JPS62195191A - Light emitting/receiving device - Google Patents

Light emitting/receiving device

Info

Publication number
JPS62195191A
JPS62195191A JP61035361A JP3536186A JPS62195191A JP S62195191 A JPS62195191 A JP S62195191A JP 61035361 A JP61035361 A JP 61035361A JP 3536186 A JP3536186 A JP 3536186A JP S62195191 A JPS62195191 A JP S62195191A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
photodetector
laser
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61035361A
Other languages
Japanese (ja)
Other versions
JPH0654823B2 (en
Inventor
Hiroo Ukita
宏生 浮田
Tomoyuki Toshima
戸島 知之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3536186A priority Critical patent/JPH0654823B2/en
Publication of JPS62195191A publication Critical patent/JPS62195191A/en
Publication of JPH0654823B2 publication Critical patent/JPH0654823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To stabilize the operation of a semiconductor laser and reduce the noise induced by a returning light by a method wherein the light receiving surface of a photodetector is formed into a shape with which a laser beam reflected by the light receiving surface does not return to the emitting end surface of a semiconductor laser. CONSTITUTION:A forward bias voltage is applied to a semiconductor laser 3 through a termi nal 18 and a reverse bias voltage is applied to a photodetector 4 through a terminal 22 with an n-type electrode 19 as a common electrode. By the application of such bias voltage, laser beam is created in the light emitting region 16 of the semiconductor laser 3 side and laser beams L1 and L2 are emitted from a front emitting end surface 17 and from a back emitting end surface 5 respectively. The backward emitted light beam L2 penetrates into a light detecting surface 26 composed of a cylindrical inner wall surface through an aperture 25 at the position apart from the surface 5 by a distance (g). The penetrating light beam l1 is detected by an active layer 9b and partially reflected by the inner wall but a reflected light beam l2 is detected so as to be absorbed into the light receiving surface 26 by the multipath reflection on the cylindrical inner wall surface. With this constitution, the instability of the operation of the semiconductor laser 3 caused by a returning light beam can be avoided and the output fluctuation and the returning light noise of the laser beam L1 can be reduced.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、半導体レーザとその光出力をモニターする
ための光検出器とが同一基板上に一体的に形成された発
・受光素子に関し、例えば光ディスク等の光情報処理装
置、光通信用送受信装置等に使用されるものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a light emitting/receiving element in which a semiconductor laser and a photodetector for monitoring its optical output are integrally formed on the same substrate. It is used in optical information processing devices such as optical disks, optical communication transmitting/receiving devices, and the like.

[発明の技術的背景とその問題点] 半導体レーザは、その光出力を安定化させる手段として
、一般に後方出射光を光検出器でモニターしてバイアス
電流を制御する光フイードバツク法がとられる。
[Technical Background of the Invention and Problems Therewith] As a means for stabilizing the optical output of a semiconductor laser, an optical feedback method is generally used in which the backward emitted light is monitored with a photodetector to control the bias current.

このようなモニター用の光検出器を備えた従来の半導体
レーザとしては例えば第10図に示すようなものがある
An example of a conventional semiconductor laser equipped with such a monitoring photodetector is shown in FIG. 10.

第10図中符号1は半導体チップで、半導体チップ1に
は、微細加工技術により、幅、深さともに数μm程度の
分離溝2が形成され、この分離溝2により半導体レーザ
3と、光検出器4とが対向して形成されている。
Reference numeral 1 in FIG. 10 is a semiconductor chip, and in the semiconductor chip 1, a separation groove 2 with a width and depth of approximately several μm is formed using microfabrication technology. The container 4 is formed to face the container 4.

分離溝2の側壁で形成される半導体レーザ3の後方出射
端面5と、光検出器4の受光面6とは略平行面に形成さ
れている。
The rear emitting end surface 5 of the semiconductor laser 3 formed by the side wall of the separation groove 2 and the light receiving surface 6 of the photodetector 4 are formed into substantially parallel surfaces.

半導体レーザ3は、n−GaAsの基板7上に、液相エ
ピタキシャル成長法によりn−Au。、33Gao、e
7Asの下側クラッド層8a、A!Lo 、 o 5G
ao 、 95△Sの活性層9a、およびD−AIo、
33G80.67ASの上側クラッド層11aからなる
ダブルへテロ構造が形成されている。活性層9aの厚さ
は1μm以下でレーザ光[10波長よりも薄く形成され
ている。
The semiconductor laser 3 is made of n-Au by liquid phase epitaxial growth on an n-GaAs substrate 7. ,33Gao,e
7As lower cladding layer 8a, A! Lo, o 5G
ao, 95ΔS active layer 9a, and D-AIo,
A double heterostructure consisting of an upper cladding layer 11a of 33G80.67AS is formed. The thickness of the active layer 9a is 1 μm or less, which is less than 10 wavelengths of laser light.

12aはn−GaAsのキャップ層、13はn電極、1
4はストライプで、ストライプ14の部分を除くキャッ
プ層12aとn電極13との間にSiO2の絶縁層15
が形成されている。
12a is an n-GaAs cap layer, 13 is an n electrode, 1
4 is a stripe, and an insulating layer 15 of SiO2 is provided between the cap layer 12a and the n-electrode 13 except for the stripe 14 part.
is formed.

