JPS62195549A - Differential scanning calorimeter - Google Patents

Differential scanning calorimeter

Info

Publication number
JPS62195549A
JPS62195549A JP3862986A JP3862986A JPS62195549A JP S62195549 A JPS62195549 A JP S62195549A JP 3862986 A JP3862986 A JP 3862986A JP 3862986 A JP3862986 A JP 3862986A JP S62195549 A JPS62195549 A JP S62195549A
Authority
JP
Japan
Prior art keywords
thermopiles
heating furnace
differential scanning
wires
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3862986A
Other languages
Japanese (ja)
Inventor
Ryoichi Kinoshita
良一 木下
Yoshihiko Teramoto
寺本 芳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3862986A priority Critical patent/JPS62195549A/en
Publication of JPS62195549A publication Critical patent/JPS62195549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To obtain a differential scanning calorimeter having high sensitivity and high accuracy by providing a heating furnace having an H-shaped section, a thermal conductor projecting at the center of the furnace bottom plate and thermopiles disposed atop the thermal conductor symmetrically with the furnace section. CONSTITUTION:The electrical insulating conductor BeO3 is fixed to the center of the bottom plate 2 of the heating furnace 1 and many pairs of the thermopiles 4 consisting of constantan wires 8 and chromel wires 9 are disposed symmetrically with the BeO as a center and are fixed to the BeO in contact therewith by a bar- shaped plate. Sample cells 5a, 5b which are thermal conductors having an electrical insulating characteristic are welded to the right and left of the contact points 10 of the thermocouples. Chromel wires 6a, 6b and alumel wires 7a, 7b are welded to the first and final contact points A, B of the thermopiles 4. Temp. control is executed by a heater wound around the furnace. A sample to be inspected is placed on the cell 5a and a reference material on the cell 5b and the temp. difference between both is detected by the thermopiles 4. Since many pairs of the thermopiles are used, even the small temp. difference can be amplifier and recorded without being limited by the noise level of an amplifier and the differential scanning calorimeter having the high sensitivity and high accuracy is obtd.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、示差走査熱量計に関するものである。[Detailed description of the invention] C Industrial application field] The present invention relates to a differential scanning calorimeter.

〔発明の概要〕[Summary of the invention]

本発明は示差走査熱量計のヘースラインを安定させ且つ
感度を向上させることを目的とするため断面I(状の加
熱炉と、この加熱炉の底板上のほぼ中央位置に加熱炉底
を凸部に形成する熱伝導体とこの熱伝導体上面に、前記
加熱炉の断面に対し、対称位置を保つよう設けられたサ
ーモパイルとか。
The present invention aims to stabilize the hair line and improve the sensitivity of a differential scanning calorimeter. A thermal conductor to be formed and a thermopile installed on the upper surface of the thermal conductor so as to maintain a symmetrical position with respect to the cross section of the heating furnace.

ら構成され、加熱炉の温度勾配に起因する示差走査熱量
測定ベースライン変動をおさえ且つ、試料側、基準物質
側の温度差をサーモパイルにより検出し、大きい熱起電
力を発生させることにより上記目的を達成させたもので
ある。
The above purpose is achieved by suppressing differential scanning calorimetry baseline fluctuations caused by the temperature gradient of the heating furnace, and by detecting the temperature difference between the sample side and the reference material side using a thermopile and generating a large thermoelectromotive force. This is what we achieved.

〔従来の技術〕[Conventional technology]

