2000-04-13 Voest-Alpine Industrieanlagenbau Gmbh Method and installation for producing iron, especially steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331411A (en) * 1989-06-28 1991-02-12 Kobe Steel Ltd Production of reducing gas
WO2000020648A1 (en) * 1998-10-07 2000-04-13 Voest-Alpine Industrieanlagenbau Gmbh Method and installation for producing iron, especially steel

Similar Documents

Publication Publication Date Title
US5064467A (en) Method and apparatus for the direct reduction of iron
US5387274A (en) Process for the production of iron carbide
CS225806B1 (en) The manufacturing process of the steel
US3189438A (en) Method of and apparatus for reducing iron oxides
KR101890788B1 (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
JPS63297209A (en) Manufacture of carbon monoxide
JPS5847449B2 (en) direct iron making method
US5078788A (en) Method for the direct reduction of iron
JP3342670B2 (en) Manufacturing method of iron carbide
JPS62196310A (en) Method for adjusting quality of gas generated in melt reduction furnace
US6183535B1 (en) Method for increasing the capacity of a direct reduced iron plant without increasing its reformer capacity
US11591662B2 (en) Method for operating a metallurgical furnace
JPS5834114A (en) Manufacture of reduced iron
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor
WO2023036474A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
JPH08120314A (en) Production of iron carbide
RU2808874C1 (en) Method for producing low-carbon ammonia from natural gas decarbonized ammonia-3000
LU500699B1 (en) Method for operating a shaft furnace plant
WO2024135696A1 (en) Method for producing reduced iron
JPS6156216A (en) Treatment of exhaust gas from melt reducing furnace
JPS62230923A (en) Manufacture of iron by smelting and reduction
CN115287388A (en) Gas-based shaft furnace reduction method taking hydrocarbon-rich and hydrogen-rich gas as gas source
JPS62205208A (en) Method for reforming gas generated in melt reduction furnace and removing dust therefrom
JPH0331411A (en) Production of reducing gas
CN116034170A (en) Method for operating a blast furnace installation