ストライプ14直下の活性層9aの部分に発光領域16
が形成される。
A light emitting region 16 is provided in a portion of the active layer 9a directly below the stripe 14.
is formed.

17はレーザ光L1の出射される前方出射端面、18は
順バイアス印加用の端子、19はn電極である。
Reference numeral 17 denotes a front emission end face from which the laser beam L1 is emitted, 18 a terminal for applying a forward bias, and 19 an n-electrode.

光検出器4についても、共通のn−GaAsの基板7上
に、半導体レーザ3側とそれぞれ同様の厚さの下側クラ
ッドW8 b、活性層9b、上側クラツド層11b1キ
ヤツプ層12bが形成され、キャップ層12bの上にn
電極21が形成されている。22は逆バイアス印加用の
端子である。
Regarding the photodetector 4, a lower cladding W8b, an active layer 9b, an upper cladding layer 11b, and a cap layer 12b having the same thickness as the semiconductor laser 3 side are formed on a common n-GaAs substrate 7. n on the cap layer 12b
An electrode 21 is formed. 22 is a terminal for applying reverse bias.

このように半導体レーザ3とモニター用の光検出器4と
は、同一の基板7上に一体的に形成されて発・受光素子
として構成されている。
In this way, the semiconductor laser 3 and the monitoring photodetector 4 are integrally formed on the same substrate 7 and configured as a light emitting/receiving element.

そしてn電極19を共通電極として、半導体レーザ3に
は端子18を通じて順バイアス電圧を印加し、光検出器
4には端子22を通じて逆バイアス電圧を印加すると、
半導体レーザ3においては、発光領域16部分の活性層
9aに注入キレリヤが集中し再結合が生じて発光する。
Using the n-electrode 19 as a common electrode, a forward bias voltage is applied to the semiconductor laser 3 through the terminal 18, and a reverse bias voltage is applied to the photodetector 4 through the terminal 22.
In the semiconductor laser 3, the injected laser concentrates in the active layer 9a of the light emitting region 16, recombination occurs, and light is emitted.

この注入キャリヤおよび発光は両クラッド層8a、11
aにより活性層9a内に効率よく閉じ込められてレーザ
作用が増大し、発光領域16から前方出射端面17側に
レーザ光(前方出射光)「1が出力されるとともに、後
方出射端面5側に後方出射光L2が出力される。
The injected carriers and the emitted light are transferred to both cladding layers 8a and 11.
a effectively confines the active layer 9a within the active layer 9a, increasing the laser action, and a laser beam (front emitted light) "1" is output from the light emitting region 16 to the front emitting end surface 17 side, and a rear emitting light "1" is output from the light emitting region 16 to the rear emitting end surface 5 side. Emitted light L2 is output.

一方、光検出器4においては、半導体レーザ3からの後
方出射光L2が活性層9bに入射して電子とホールの対
が生じ、逆バイアス電圧により後方出射光L2の光強度
に比例した光電流が外部回路に流れて半導体レーザ3の
光出力がモニターされる。上記のように光検出器4の受
光面6における実質的な感光部は活性層9bの部分であ
る。
On the other hand, in the photodetector 4, the backward emitted light L2 from the semiconductor laser 3 enters the active layer 9b, generating pairs of electrons and holes, and a photocurrent proportional to the light intensity of the backward emitted light L2 is generated by a reverse bias voltage. flows to an external circuit, and the optical output of the semiconductor laser 3 is monitored. As mentioned above, the substantial photosensitive portion on the light receiving surface 6 of the photodetector 4 is the active layer 9b.

しかしながら上記の発・受光素子にあっては、半導体レ
ーザ3の後方出射端面5と、光検出器4の受光面6とが
略平行面になっていたため、後方出射光L2の受光面6
による反射光が、半導体レーザ3の後方出射端面5側に
帰還して半導体レーザ3の動作が不安定になり、前方出
射端面17からのレーザ光L1出力の強度が変動すると
ともに、戻り光ノイズが増えるという問題点があった。
However, in the above-mentioned light emitting/receiving element, since the rear emitting end face 5 of the semiconductor laser 3 and the light receiving surface 6 of the photodetector 4 are substantially parallel surfaces, the light receiving surface 6 of the rear emitted light L2
The reflected light from the laser beam returns to the rear emitting end facet 5 side of the semiconductor laser 3, making the operation of the semiconductor laser 3 unstable, and the intensity of the laser light L1 output from the front emitting end facet 17 fluctuates, as well as returning light noise. There was a problem with the increase.

また光検出器4の受光面6における高さ方向の実質的な
感光幅は、活性層9bの厚さ程度しかなく、この活性層
9bは半導体レーザ3側の活性層9aと同様に薄く形成
されていたため、受光感度が低く、カップリング効率が
数%程度になってしまうという問題点があった。
Further, the substantial photosensitive width in the height direction on the light receiving surface 6 of the photodetector 4 is only about the thickness of the active layer 9b, and this active layer 9b is formed thinly like the active layer 9a on the semiconductor laser 3 side. Therefore, there were problems in that the light-receiving sensitivity was low and the coupling efficiency was only a few percent.

