JPS62195853A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS62195853A
JPS62195853A JP61034982A JP3498286A JPS62195853A JP S62195853 A JPS62195853 A JP S62195853A JP 61034982 A JP61034982 A JP 61034982A JP 3498286 A JP3498286 A JP 3498286A JP S62195853 A JPS62195853 A JP S62195853A
Authority
JP
Japan
Prior art keywords
lithium
electrode active
active material
positive electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034982A
Other languages
Japanese (ja)
Other versions
JPH0451945B2 (en
Inventor
Shigeto Okada
重人 岡田
Hideaki Otsuka
大塚 秀昭
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61034982A priority Critical patent/JPS62195853A/en
Publication of JPS62195853A publication Critical patent/JPS62195853A/en
Publication of JPH0451945B2 publication Critical patent/JPH0451945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the charge and discharge characteristics by constructing a cell with a positive electrode active material composed of ultra fine particles of V2O5 of under 0.1mum in mean particle diameter and a negative electrode active material made of lithium and an electrolyte composed of specified materials. CONSTITUTION:A lithium cell is constructed with a positive electrode active material composed of ultra fine particles of V2O5 of under 0.1mum in mean particle diameter and a negative electrode active material made of lithium and an electrolyte composed of materials chemically stale to the positive electrode active material and lithium and in which lithium ions are movable for electrochemical reaction with the position electrode active material. As for the electrolyte, a conventional electrolyte commonly used for a cell using lithium as the negative electrode active material e.g. a combination of more than one kind of non-protonic organic solvent such as propylene carbonate, 2- methyltetrahydrofuran and a lithium salt such as LiClO4 and so on or a solid electrolyte having carriers of electricity of lithium ions or a fused salt and so on can be used. Thereby it is possible to obtain a high current and the cell can be used as a lithium secondary cell of good discharge constancy.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、小型にして充放電用量の大ぎなリチウム二次
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium secondary battery that is small in size and has a large charge/discharge capacity.

[開示の概要] 本発明は、平均粒径01μm以下のV!1105の超微
粒子を正極活物質とし、リチウムを負極活物質とし、正
極活物質およびリチウムに対して化学的に安定でありか
つリチウムイオンが正極活物質と電気化学反応をするた
めの移動を行ない得る物質を電解質とすることにより、
有効反応表面積か拡大されるので、大電流取得が可能で
あると共に放電平担性の良好なリチウム二次電池として
種々の分野に利用できる技術を開示するものである。
[Summary of the Disclosure] The present invention provides V! with an average particle size of 01 μm or less. The ultrafine particles of 1105 are used as a positive electrode active material, and lithium is used as a negative electrode active material, which is chemically stable with respect to the positive electrode active material and lithium, and allows lithium ions to move for an electrochemical reaction with the positive electrode active material. By using substances as electrolytes,
This invention discloses a technology that can be used in various fields as a lithium secondary battery that can obtain a large current and has good discharge uniformity because the effective reaction surface area is expanded.

なお、この概要はあくまでも本発明の技術内容に迅速に
アクセスするためにのみ供されるものであって、本発明
の技術的範囲および権利解釈に対しては何の影響も及ぼ
さないものである。
Note that this summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the present invention or the interpretation of rights.

[従来の技術] 従来から、リチウムを負極活物質として用いる高エネル
キー密度電池に関して多くの提案かなされている。例え
ば、正極活物質として黒鉛および、弗素のインターカレ
ーション化合物、負極活物質としてリチウム合金をそれ
ぞれ使用した電池が知られている(たとえは、米国特許
第3,514,337号明細書参考)。さらにまた、弗
化黒鉛を正極活物質に用いたリチウム電池や、二酸化マ
ンガンを正極活物質として用いたリチウム電池が既に市
販されている。
[Prior Art] Many proposals have been made regarding high energy density batteries using lithium as a negative electrode active material. For example, a battery is known that uses graphite and a fluorine intercalation compound as a positive electrode active material, and a lithium alloy as a negative electrode active material (for example, see US Pat. No. 3,514,337). Furthermore, lithium batteries using fluorinated graphite as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available.

しかし、これらの電池は一次電池であり、充電できない
欠点があった。
However, these batteries are primary batteries and have the disadvantage that they cannot be recharged.