従来、実開昭60−64250号に開示しであるように
、この種の発明に関しては第3図のような構成がある。
Conventionally, as disclosed in Japanese Utility Model Application No. 60-64250, this type of invention has a configuration as shown in FIG. 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、加熱炉底板上に設置された熱
伝導体として、熱電対の構成金属を一体として用いるた
め、試料側、基準物質側の温度差を検出するための示差
熱電対は一対分の起電力した発生できない。この信号を
アンプで増幅する場合、アンプのノイズレベル以下の信
号は増幅することができず、感度不足となる欠点があっ
た。
In the above conventional technology, since the constituent metal of the thermocouple is integrally used as a heat conductor installed on the bottom plate of the heating furnace, a pair of differential thermocouples are used to detect the temperature difference between the sample side and the reference material side. The electromotive force cannot be generated. When this signal is amplified by an amplifier, a signal below the noise level of the amplifier cannot be amplified, resulting in a drawback of insufficient sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の欠点をなくすため開発されたもので、断
面ト■状の加熱炉と、この加熱炉の底板上のほぼ中央位
置に凸部を形成する熱伝導体と、この熱伝導体上面に前
記加熱炉断面に対し対称位置を保つ様設けられたサーモ
パイルとから構成されている。
The present invention was developed to eliminate the above-mentioned drawbacks, and includes a heating furnace having a T-shaped cross section, a heat conductor forming a convex portion at approximately the center of the bottom plate of the heating furnace, and an upper surface of the heat conductor. and a thermopile provided so as to maintain a symmetrical position with respect to the cross section of the heating furnace.

〔実施例〕〔Example〕

第1図は本発明にがかる示差走査熱量針の実施例の立体
断面図を示す。又第2図は実施例のサーモパイルの結線
図を示す。
FIG. 1 shows a three-dimensional cross-sectional view of an embodiment of a differential scanning calorimetry needle according to the present invention. Further, FIG. 2 shows a wiring diagram of the thermopile of the embodiment.

1は断面■]状の加熱炉を示し、前記加熱炉1の底板2
の上側はぼ中央位置には前記底板面に対し凸状で熱的に
伝導体で且つ、少なくとも上側表面は電気的に絶縁性の
ある熱伝導体3 (例えば、酸化ベリリウム、又はアル
マイト処理したアルミ、銀に電気絶縁性セラミックを蒸
着したもの等)が載置固定されている。前記熱伝導体3
の上面には前記加熱炉1の底板面と平行位置に多数対の
熱電素線からなるサーモパイル4 (実施例ではクロメ
ル、コンスタンクン4対)が固定されている。又前記サ
ーモパイル4の各接点部10は前記熱伝導体3に対し、
左右対称の形に配置される。前記サーモパイル4は第2
図に示す様に、第1金屈素線8 (コンスタンクン)と
第2金属素線9 (クロメル)とから形成されている。
1 indicates a heating furnace having a cross section of
At approximately the center position on the upper side, there is a thermal conductor 3 that is convex with respect to the bottom plate surface, is a thermal conductor, and is electrically insulating at least on the upper surface (for example, beryllium oxide or anodized aluminum). , electrically insulating ceramic deposited on silver, etc.) is placed and fixed. The thermal conductor 3
A thermopile 4 (four pairs of chromel and constancan in the embodiment) consisting of many pairs of thermoelectric wires is fixed on the upper surface of the heating furnace 1 in a position parallel to the bottom plate surface of the heating furnace 1. Further, each contact portion 10 of the thermopile 4 is connected to the thermal conductor 3,
arranged in a symmetrical shape. The thermopile 4 is a second
As shown in the figure, it is formed from a first metal wire 8 (Constankun) and a second metal wire 9 (Chromel).