[発明の目的] この発明は、上記事情に基づいてなされたもので、レー
ザ出力の安定化および低ノイズ化を図るとともに、光検
出器の受光感度を向上させることのできる発・受光素子
を提供することを目的とする。
[Object of the Invention] The present invention was made based on the above circumstances, and provides a light emitting/receiving element capable of stabilizing laser output and reducing noise, as well as improving the light receiving sensitivity of a photodetector. The purpose is to

[発明の概要] 上記目的を達成するために、第1の発明は、素子デツプ
に設【−1られた分離溝により、半導体レーザとこの半
導体レーザから出射されるレーザ光を受光する光検出器
とが対向して形成された発・受光素子において、光検出
器の受光面を、この受光面によるレーザ光の反射光が半
導体レーザの出射端面にれ戻らない形状に形成して、半
導体レーザの動作安定化を図るとともに戻り光ノイズが
低減されるようにしたものである。
[Summary of the Invention] In order to achieve the above object, a first invention provides a semiconductor laser and a photodetector that receives laser light emitted from the semiconductor laser through a separation groove provided in the element depth. In the light emitting/receiving element, in which the light receiving surface of the photodetector is formed to face each other, the light receiving surface of the photodetector is formed in a shape that prevents the reflected light of the laser beam from the light receiving surface from returning to the emitting end surface of the semiconductor laser. This is intended to stabilize operation and reduce return light noise.

また第2の発明は、前記の発・受光素子において、光検
出器における実質的な感光部となる活性層を、半導体レ
ーザの発光領域を形成する活性層よりも厚く形成して、
受光感度が向上されるようにしたものである。
A second aspect of the invention is that, in the light emitting/receiving element, the active layer which becomes a substantial photosensitive part of the photodetector is formed thicker than the active layer forming the light emitting region of the semiconductor laser.
The light receiving sensitivity is improved.

[発明の実施例] 以下この発明の実施例を図面に基づいて説明する。[Embodiments of the invention] Embodiments of the present invention will be described below based on the drawings.

第1図〜第4図は、この発明の第1実施例を示す図であ
る。
1 to 4 are diagrams showing a first embodiment of the present invention.

なお第1図および後述の各実施例を示す図において前記
第10図における部材および部位等と同一ないし均等の
ものは、前記と同一符号を以って示し重複した説明を省
略する。
In FIG. 1 and the drawings showing each embodiment described later, the same or equivalent members and portions as those in FIG.

まず構成を説明すると、この実施例は、第1図および第
2図に示すように光検出器4の受光面26が、半導体レ
ーザ3のニアフィールドパターンンと略等しい幅dの開
口25を有する円柱の柱状内壁面で形成され、この円柱
状の受光面26による後方出射光(レーザ光)L2の反
射光が半導体レーザ3の後方出射端面5に戻らないよう
に構成されている。
First, to explain the configuration, in this embodiment, as shown in FIGS. 1 and 2, the light receiving surface 26 of the photodetector 4 has an aperture 25 with a width d approximately equal to the near field pattern of the semiconductor laser 3. It is formed of a columnar inner wall surface of a cylinder, and is configured so that the reflected light of the rear emitted light (laser light) L2 by the cylindrical light receiving surface 26 does not return to the rear emitting end face 5 of the semiconductor laser 3.

開口25を有する円柱状の受光面26は、例えば反応性
イオンビームエツチングを使用した微細加工により形成
される。
The cylindrical light-receiving surface 26 having the opening 25 is formed by microfabrication using, for example, reactive ion beam etching.

第3図は、分tilIt溝2の溝幅qと後方出射光L2
のビーム径との関係、云い換えれば後方出射端面5から
の距離に対するレーザ光のビーム径の広がりを示したも
のである。同図中(イ)の曲線は、活性層9aの広がり
方向と同方向、即ち平行方向のビーム径の広がりを示し
、(ロ)の曲線は、活=7− 性層9aに垂直方向のビーム径の広がりを示している。
FIG. 3 shows the groove width q of the tilIt groove 2 and the backward emitted light L2.
In other words, it shows the spread of the beam diameter of the laser light with respect to the distance from the rear output end face 5. In the figure, the curve (a) shows the spread of the beam diameter in the same direction as the spread direction of the active layer 9a, that is, in the parallel direction, and the curve (b) shows the spread of the beam diameter in the direction perpendicular to the active layer 9a. It shows the expansion of the diameter.

分離溝2の溝幅qを例えばg=5μmとすると、この程
度の距離においては、レーザ光の出カバターンは、ニア
フィールドパターンを示し、平行方向のビーム径の広が
り(第3図(イ))は、ストライプ140幅とほぼ等し
く、例えば5μm程麿8なる。また垂直方向のビーム径
の広がりは、はぼ4μm程度となる。
If the groove width q of the separation groove 2 is, for example, g = 5 μm, at this distance, the output pattern of the laser beam shows a near-field pattern, and the beam diameter in the parallel direction expands (Fig. 3 (a)). is approximately equal to the width of the stripe 140, for example, about 5 μm. Further, the spread of the beam diameter in the vertical direction is about 4 μm.