リチウムを負極活物質として用いる二次電池については
、正極活物質として、チタン、ハフニウム、ニオビウム
、タンタル、バナジウムの硫化物、セレン化物、テルル
化物を用いた電池(たとえば、米国特許第4,009,
052号明細書参考)、あるいは酸化クロム、セレン化
ニオビウム等を用いた電池(J、EIectroche
m、Soc、、124(7)、9fi8 and325
、 (+977) )等が提案されているが、これらの
電池はその電池特性および経済性か必ずしも充分である
とはいえなかった。
Regarding secondary batteries using lithium as a negative electrode active material, batteries using titanium, hafnium, niobium, tantalum, vanadium sulfides, selenides, and tellurides as positive electrode active materials (for example, U.S. Pat. No. 4,009,
052 specification), or batteries using chromium oxide, niobium selenide, etc. (J, EIelectroche)
m, Soc,, 124(7), 9fi8 and325
, (+977) ), etc. have been proposed, but these batteries have not necessarily been satisfactory in terms of their battery characteristics and economic efficiency.

また、非晶質物質を正極活物質に用いたリチウム電池に
ついては、 MoS2 、Mo53.v2ssの場合(
J、EIectroanal、 Chem、、118,
229(+981))やLiV308の場合(J、 N
on−Crystalline 5olids、44゜
297 (1981))等が提案されている。
Regarding lithium batteries using amorphous materials as positive electrode active materials, MoS2, Mo53. In the case of v2ss (
J,EI electroanal,Chem,, 118,
229 (+981)) or LiV308 (J, N
on-Crystalline 5olids, 44°297 (1981)), etc. have been proposed.

しかし、いずれの提案も、大電流密度での放電や充放電
特性の点で問題があった。
However, both proposals had problems in terms of discharge at high current density and charge/discharge characteristics.

結晶質のP2O5を正極活物質として用いることは、 
J、EIectrochem、Soc、 Meetin
g、Toronto、Mayll−16,1975,N
o、27)で1是案されている。またP2O5にP2O
5を加え、溶融後に急冷することにより得られる非晶質
物質については、特願昭59−237778号に提案さ
れている。
Using crystalline P2O5 as a positive electrode active material
J, EIectrochem, Soc, Meetin
g, Toronto, Mayll-16, 1975, N.
o, 27). Also, P2O5 and P2O
An amorphous material obtained by adding 5 and rapidly cooling after melting is proposed in Japanese Patent Application No. 59-237778.

しかし、いずれも、容量が小さく、充放電特性も充分と
はいえなかった。
However, all of them had small capacities and unsatisfactory charge/discharge characteristics.

[発明が解決しようとする問題点] そこで、本発明の目的は、上記現状の問題点を改良して
、小型で充放電容量が大きく、優れた電池特性をもつリ
チウム電池を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to improve the above-mentioned current problems and provide a lithium battery that is small, has a large charge/discharge capacity, and has excellent battery characteristics. .

[問題点を解決するための手段] かかる目的を達成するために、本発明リチウム電池では
、正極活物質としてV、O5の超微粒子を用いる。その
平均粒径は好ましくは0.1μm以下である。すなわち
、本発明は、平均粒径0.1μm以下のvQ05の超微
粒子を正極活物質とし、リチウムを負極活物質とし、正
極活物質およびリチウムに対して化学的に安定でありか
つリチウムイオンが正極活物質と電気化学反応をするた
めの移動を行ない得る物質を電解質として構成したこと
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the lithium battery of the present invention uses ultrafine particles of V and O5 as the positive electrode active material. The average particle size is preferably 0.1 μm or less. That is, the present invention uses vQ05 ultrafine particles with an average particle size of 0.1 μm or less as a positive electrode active material, lithium as a negative electrode active material, and is chemically stable with respect to the positive electrode active material and lithium, and lithium ions are used as a positive electrode active material. It is characterized in that an electrolyte is composed of a substance that can move to perform an electrochemical reaction with the active material.

[作 用] このような超微粒子化は、P2O5の如き、電子伝導性
の低い正極活物質の電池特性の向上には特に有効な手段
であり、反応表面積の拡大による取得電流の向上と充電
時間の短縮化、小粒径化による電池反応の均一化を可能
にする。
[Function] Such ultrafine particle formation is a particularly effective means for improving the battery characteristics of positive electrode active materials with low electronic conductivity, such as P2O5, and increases the obtained current and charging time by expanding the reaction surface area. This makes it possible to shorten the time and make the battery reaction more uniform by reducing the particle size.