又前記サーモパイル4の各接点部10には熱的に伝導体
で且つ電気的に絶縁性のある板状の試料セル5a、5b
が左右各1 ([1i!固定されている。前記加熱炉1
の底面2と前記熱伝導体3の固定手段としては、ネジ止
め、銀ろう又は一体物等の機械的接合手段(図示せず)
が、又前記熱伝導体3と、サーモパイル4の固定手段と
しては、棒状のおさえ板(図示せず)と前記熱伝導体3
によりサーモパイル4をサンドインチにして、ネジ止め
する、又は前記熱伝導体3の上面に前記サーモパイル4
の素線の数だけ線状に金属膜を蒸着し、サーモパイル4
の各素線を溶接する等の機械的接合手段(図示せず)が
、又前記サーモパイル4の各接点部10と試料セル5a
、5bとの固定手段としては、前記試料セル5a、5b
の裏面に、前記サーモパイル4の接点部IOの数だけ、
スポット状に金属膜を蒸着し、前記サーモパイル接点部
10と溶接する等の機械的接合手段(図示せず)を用い
、固定されている。上記各機械的接合部はすべて熱的に
良好な接触状態が保たれている。又、前記試料セル5a
、5bに接合された前記サーモパイル4の最初の接点A
及び最後の接点Bでは、電気信号取り出し用の第2の金
泥素線6a、6b(クロメル)と、第3の金属素線7a
、7b(アルメル)が溶接されている。
Further, each contact portion 10 of the thermopile 4 is provided with a thermally conductive and electrically insulating plate-shaped sample cell 5a, 5b.
is 1 on each left and right ([1i! is fixed. Said heating furnace 1
The means for fixing the bottom surface 2 and the thermal conductor 3 may be mechanical joining means (not shown) such as screws, silver solder, or an integral part.
However, as means for fixing the thermal conductor 3 and the thermopile 4, a rod-shaped holding plate (not shown) and the thermal conductor 3 are used.
The thermopile 4 is sandwiched and screwed, or the thermopile 4 is placed on the top surface of the heat conductor 3.
A metal film is deposited in a linear form as many as the number of wires, and
Mechanical joining means (not shown) such as welding the respective strands of the thermopile 4 and the sample cell 5a
, 5b is the means for fixing the sample cells 5a, 5b.
On the back side, as many as the contact parts IO of the thermopile 4,
A metal film is deposited in spots and fixed using mechanical joining means (not shown) such as welding to the thermopile contact portion 10. All of the above mechanical joints maintain good thermal contact. Moreover, the sample cell 5a
, 5b of the first contact A of said thermopile 4 joined to
And at the last contact point B, second gold wires 6a, 6b (chromel) for extracting electric signals and a third metal wire 7a are connected.
, 7b (alumel) are welded.

前記加熱炉1は図示しない温度制御装置により加熱炉ま
わりに巻かれたヒーター(図示しない)を使って、昇温
、降温、又は一定温度保時の温度コントロールが行われ
る。一方、試料セル5aには、被検試料(図示せず)、
試料セル5bには、熱的に安定な基準物質(図示せず)
が載せられ、両者の温度差はサーモパイル4により検出
される。
The temperature of the heating furnace 1 is controlled by a temperature control device (not shown) using a heater (not shown) wound around the heating furnace to raise the temperature, lower the temperature, or maintain a constant temperature. On the other hand, the sample cell 5a contains a test sample (not shown),
The sample cell 5b contains a thermally stable reference material (not shown).
is mounted, and the temperature difference between the two is detected by the thermopile 4.

加熱炉1の内部は、2つの試料セル5a、5bに対して
全(対称的に構成されており、加熱炉1の底板2及び熱
伝導体3は熱電めとして作用し、この熱電めとしての熱
伝導体3と、試料セル5a、5bとの間は、機械的物理
的に固定されたサーモパイルが介在するため、既知試料
を測定する事により、適切に前記温度差検出信号を校正
すれば、第1図の構成は良く知られた熱流束型の示差走
査熱量計として機能する事になる。加熱炉1内での熱の
流れは加熱炉1の表面から加熱炉底板2、熱伝導体3、
及びサーモパイル4を経由して試料セル5a、5bに流
れる。この時の熱流経路は熱伝導体3で制限されており
、この構造は良く知られたように示差走査熱量測定のベ
ースラインの安定に大きく寄与する。
The inside of the heating furnace 1 is constructed symmetrically with respect to the two sample cells 5a and 5b, and the bottom plate 2 and the thermal conductor 3 of the heating furnace 1 act as a thermoelectric meter. Since a mechanically and physically fixed thermopile is interposed between the thermal conductor 3 and the sample cells 5a and 5b, if the temperature difference detection signal is appropriately calibrated by measuring a known sample, The configuration shown in FIG. 1 functions as a well-known heat flux type differential scanning calorimeter. ,
and flows through the thermopile 4 to the sample cells 5a, 5b. The heat flow path at this time is restricted by the thermal conductor 3, and as is well known, this structure greatly contributes to the stability of the baseline of differential scanning calorimetry.

一方、試料セル5aの裏面で溶接された電気信号取り出
し用の第2の金属素線6aと第3の金属素線6bは熱電
対を形成しており、この熱電対により被検試料の温度が
検出される。
On the other hand, a second metal wire 6a and a third metal wire 6b for extracting electric signals, which are welded on the back surface of the sample cell 5a, form a thermocouple, and this thermocouple allows the temperature of the test sample to be adjusted. Detected.