円柱状の受光面26は、上記のようなビーム径の広がり
を持つニアフィールドパターンの後方出射光L2を受光
すればよいので、開口25の幅dは、平行方向のビーム
径の広がり幅とほぼ等しいかまたはそれ以上あればよ<
6 5μmとされる。
Since the cylindrical light-receiving surface 26 only needs to receive the backward emitted light L2 of the near-field pattern with the beam diameter spread as described above, the width d of the aperture 25 is approximately equal to the width of the beam diameter spread in the parallel direction. If it is equal to or greater than
It is assumed to be 65 μm.

また受光面26の縦方向の長さは、垂直方向のビーム径
の広がり幅とほぼ等しいかまたはそれ以上あればよく4
μm程度以上とされる。
The length of the light-receiving surface 26 in the vertical direction may be approximately equal to or longer than the spread width of the beam diameter in the vertical direction.
It is said to be about μm or more.

次に作用を説明する。Next, the action will be explained.

n電極19を共通電極として、半導体レーザ3には端子
18を通じて順バイアス電圧を印加し、光検出器4には
端子22を通じて逆バイアス電圧が印加される。
Using the n-electrode 19 as a common electrode, a forward bias voltage is applied to the semiconductor laser 3 through the terminal 18, and a reverse bias voltage is applied to the photodetector 4 through the terminal 22.

このようなバイアス電圧の印加により、半導体レーザ3
側においては、発光領域16にレーザ発光が生じ、前方
出射端面17および後方出射端面5からそれぞれレーザ
光(前方出射光)L+および後方出射光L2が出力され
る。
By applying such a bias voltage, the semiconductor laser 3
On the side, laser light is emitted in the light emitting region 16, and laser light (front emitted light) L+ and rear emitted light L2 are output from the front emitting end face 17 and the rear emitting end face 5, respectively.

前方に出射したレーザ光L1は、光ディスクや光通信装
置等における光源として使用される。一方、後方出射光
L2は光検出器4で受光されて、光出力のモニター用と
して使用され、図示省略のオートマチックパワーコント
ロール回路により、前方に出射したレーザ光L1の出力
安定化が図られる。
The laser beam L1 emitted forward is used as a light source in optical discs, optical communication devices, and the like. On the other hand, the backward emitted light L2 is received by the photodetector 4 and used for monitoring the optical output, and an automatic power control circuit (not shown) stabilizes the output of the forward emitted laser light L1.

そしてこのような光検出器4による後方出射光[2の検
出作用において、第2図に示すように、後方出射光L2
は、半導体レーザ3の後方出射端面5から距離qの位置
にある開口25を通って円柱状内壁面で形成された受光
面26内に侵入する。
In the detection operation of the rear emitted light [2] by the photodetector 4, as shown in FIG.
passes through the opening 25 located at a distance q from the rear emission end face 5 of the semiconductor laser 3 and enters the light receiving surface 26 formed by the cylindrical inner wall surface.

侵入光1+ は、実質的な感光部である活性層9bで検
出されるとともに、その一部は受光面26の内壁で反射
される。しかし反射光ρ2は円柱状内壁面内で多重反射
されて受光面26内に吸収されるようにして検出される
The intruding light 1+ is detected by the active layer 9b, which is a substantial photosensitive part, and a part of it is reflected by the inner wall of the light receiving surface 26. However, the reflected light ρ2 is multiple-reflected within the cylindrical inner wall surface and absorbed within the light-receiving surface 26, thereby being detected.

而して後方出射光し2の反射光による半導体レーザ3側
への戻り光が極めて少なくなり、この戻り光による半導
体レーザ3の動作不安定がなくなって、レーザ光L1の
出力変動および戻り光ノイズが顕著に低減される。また
これどともに円柱状内壁面からなる受光面26は、侵入
光u1に対して一種の積分作用によりその反射光を殆ん
ど吸収し検出するので、受光感度が向上してモニター性
能が高められる。
As a result, the amount of light returned to the semiconductor laser 3 side due to the reflected light of the backward emitted light 2 is extremely reduced, and the unstable operation of the semiconductor laser 3 due to this returned light is eliminated, resulting in output fluctuations of the laser light L1 and returned light noise. is significantly reduced. In addition, the light-receiving surface 26, which is composed of a cylindrical inner wall surface, absorbs and detects most of the reflected light with respect to the intruding light u1 by a kind of integral action, so that the light-receiving sensitivity is improved and the monitoring performance is enhanced. .

第4図は、半導体レーザ3から、分阿[渦輪に相当する
距Mqだけ離れた位置に、開口25を塞ぐように適宜の
反射板を配置したときの、レーザ発振の発振閾値電流の
変化を示したものである。距!IIqが小さくなる程閾
値電流の値は小さくなっている。これは距ll1IQが
小さくなる程反射による戻り光が増えてレーザ光帰還量
が増加することを示している。しかしこのように帰還量
が増すと、前記のように動作不安定および戻り光ノイズ
が増えるという弊害が生じるので、この発明の実施例で
は、反射光は円柱状内壁面からなる受光面26内に吸収
されて、このJ:うな弊害が除去される。
FIG. 4 shows the change in the oscillation threshold current for laser oscillation when an appropriate reflector is placed at a distance Mq corresponding to the vortex ring from the semiconductor laser 3 so as to close the aperture 25. This is what is shown. Distance! As IIq becomes smaller, the value of the threshold current becomes smaller. This shows that as the distance ll1IQ becomes smaller, the amount of returned light due to reflection increases, and the amount of laser light feedback increases. However, when the amount of feedback increases in this way, there are disadvantages such as unstable operation and increased return light noise as described above. Therefore, in the embodiment of the present invention, the reflected light is reflected within the light receiving surface 26 made of a cylindrical inner wall surface. By being absorbed, this J: Una harmful effect is removed.