前述の如きVユ05の超微粒子を製造する方法としては
、ガス中蒸発法あるいはアルコキシドの加水分解法等が
あるか、本発明はこれら方法に基本的に限定されるもの
ではない。
Methods for producing the ultrafine particles of VU05 as described above include an evaporation method in a gas or an alkoxide hydrolysis method, but the present invention is not fundamentally limited to these methods.

たとえば、ガス中蒸発法を用いる場合、第1図に示すよ
うな装置を用いて超微粒子を製造する。
For example, when using the in-gas evaporation method, ultrafine particles are produced using an apparatus as shown in FIG.

すなわち、真空チェンバ21中に超微粒子補集器22エ
ンバ21はレギュレータ25を介して不活性ガス(たと
えば)le)ボンベ26と接続する。なお、図中、27
は真空チェンバ1内を観察する窓、28はマノメータ、
29はピラニー真空ゲージである。
That is, in the vacuum chamber 21, an ultrafine particle collector 22 and an ember 21 are connected to an inert gas (for example) gas cylinder 26 via a regulator 25. In addition, in the figure, 27
is a window for observing the inside of the vacuum chamber 1; 28 is a manometer;
29 is a Pirani vacuum gauge.

真空チェンバ1内に不活性ガスボンベ6よりレギュレー
タ5を介して不活性ガスを導入し、真空チェンバ内を不
活性ガス希薄雰囲気にすると共に、電源4により、V!
1O,、原料の蒸発溝3を加熱してその原料を蒸発させ
る。蒸発した原料3は不活性ガスと衝突し急冷して過飽
和状態となり超微粒子を生成する。
Inert gas is introduced into the vacuum chamber 1 from an inert gas cylinder 6 via the regulator 5 to create an inert gas diluted atmosphere inside the vacuum chamber 1, and at the same time, the voltage is increased by the power source 4.
1O, the raw material evaporation groove 3 is heated to evaporate the raw material. The evaporated raw material 3 collides with the inert gas and is rapidly cooled, becoming supersaturated and producing ultrafine particles.

この際の不活性ガスの濃度は好ましくは1O−100T
orrである。100Torrを越えると粒子の粒径か
大きくなりずきるからである。一方、I O’I’ o
 r rより少ないと粒子が生成しにくくなるからであ
る。
The concentration of inert gas at this time is preferably 1O-100T.
It is orr. This is because if the pressure exceeds 100 Torr, the particle size of the particles becomes too large. On the other hand, I O'I' o
This is because if it is less than r r, particles will be difficult to generate.

また、蒸発の温度は、1000−1200℃であるのが
好ましい。1200℃を越えると、粒径が大きくなりす
ぎ、1000℃未満であると、原料が蒸発しにくくなる
からである。
Moreover, it is preferable that the temperature of evaporation is 1000-1200°C. This is because if the temperature exceeds 1,200°C, the particle size becomes too large, and if the temperature is below 1,000°C, the raw material becomes difficult to evaporate.

このようにして、平均粒径か0.1μm以下の結晶+!
fV、05超微粒子を得ることができる。
In this way, crystals with an average grain size of 0.1 μm or less +!
fV, 05 ultrafine particles can be obtained.

また、アルコキシドの加水分解法の場合には、vo(c
oユI+5)3等のアルコキシドに水を滴下、攪拌して
加水分解させこれを遠心分離し、乾燥粉末を得る。この
粉末を、100〜300℃で乾燥脱水することにより 
Vユ05の超微粒子を得ることができる。
In addition, in the case of alkoxide hydrolysis method, vo(c
Water is added dropwise to an alkoxide such as OYI+5)3, stirred to hydrolyze it, and the resultant is centrifuged to obtain a dry powder. By drying and dehydrating this powder at 100 to 300°C,
Ultrafine particles of VU05 can be obtained.