一方、試料セル5a、5b間の温度差を電気信号に変換
し、アンプ(図示しない)で増幅し、レコーダ(図示し
ない)等に記録する場合、増幅しデータとして意味のあ
るレベルは、温度差として検出される電気信号が使用す
るアンプの入力信号に対するノイズレベル以上である事
が必要になる。
On the other hand, when converting the temperature difference between the sample cells 5a and 5b into an electrical signal, amplifying it with an amplifier (not shown), and recording it on a recorder (not shown), etc., the level at which the amplification is meaningful as data is the temperature difference. It is necessary that the electrical signal detected as a noise level is higher than the noise level of the input signal of the amplifier used.

今、仮りに使用するアンプの入力信号に対するノイズレ
ベルが6μVとし、温度差を検出する熱電対をクロメル
、コンスタンクンを使用し、この熱電対の1対当たりの
熱起電力を60μV/’Cとすると、温度差を検出する
熱電対が一対の場合、6μ■/60μV/’C=0.1
℃以下の温度差は増幅してもアンプのノイズレベルと区
別がつかず、検出出来ないことになる。ところが、この
温度差を検出する熱電対をサーモパイルにし、例えば4
対にしたとすると、温度差1℃当たりの発生起電力は4
倍の240μV / ’Cとなるため、6μ■/240
μv / ”c = 0.025℃迄の温度差をノイズ
レベル以下で検出できることになる。これは、実質的に
示差走査熱量計の感度を向上させる効果がある。 尚、
この発明の実施例としては、熱電めとしての加熱炉底板
2と熱伝導対3から、試料セル5a5bへの熱流の経路
としてはサーモパイル4の熱電対素線自体を使う場合に
ついて説明を行ったが上記の熱流経路用としてはセラミ
ック材料等(例えば、アルミナ焼結体、酸化ベリリウム
焼結体)に多重熱電対を薄着したものを用いても、同様
の効果が得られる事はもらろんである。
Now, suppose that the noise level for the input signal of the amplifier used is 6 μV, the thermocouples used to detect the temperature difference are Chromel and Constanqun, and the thermoelectromotive force per pair of thermocouples is 60 μV/'C. Then, if there is a pair of thermocouples that detect the temperature difference, 6μ■/60μV/'C = 0.1
Even if a temperature difference of less than ℃ is amplified, it cannot be distinguished from the noise level of the amplifier and cannot be detected. However, if the thermocouple that detects this temperature difference is made into a thermopile, for example 4
When paired, the electromotive force generated per 1°C temperature difference is 4
It becomes 240μV/'C, which is 6μ■/240
Temperature differences up to μv/”c = 0.025°C can be detected below the noise level. This has the effect of substantially improving the sensitivity of the differential scanning calorimeter.
As an embodiment of this invention, a case has been described in which the thermocouple wire itself of the thermopile 4 is used as a path for heat flow from the heating furnace bottom plate 2 and heat conduction pair 3 as thermocouples to the sample cell 5a5b. It goes without saying that similar effects can be obtained by using a ceramic material or the like (for example, alumina sintered body, beryllium oxide sintered body) with multiple thermocouples attached thinly for the heat flow path described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば加熱炉内の試料セル間の
温度差をサーモパイルで検出する構成としたので、同じ
温度差に対し発生する起電力の検出信号が大きいため、
小さい温度差でもアンプのノイズレベルに制服されず増
幅記録する事ができるため、感度の高い高ネn度な示差
走査熱量計を実現する事ができる。
As described above, according to the present invention, since the temperature difference between the sample cells in the heating furnace is detected by the thermopile, the detection signal of the electromotive force generated for the same temperature difference is large.
Even small temperature differences can be amplified and recorded without being affected by the noise level of the amplifier, making it possible to realize a differential scanning calorimeter with high sensitivity and high temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面立体図、第2図は実
施例のサーモパイル結線図、第3図は従来例の断面図で
ある。 1・・・加熱炉 2・・・加熱炉底板 3・・・熱伝導体 4・・・サーモパイル 5a、5b・・・試料セル 6a、6b・・・第2の金属素線 7a、7b・・・第3の金属素線 8・・・第1の金属素線 9・・・第2の金属素線 10・・・接点部 A・・・最初の接点 B・・・最後の接点 11・・・加熱炉 12・・・加熱炉底板 13・・・熱伝導体 15a、15b・・・試料セル 16a、16b・・・第2の金属素線 17a、17b・・・第3の金屈素線 以上
FIG. 1 is a sectional three-dimensional view showing an embodiment of the present invention, FIG. 2 is a thermopile connection diagram of the embodiment, and FIG. 3 is a sectional view of a conventional example. 1... Heating furnace 2... Heating furnace bottom plate 3... Thermal conductor 4... Thermopiles 5a, 5b... Sample cells 6a, 6b... Second metal wires 7a, 7b...・Third metal wire 8...First metal wire 9...Second metal wire 10...Contact part A...First contact B...Last contact 11... -Heating furnace 12...Heating furnace bottom plate 13...Thermal conductors 15a, 15b...Sample cells 16a, 16b...Second metal strands 17a, 17b...Third metal strands that's all