第5図には、この発明の第2実施例を示す。FIG. 5 shows a second embodiment of the invention.

この実施例は、光検出器4の受光面27を、半導体レー
ザ3のニアフィールドパターンと略等しい幅dの開口2
5を有する三角柱の柱状内壁面で形成し、この三角柱状
の受光面27による後方出射光L2の反射光が半導体レ
ーザ3側に帰還しないように構成したものである。
In this embodiment, the light-receiving surface 27 of the photodetector 4 is provided with an aperture 2 having a width d substantially equal to the near-field pattern of the semiconductor laser 3.
5, and is configured to prevent the reflected light of the backward emitted light L2 from the triangular prism-shaped light receiving surface 27 from returning to the semiconductor laser 3 side.

三角柱状の内壁面からなる受光面27とした場合におい
ても、受光面27内への侵入光による反射光は、その内
壁面内で多重反射されて受光面27内に吸収されるよう
にして検出される。
Even in the case where the light-receiving surface 27 is made of a triangular prism-shaped inner wall surface, the reflected light due to the light entering the light-receiving surface 27 is detected by being reflected multiple times within the inner wall surface and absorbed within the light-receiving surface 27. be done.

面し−にの実施例においても、前記第1実施例と同様に
、戻り光による半導体レーザ3の動作不安定はなくなり
、レーザ光L1の出力変動および戻り光ノイズが低減さ
れ、さらには受光感度の向上が図られる。
In the facing embodiment, as in the first embodiment, the unstable operation of the semiconductor laser 3 due to the return light is eliminated, the output fluctuation of the laser light L1 and the return light noise are reduced, and the light receiving sensitivity is reduced. This will lead to improvements in

第6図には、この発明の第3実施例を示す。FIG. 6 shows a third embodiment of the invention.

この実施例は、素子分離溝28により半導体レーザ、お
よび光検出器をそれぞれ2分してマルチレーザ形の発・
受光素子としたものである。
In this embodiment, a semiconductor laser and a photodetector are each divided into two by an element isolation groove 28, resulting in a multi-laser type light emitting device.
It is used as a light receiving element.

並設された2個の半導体レーザ3a、3bのそれぞれに
発光領域16a、16bが設けられ、これに対応して各
光検出器4a、4bに前記第1実施例と同様の円柱状内
壁面からなる受光面26a126bが形成されている。
The two parallel semiconductor lasers 3a, 3b are each provided with a light emitting region 16a, 16b, and correspondingly, each photodetector 4a, 4b is provided with a light emitting region from the cylindrical inner wall surface similar to the first embodiment. A light receiving surface 26a126b is formed.

各受光面26a、26bの開口は、前記第1実施例の場
合と同様に、各発光領域16a、16bから出射される
後方出射光の平行方向のビーム径の広がり幅とほぼ等し
いかまたはそれ以上に形成されている。
As in the case of the first embodiment, the opening of each light receiving surface 26a, 26b is approximately equal to or larger than the spread width of the beam diameter in the parallel direction of the backward emitted light emitted from each light emitting region 16a, 16b. is formed.

各半導体レーザ3a、3b側への反射光による戻り光が
顕著に少なくなって、半導体レーザ3a。
The amount of return light due to reflected light toward each of the semiconductor lasers 3a and 3b is significantly reduced.

3bの動作不安定がなくなり、レーザ光L1、L1′の
出力変動および戻り光ノイズが低減される等の作用は前
記第1実施例の場合とほぼ同様である。
The operation instability of the laser beam 3b is eliminated, and the output fluctuations of the laser beams L1 and L1' and the return light noise are reduced, and other effects are substantially the same as in the first embodiment.

この実施例のマルチレーザ形の発・受光素子は、例えば
並列記録再生用光ヘッドの光源として使用される。
The multi-laser type light emitting/receiving element of this embodiment is used, for example, as a light source for an optical head for parallel recording/reproduction.

第7図には、この発明の第4実施例を示す。FIG. 7 shows a fourth embodiment of the invention.

この実施例は、素子分離溝28により半導体レーザ、お
よび光検出器をそれぞれ2分してマルチレーザ形の発・
受光素子とした点は、前記第3実施例(第6図)のもの
とほぼ同様である。
In this embodiment, a semiconductor laser and a photodetector are each divided into two by an element isolation groove 28, resulting in a multi-laser type light emitting device.
The light receiving element is almost the same as that of the third embodiment (FIG. 6).