これらのv905超微粒子を用いて正極を形成す、るに
は、この混合物質粉末またはこれとポリテトラフルオロ
エチレンの如き結合剤粉末どの混合物をニッケル、ステ
ンレス等の支持体状に圧着成形する。
To form a positive electrode using these v905 ultrafine particles, the mixed material powder or a mixture thereof with a binder powder such as polytetrafluoroethylene is pressure-molded onto a support such as nickel or stainless steel.

あるいは、かかる混合物質粉末に導電性を(=J与する
ためにアセヂレンブラックのような導電性粉末を混合し
、これに更にポリテトラフルオロエチレンのような結合
剤粉末を所要に応じて加え、この混合物を金属容器に入
れ、あるいは前述の混合物をニッケルやステンレス等の
支持体状に圧着成形する等の手段によって正極を形成す
ることができる。
Alternatively, a conductive powder such as acetylene black is mixed in order to impart conductivity (=J) to the mixed substance powder, and a binder powder such as polytetrafluoroethylene is further added thereto as required. The positive electrode can be formed by placing this mixture in a metal container, or by pressure-molding the above-mentioned mixture onto a support such as nickel or stainless steel.

負極活物質としては、リチウムもしくはリチウム合金を
用いる。かかるリチウムもしくはリチウム合金は、一般
のリチウムの場合と同様に、シー]・状に展延し、また
はそのシートをニッケルやステンレス等の導電性網に圧
着して負極として形成することができる。
Lithium or a lithium alloy is used as the negative electrode active material. Such lithium or lithium alloy can be formed into a negative electrode by spreading it into a sheet or by pressing the sheet onto a conductive mesh made of nickel, stainless steel, etc., as in the case of general lithium.

さらに、電解質としては、正極活物質および負極活物質
に対して化学的に安定であり、かつ、リチウムイオンが
正極活物質と電気化学反応をするための移動を行い得る
物質を用いる。たとえはプロピレンカーボネート、2−
メヂルテトラヒトロフラン、ジオキソレン、テトラヒド
ロフラン、1.2−ジメトキシエタン、エヂレンカーホ
ネート、γ−ブチロラクトン、ジメチルスルホキシド、
アセトニトリル、ポルムアミド、ジメチルホルムアミド
、ニトロメタン等の一種以上の非プロトン牲有機溶媒と
 L i CaO2,1、iへflI14゜LiBF4
 、LtCu 、 1fPF6 、LiAsF6等のリ
チウム塩との組合せまたはリチウムイオンを伝導体とす
る固体電解質あるいは溶融塩など、一般にリチウムを負
極活物質として用いた電池で使用される既知の電解質を
、本発明においても電解質として用いることができる。
Further, as the electrolyte, a substance is used that is chemically stable with respect to the positive electrode active material and the negative electrode active material, and is capable of moving lithium ions for electrochemical reaction with the positive electrode active material. An example is propylene carbonate, 2-
Medyltetrahydrofuran, dioxolene, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide,
flI14°LiBF4 to Li CaO2,1,i with one or more aprotic organic solvents such as acetonitrile, porumamide, dimethylformamide, nitromethane, etc.
In the present invention, known electrolytes generally used in batteries using lithium as a negative electrode active material, such as a combination with a lithium salt such as , LtCu, 1fPF6, LiAsF6, or a solid electrolyte or molten salt using lithium ions as a conductor, are used. can also be used as an electrolyte.

また、電池構成上、必要に応じて微孔性セパレータを用
いるときなどには、多孔質ポリプロピレン等より成る薄
膜を使用してもよい。
Further, when a microporous separator is used as required in the battery configuration, a thin film made of porous polypropylene or the like may be used.

[実施例] 以下に図面を参照して、本発明を実施例により詳細に説
明する。
[Examples] The present invention will be explained in detail by examples below with reference to the drawings.

なお、本発明は、以下の実施例にのみ限定されるもので
はない。以下の実施例において、電池の作成および測定
はずへてアルゴン雰囲気中で行った。
Note that the present invention is not limited only to the following examples. In the following examples, cell preparation and measurements were performed in an argon atmosphere.

実施例1 第2図は、本発明によるリチウム電池の一旦体例である
コイン型電池の断面図である。図中、1はステンレス製
封口板、2はポリプロピレン製カスケッ]・、3はステ
ンレス製正極ケース、4はリチウム負極、5はポリプロ
ピレン製セパレータ、6は正極合剤ベレッI・を示ず。
Example 1 FIG. 2 is a sectional view of a coin-type battery which is an example of a lithium battery according to the present invention. In the figure, 1 is a stainless steel sealing plate, 2 is a polypropylene casket], 3 is a stainless steel positive electrode case, 4 is a lithium negative electrode, 5 is a polypropylene separator, and 6 is a positive electrode mixture bellet I.