Claims (1)

【特許請求の範囲】[Claims] 断面H状の加熱炉と、前記加熱炉の底板上のほぼ中央位
置に前記加熱炉底を凸形状とする熱伝導体と、前記熱伝
導体上面に前記加熱炉内に対し、対称位置に設けられた
多重のサーモパイルとから構成される示差走査熱量計。
a heating furnace having an H-shaped cross section; a heat conductor having a convex bottom at a substantially central position on a bottom plate of the heating furnace; and a heat conductor provided on an upper surface of the heat conductor at a symmetrical position with respect to the interior of the heating furnace. A differential scanning calorimeter consisting of multiple thermopiles.
JP3862986A 1986-02-24 1986-02-24 Differential scanning calorimeter Pending JPS62195549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3862986A JPS62195549A (en) 1986-02-24 1986-02-24 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3862986A JPS62195549A (en) 1986-02-24 1986-02-24 Differential scanning calorimeter

Publications (1)

Publication Number Publication Date
JPS62195549A true JPS62195549A (en) 1987-08-28

Family

ID=12530531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3862986A Pending JPS62195549A (en) 1986-02-24 1986-02-24 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JPS62195549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215484A2 (en) * 2000-12-13 2002-06-19 Seiko Instruments Inc. Differential scanning calorimeter
JP2002539419A (en) * 1998-11-03 2002-11-19 サーノフ コーポレーション Alignable thermal assay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539419A (en) * 1998-11-03 2002-11-19 サーノフ コーポレーション Alignable thermal assay
EP1215484A2 (en) * 2000-12-13 2002-06-19 Seiko Instruments Inc. Differential scanning calorimeter
EP1215484A3 (en) * 2000-12-13 2003-10-15 Seiko Instruments Inc. Differential scanning calorimeter

Similar Documents

Publication Publication Date Title
US6508585B2 (en) Differential scanning calorimeter
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
US5288147A (en) Thermopile differential thermal analysis sensor
US3732722A (en) Material holder
US3321974A (en) Surface temperature measuring device
US3232113A (en) Thermal parameter indicator
US3298220A (en) Thermocouple for dta
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
JPS62174642A (en) Measuring probe for thermal conductivity of material
US3354720A (en) Temperature sensing probe
JP2005221238A (en) Temperature difference detection method, temperature sensor, and infrared sensor using the same
JP2003042985A (en) Differential scanning calorimeter
JPS62195549A (en) Differential scanning calorimeter
US4472594A (en) Method of increasing the sensitivity of thermopile
US3524340A (en) Device for differential thermal analysis
US4682898A (en) Method and apparatus for measuring a varying parameter
JP2000515980A (en) Hybrid integrated circuit of gas sensor
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
JPH0372944B2 (en)
EP1215484A2 (en) Differential scanning calorimeter
JP4490580B2 (en) Infrared sensor
JPS6021327B2 (en) heat flux meter
JPS62231148A (en) Thermal analysis instrument
US3477880A (en) Thermo-couple device for current measurement
JPH0537231Y2 (en)