第3実施例のものと異なる点は、一方の半導体レーザ3
Cに設けた発光領域16Cの幅と、他方の半導体レーザ
3dに設けた発光領域16dの幅とを異なるようにした
点である。
The difference from the third embodiment is that one semiconductor laser 3
The difference is that the width of the light emitting region 16C provided in C is made different from the width of the light emitting region 16d provided in the other semiconductor laser 3d.

これに従って光検出器4Cの受光面26Cの開口25C
の幅は、発光領域16cの幅に対応して広く形成され、
他の光検出器4dの受光面26dの開口25dの幅は、
発光領域16dの幅に対応するように狭く形成されてい
る。
According to this, the opening 25C of the light receiving surface 26C of the photodetector 4C
is formed to have a wide width corresponding to the width of the light emitting region 16c,
The width of the opening 25d of the light receiving surface 26d of the other photodetector 4d is
It is formed narrowly so as to correspond to the width of the light emitting region 16d.

各半導体レーザ3c、3d側への反射光による戻り、光
が顕著に少なくなる等の作用は、前記第3実施例のもの
とほぼ同様である。
Effects such as the return of reflected light to the semiconductor lasers 3c and 3d side and a significant reduction in light are almost the same as those of the third embodiment.

この実施例のマルチレーザ形の発・受光素子は、例えば
記録材料として相変態形媒体を使用した光デイスク用光
ヘッドの光源として使用される。
The multi-laser type light emitting/receiving element of this embodiment is used, for example, as a light source for an optical head for an optical disk using a phase changeable medium as a recording material.

なお上記の第3、第4の各実施例において半導体レーザ
および光検出器の並設数は、2としてマルチ度を2とし
たが、マルチ度を一般的にnとしたものについても、こ
の発明を適用することができる。
In each of the third and fourth embodiments described above, the number of semiconductor lasers and photodetectors arranged in parallel is 2, and the multiplicity is 2, but the present invention also applies to cases where the multiplicity is generally n. can be applied.

第8図にはこの発明の第5実施例を示す。FIG. 8 shows a fifth embodiment of the invention.

この実施例は、光検出器4の受光面30を、半導体レー
ザ3の後方出射端面5に対して傾斜面として、この受光
面30による後方出射光L2の反射光が半導体レーザ3
側に帰還しないようにしたものである。
In this embodiment, the light receiving surface 30 of the photodetector 4 is an inclined surface with respect to the rear emitting end surface 5 of the semiconductor laser 3, and the reflected light of the rear emitted light L2 by the light receiving surface 30 is reflected by the semiconductor laser 3.
This was to prevent them from returning to their side.

傾斜面からなる受光面30は、分離溝2の加工をイオン
ビームエツチング法により行なう際に、試料をイオンビ
ーム軸に対して所定角度だけ傾けてエツチングすること
により作製できる。
The light-receiving surface 30 consisting of an inclined surface can be fabricated by etching the sample at a predetermined angle with respect to the ion beam axis when processing the separation groove 2 by the ion beam etching method.

作用を述べると、半導体レーザ3からの後方出射光L2
は、光検出器4の受光面30に入射して実質的な感光部
である活性層9bで検出される。
To describe the effect, the backward emitted light L2 from the semiconductor laser 3
enters the light-receiving surface 30 of the photodetector 4 and is detected by the active layer 9b, which is a substantial photosensitive area.

このときその一部は受光面30で反射されるが、受光面
30が後方出射光L2の光軸に対して傾いて形成されて
いるので、その反射光は半導体レーザ3側に戻ることが
ない。
At this time, a part of the light is reflected by the light receiving surface 30, but since the light receiving surface 30 is formed at an angle with respect to the optical axis of the backward emitted light L2, the reflected light does not return to the semiconductor laser 3 side. .

したがって戻り光による半導体レーザ3の動作不安定が
なくなり、その出力変動および戻り光ノイズが顕著に低
減される。
Therefore, the unstable operation of the semiconductor laser 3 due to the return light is eliminated, and its output fluctuation and return light noise are significantly reduced.

次いで第9図には、この発明の第6実施例を示す。Next, FIG. 9 shows a sixth embodiment of the present invention.

この実施例は、光検出器4における実質的な感光部とな
る活性層29を、半導体レーザ3の発光領域を形成する
活性層9aよりも所要厚さだけ厚く形成したものである
In this embodiment, the active layer 29 serving as a substantial photosensitive portion of the photodetector 4 is formed to be thicker than the active layer 9a forming the light emitting region of the semiconductor laser 3 by a required thickness.

前記第3図のビーム径広がり特性で示したように、ニア
フィールドパターンにお(プる垂直方向のビーム径の広
がり幅〈第3図(ロ))の程度は、平行方向のビーム径
の広がり幅(第3図(イ))の程度よりも大きく、例え
ば分離溝2の溝幅qを5μmとしたとぎ、4μm程度ま
で広がる。
As shown in the beam diameter spread characteristics in Figure 3 above, the extent of the beam diameter spread in the vertical direction (Figure 3 (b)) in the near-field pattern is the same as the beam diameter spread in the parallel direction. For example, if the groove width q of the separation groove 2 is set to 5 μm, it widens to about 4 μm.