まず、封目板1上に金属リチウム負極4を加圧載置した
ものを、ガスケット2の四部に挿入し、封口板1の開口
部において、リチウム負極4の上に、セパレータ5およ
び正極合剤ベレッ]・6をこの順序に載置し、電解液と
しての1.5 N−LiAsF6 / 2−メヂルテ)
・ラヒ1〜ロフラン(2Me  THF)を適量注人し
含浸させた後に、正極ケース3を被せてかしめることに
より、直径23n+n+、厚さ2mmのコイン型電池を
作成した。
First, the metal lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the four parts of the gasket 2, and the separator 5 and the positive electrode mixture are placed on the lithium negative electrode 4 at the opening of the sealing plate 1. 1.5N-LiAsF6/2-Megilte) as an electrolyte.
- After pouring and impregnating an appropriate amount of Rahi 1 to Rofuran (2Me THF), a positive electrode case 3 was placed on and caulked to create a coin-type battery with a diameter of 23n+n+ and a thickness of 2mm.

正極活物質は、約20Torrのアルゴン雰囲気下にお
いてV、−O5を約1100℃でガス中蒸発させること
ににり得た。
The positive electrode active material was able to evaporate V, -O5 in gas at about 1100° C. under an argon atmosphere of about 20 Torr.

得られた正極活物質を、アセチレンブラックABおよび
テトラフルオロエチレンと重量比で70+25:5の割
合で混合した。その混合物をロール成型して厚みo、6
mn+とじたものをポンチで打ち抜いて、正極合剤ペレ
ット6を得た。
The obtained positive electrode active material was mixed with acetylene black AB and tetrafluoroethylene at a weight ratio of 70+25:5. The mixture was roll-molded to a thickness of o, 6.
The mn+ bound material was punched out with a punch to obtain a positive electrode mixture pellet 6.

以上のようにして作成したリチウム電池を用いて、0.
5〜8mA/cm2の各電流密度で定電流放電した結果
を市販の結晶性V2O5試薬(粒径:1〜10μm)と
共に第1表に示す。
Using the lithium battery created as described above, 0.
The results of constant current discharge at various current densities of 5 to 8 mA/cm2 are shown in Table 1 together with commercially available crystalline V2O5 reagents (particle size: 1 to 10 m).

第1表 各放電電流密度での単純放電容量(2V終止) 単位−肺/kg 第1表に示すように、低放電電流容量に関しては市販の
結晶性VOO5試薬の方が高い容量を示す。しかし放電
電流密度が増すにつれ、有効反応表面積の大きなV、O
5超微粒子試料の有効性が顕著となる。第1表のうちか
ら代表例として、8 mA/ cm2の大放電電流密度
における市販の結晶性V2O5試薬とVΩ05超微粒子
試料の単純放電プロファイルを第3図に示す。
Table 1 Simple discharge capacity at each discharge current density (2V ending) Unit - Lung/kg As shown in Table 1, the commercially available crystalline VOO5 reagent exhibits a higher capacity with respect to low discharge current capacity. However, as the discharge current density increases, V, O, which has a large effective reaction surface area,
5. The effectiveness of the ultrafine particle sample is remarkable. As a representative example from Table 1, simple discharge profiles of a commercially available crystalline V2O5 reagent and a VΩ05 ultrafine particle sample at a large discharge current density of 8 mA/cm2 are shown in FIG.

実施例2 実施例1と同様にして作成したリチウム電池を用いて、
0.5mA 7cm2の定電流放電後、0.5〜8 m
A/ cm2の各充電電流で2v〜3.5V間の電圧親
制御 充放電試験を行った。2回目のサイクルにおける放電容
量を市販の結晶性V!0L05試薬およびVλ05超微
粒子試料それぞれについて第2表に示す。
Example 2 Using a lithium battery prepared in the same manner as Example 1,
0.5-8 m after constant current discharge of 0.5 mA 7 cm2
Voltage parent-controlled charging and discharging tests between 2v and 3.5V were conducted at each charging current of A/cm2. The discharge capacity in the second cycle was measured using commercially available crystalline V! Table 2 shows each of the 0L05 reagent and Vλ05 ultrafine particle sample.