このため、この実施例では、実質的な感光部となる活性
層29の厚さを、上記のニアフィールドパターンにおけ
る垂直方向のビーム径の広がり幅に応じて数μmとする
ことにより検出感度を顕著に向上させたものである。
Therefore, in this embodiment, the detection sensitivity is significantly increased by setting the thickness of the active layer 29, which serves as a substantial photosensitive area, to several μm in accordance with the spread width of the beam diameter in the vertical direction in the above-mentioned near-field pattern. This has been improved.

この素子の製作工程の一例を述べると次のとおりである
An example of the manufacturing process for this element is as follows.

(a)  n −G a A Sの基板7上に半導体レ
ーザ3用のダブルへテロ構造を液相エピタキシャル法に
より形成する。
(a) A double heterostructure for the semiconductor laser 3 is formed on the n-GaAs substrate 7 by liquid phase epitaxial method.

(b)  光検出器4となる部分のエピタキシャル成長
層を化学エツチング等の手段により除去する。
(b) The portion of the epitaxial growth layer that will become the photodetector 4 is removed by means such as chemical etching.

(C)  半導体レーザ3となる部分をSiO2等の絶
縁物で覆い、光検出器4となる部分の基板7上に前記(
a)と同じ工程により活性層29の厚さを数μmとした
ダブルへテロ構造を成長させる。このように半導体レー
ザ3となる部分を5i02等の絶縁物で覆うことにより
、光検出器4となる部分のダブルへテロ構造を任意の厚
さに選択的に成長させることができる。
(C) The part that will become the semiconductor laser 3 is covered with an insulator such as SiO2, and the part that will become the photodetector 4 is covered with the above (
A double heterostructure in which the active layer 29 has a thickness of several μm is grown by the same process as in a). By covering the portion that will become the semiconductor laser 3 with an insulator such as 5i02 in this manner, the double heterostructure that will become the photodetector 4 can be selectively grown to an arbitrary thickness.

(d)  イオンビームエツチング法により半導体レー
ザ3と光検出器4との間に分離溝2を形成して発・受光
素子とする。
(d) A separation groove 2 is formed between the semiconductor laser 3 and the photodetector 4 by ion beam etching to form a light emitting/receiving element.

なお第9図の図示例においては、光検出器4の受光面3
0を、前記第5実施例(第8図〉のものと同様に傾斜面
として、この受光面30による後方出射光L2の反射光
が半導体レーザ3側に帰還しないように構成しであるが
、活性層29の厚さを厚くすることにより光検出器4の
検出感度の向上を図ることを目的としt=この実施例に
おいては、受光面の形状は図示例に限定されることなく
適宜の形状に形成することができる。
In the illustrated example of FIG. 9, the light receiving surface 3 of the photodetector 4
0 is an inclined surface similar to that of the fifth embodiment (FIG. 8), so that the reflected light of the backward emitted light L2 by the light receiving surface 30 does not return to the semiconductor laser 3 side. The purpose is to improve the detection sensitivity of the photodetector 4 by increasing the thickness of the active layer 29. In this embodiment, the shape of the light-receiving surface is not limited to the illustrated example, but may be any suitable shape. can be formed into

[発明の効果] 以上説明したように第1の発明の構成によれば、光検出
器の受光面によるレーザ光の反射光が半導体レーザ側に
帰還しないようにしたので、半導体レーザの動作か安定
してレーザ出力の安定化が図られるとともに、戻り光ノ
イズが顕著に低減されるという利点がある。
[Effects of the Invention] As explained above, according to the configuration of the first invention, the reflected light of the laser beam by the light receiving surface of the photodetector is prevented from returning to the semiconductor laser side, so that the operation of the semiconductor laser is stabilized. This has the advantage that the laser output can be stabilized and the return light noise can be significantly reduced.