第2表 各充電電流密度での第2サイクル目の放電容量
(2V終止) 単位:Ah /kg 単純放電のみならず、サイクル容量に関してもV2O5
超微粒子試料の方が急速充電が効き良好な特性を示すこ
とがわかる。
Table 2 Discharge capacity of the second cycle at each charging current density (2V end) Unit: Ah / kg V2O5 not only for simple discharge but also for cycle capacity
It can be seen that the ultrafine particle sample is more effective at rapid charging and exhibits better characteristics.

実施例3 実施例1と同様にして作成したリチウム電池を用いて、
2mA/cm2の定電流密度で、2V〜3.5V間の電
圧規制充放電試験を行った。市販の結晶性v!205試
薬およびVユ05超微粒子試料各々のサイクル特性を第
4図に示す。Vユ05超微粒子試料では、充放電共にプ
ロファイルの履歴性に優れ、その反映として充放電サイ
クルに伴う容量低下が少ないことがわかる。
Example 3 Using a lithium battery prepared in the same manner as Example 1,
A voltage regulated charge/discharge test between 2V and 3.5V was conducted at a constant current density of 2mA/cm2. Commercially available crystalline v! FIG. 4 shows the cycle characteristics of the 205 reagent and the VU05 ultrafine particle sample. It can be seen that the VU05 ultrafine particle sample has excellent profile hysteresis during both charging and discharging, and as a reflection of this, the capacity decrease due to charging and discharging cycles is small.

実施例4 アルコキシドの加水分解法により作製したv4205超
微粒子を用いて実施例1と同様にしてリチウム電池を作
成した。2mA/cm2の定電流密度で2v〜3.5V
間の電圧規制充放電試験を行った。2サイクル目での放
電容量は130Ah/にgで前述ガス中蒸発法によるV
iら超微粒子の場合(実施例2の第2表)とほぼ同程度
の容量である。また、サイクル特性も実施例3と同様に
、充放電サイクルに伴う容量低下が少なく、良好な特性
を示す。
Example 4 A lithium battery was produced in the same manner as in Example 1 using v4205 ultrafine particles produced by an alkoxide hydrolysis method. 2v to 3.5V at constant current density of 2mA/cm2
A voltage regulated charge/discharge test was conducted between the two. The discharge capacity in the second cycle was 130Ah/g, and the V
The capacity is approximately the same as that of ultrafine particles (Table 2 of Example 2). Further, as in Example 3, the cycle characteristics show good characteristics, with little capacity reduction due to charge/discharge cycles.

[発明の効果] 以上説明したように、本発明によれば、正極活物質の超
微粒子によって有効反応表面積が拡大されるので、大電
流取得が可能であると共に放電平担性の良好なリチウム
二次電池として種々の分野に利用できるという利点を有
する。
[Effects of the Invention] As explained above, according to the present invention, the effective reaction surface area is expanded by the ultrafine particles of the positive electrode active material. It has the advantage that it can be used in various fields as a secondary battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はV、O5超微粒子化のためのカス中蒸発装置の
一例を示す構成図、 第2図は本発明の一=実施例であるコイン型電池の構成
を示す断面図、 第3図は本発明の一実施例におりる電池の放電特性を承
す特性図、 第4図は本発明の一実施例における電池の充放電特性を
示す特性図である。 1・・・ステンレス製封目板、 2・・・ポリプロピレン製ガスケット、3・・・ステン
レス製正極ケース、 4・・・リチウム負極、 5・・・ポリプロピレン製セパレータ、6・・・正極合
剤ベレット、 21・・・真空チュンバ、 22・・・超微粒子試料補集容器、 23・・・蒸発源、 24・・・蒸発源用電源、 25・・・レギュレータ、 26・・・ヘリウムカスポンへ、 27・・・観察窓、 28・・・マノメータ、 29・・・真空ケージ。
Fig. 1 is a block diagram showing an example of an evaporation device in waste for ultrafine V and O5 particles, Fig. 2 is a cross-sectional view showing the structure of a coin-type battery that is an embodiment of the present invention, and Fig. 3 4 is a characteristic diagram showing the discharge characteristics of a battery according to an embodiment of the present invention, and FIG. 4 is a characteristic diagram showing the charge and discharge characteristics of a battery according to an embodiment of the present invention. 1... Stainless steel sealing plate, 2... Polypropylene gasket, 3... Stainless steel positive electrode case, 4... Lithium negative electrode, 5... Polypropylene separator, 6... Positive electrode mixture pellet , 21... Vacuum chamber, 22... Ultrafine particle sample collection container, 23... Evaporation source, 24... Power source for evaporation source, 25... Regulator, 26... To helium caspon, 27... Observation window, 28... Manometer, 29... Vacuum cage.

Claims (1)

【特許請求の範囲】[Claims] 平均粒径0.1μm以下のV_2O_5の超微粒子を正
極活物質とし、リチウムを負極活物質とし、正極活物質
およびリチウムに対して化学的に安定でありかつリチウ
ムイオンが正極活物質と電気化学反応をするための移動
を行ない得る物質を電解質として構成したことを特徴と
するリチウム電池。
Ultrafine particles of V_2O_5 with an average particle size of 0.1 μm or less are used as the positive electrode active material, and lithium is used as the negative electrode active material. 1. A lithium battery characterized by comprising, as an electrolyte, a substance capable of movement for the purpose of .
JP61034982A 1986-02-21 1986-02-21 Lithium cell Granted JPS62195853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034982A JPS62195853A (en) 1986-02-21 1986-02-21 Lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034982A JPS62195853A (en) 1986-02-21 1986-02-21 Lithium cell

Publications (2)

Publication Number Publication Date
JPS62195853A true JPS62195853A (en) 1987-08-28
JPH0451945B2 JPH0451945B2 (en) 1992-08-20

Family

ID=12429352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034982A Granted JPS62195853A (en) 1986-02-21 1986-02-21 Lithium cell

Country Status (1)

Country Link
JP (1) JPS62195853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248469A (en) * 1988-03-30 1989-10-04 Showa Denko Kk Secondary battery
JP2003514353A (en) * 1999-11-08 2003-04-15 ネオフォトニクス・コーポレイション Electrodes containing particles of specific size

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery
JPS56149771A (en) * 1980-04-19 1981-11-19 Hitachi Maxell Ltd Silver-oxide secondary battery
JPS57111953A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery
JPS56149771A (en) * 1980-04-19 1981-11-19 Hitachi Maxell Ltd Silver-oxide secondary battery
JPS57111953A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248469A (en) * 1988-03-30 1989-10-04 Showa Denko Kk Secondary battery
JP2003514353A (en) * 1999-11-08 2003-04-15 ネオフォトニクス・コーポレイション Electrodes containing particles of specific size

Also Published As

Publication number Publication date
JPH0451945B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
KR100451846B1 (en) Positive electrode activated material and non-aqueous electrolyte secondary battery using it
JP4503824B2 (en) Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
US20070243467A1 (en) Li4Ti5O12, Li(4-a)ZaTi5O12 OR Li4ZbetaTi(5-beta)O12 particles, process for obtaining same and use as electrochemical generators
Yan et al. Microwave synthesis of LiMn2O4 cathode material
EP0752728A2 (en) Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material
JP2003109599A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP2001185147A (en) Secondary battery using nonaqueous electrolytic solution
CN114388760A (en) Metal oxide nanosheet material, preparation method thereof and lithium ion battery
JPS62195853A (en) Lithium cell
JPH03110765A (en) Organic electrolyte battery
JPH0381268B2 (en)
JP3445906B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using positive electrode active material
JPS62176054A (en) Lithium battery
JP2002313320A (en) Nonaqueous secondary battery
JPS61116758A (en) Lithium battery
JPH0714608A (en) Battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2559055B2 (en) Lithium battery
JP7028967B2 (en) A novel lithium-mixed metal sulfide with high ionic conductivity
JPH07296848A (en) Nonaqueous electrolyte secondary battery
JPS6155738B2 (en)
CN105762347A (en) Modified graphene-based stannic oxide material, as well as preparation method and application thereof
JPS62195854A (en) Lithium cell
JPH047071B2 (en)
Sanusi et al. Sulphide based anode material for lithium rechargeable battery