また第2の発明の構成によれば、光検出器における実質
的な感光部となる受光面積が増大して、半導体レーザか
らのレーザ光が効率よく捉えられるので、受光感度が増
大し、カップリング効率が向上するという利点がある。
Further, according to the configuration of the second invention, the light-receiving area, which is a substantial photosensitive part in the photodetector, is increased, and the laser light from the semiconductor laser is efficiently captured, so the light-receiving sensitivity is increased and the coupling This has the advantage of increased efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る発・受光素子の第1実施例を示
す斜視図、第2図は同上第1実施例の要部を拡大して示
す平面図、第3図は同上第1実施例における分離溝の幅
とレーザ光のビーム径との関係を示す特性図、第4図は
同上第1実施例の効果を説明するための分離溝の幅と発
振閾値電流との関係を示す特性図、第5図はこの発明の
第2実施例を示す斜視図、第6図はこの発明の第3実施
例を示す斜視図、第7図はこの発明の第4実施例を示す
斜視図、第8図はこの発明の第5実施例を示す側面図、
第9図はこの発明の第6実施例を示す側面図、第10図
は従来の発・受光素子を示す斜視図である。 1:半導体チップ、  2:分離溝、 3.3’a13b、3c、3d:半導体レーザ、4.4
a、4b、4c、4d :光検出器、5:後方出射端面
、  7:基板、 9a:半導体レーザの活性層、 16.16a、16b、16c、16d二発光領域、 17:前方出射端面、 25.25c、25d :開口、 26.26a、26b126c、26d:円柱状内壁面
の受光面、 27:三角柱状内壁面の受光面、 29:光検出器の活性層、 30:傾斜面で形成された受光面。 第4図 一分離溝幅q(pm) 第5図
FIG. 1 is a perspective view showing a first embodiment of the light emitting/receiving element according to the present invention, FIG. 2 is a plan view showing an enlarged main part of the first embodiment, and FIG. 3 is a perspective view showing the first embodiment of the same. A characteristic diagram showing the relationship between the width of the separation groove and the beam diameter of the laser beam in the example, and FIG. 4 is a characteristic diagram showing the relationship between the width of the separation groove and the oscillation threshold current to explain the effect of the first embodiment. 5 is a perspective view showing a second embodiment of the invention, FIG. 6 is a perspective view showing a third embodiment of the invention, and FIG. 7 is a perspective view showing a fourth embodiment of the invention. FIG. 8 is a side view showing a fifth embodiment of the present invention;
FIG. 9 is a side view showing a sixth embodiment of the present invention, and FIG. 10 is a perspective view showing a conventional light emitting/receiving element. 1: Semiconductor chip, 2: Separation groove, 3.3'a13b, 3c, 3d: Semiconductor laser, 4.4
a, 4b, 4c, 4d: Photodetector, 5: Rear emission end face, 7: Substrate, 9a: Active layer of semiconductor laser, 16. 16a, 16b, 16c, 16d two light emitting regions, 17: Front emission end face, 25 .25c, 25d: opening, 26.26a, 26b126c, 26d: light receiving surface of cylindrical inner wall surface, 27: light receiving surface of triangular prism inner wall surface, 29: active layer of photodetector, 30: formed of inclined surface Light receiving surface. Fig. 4 Separation groove width q (pm) Fig. 5

Claims (4)

【特許請求の範囲】[Claims] (1)半導体チップに所要幅の分離溝を設け、該分離溝
により半導体レーザと、該半導体レーザから出射される
レーザ光を受光する光検出器とが対向して形成された発
・受光素子において、 前記光検出器の受光面を、該受光面による レーザ光の反射光が前記半導体レーザの出射端面に戻ら
ない形状に形成したことを特徴とする発・受光素子。
(1) In a light-emitting/light-receiving element in which a separation groove of a required width is provided in a semiconductor chip, and a semiconductor laser and a photodetector that receives laser light emitted from the semiconductor laser are formed facing each other through the separation groove. . A light emitting/receiving element, characterized in that the light receiving surface of the photodetector is formed in such a shape that reflected light of laser light from the light receiving surface does not return to the emission end face of the semiconductor laser.
(2)前記光検出器の受光面を、半導体レーザのニアフ
ィールドパターンと略等しい幅の開口を有する円柱ない
しは三角柱の柱状内壁面としたことを特徴とする特許請
求の範囲第1項記載の発・受光素子。
(2) The light-receiving surface of the photodetector is a columnar inner wall surface of a cylinder or a triangular prism having an aperture of approximately the same width as the near-field pattern of the semiconductor laser. ·Light receiving element.
(3)前記光検出器の受光面を、半導体レーザの出射端
面に対して傾斜面としたことを特徴とする特許請求の範
囲第1項記載の発・受光素子。
(3) The light-emitting/light-receiving device according to claim 1, wherein the light-receiving surface of the photodetector is an inclined surface with respect to the emission end surface of the semiconductor laser.
(4)素子チップに所要幅の分離溝を設け、該分離溝に
より半導体レーザと、該半導体レーザから出射されるレ
ーザ光を受光する光検出器とが対向して形成された発・
受光素子において、 前記光検出器における実質的な感光部とな る活性層を、前記半導体レーザの発光領域を形成する活
性層よりも厚く形成したことを特徴とする発・受光素子
(4) A separation groove of a required width is provided in the element chip, and a semiconductor laser and a photodetector that receives laser light emitted from the semiconductor laser are formed facing each other through the separation groove.
A light-emitting/light-receiving element, characterized in that an active layer serving as a substantial photosensitive portion of the photodetector is formed thicker than an active layer forming a light-emitting region of the semiconductor laser.
JP3536186A 1986-02-21 1986-02-21 Light emitting / receiving element Expired - Fee Related JPH0654823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3536186A JPH0654823B2 (en) 1986-02-21 1986-02-21 Light emitting / receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3536186A JPH0654823B2 (en) 1986-02-21 1986-02-21 Light emitting / receiving element

Publications (2)

Publication Number Publication Date
JPS62195191A true JPS62195191A (en) 1987-08-27
JPH0654823B2 JPH0654823B2 (en) 1994-07-20

Family

ID=12439748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3536186A Expired - Fee Related JPH0654823B2 (en) 1986-02-21 1986-02-21 Light emitting / receiving element

Country Status (1)

Country Link
JP (1) JPH0654823B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150077A (en) * 1988-11-30 1990-06-08 Kyocera Corp Semiconductor light emitting device
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
JPH03179792A (en) * 1989-07-27 1991-08-05 Internatl Business Mach Corp <Ibm> Monolithic semiconductor laser diode and photodiode structure
WO1997048137A1 (en) * 1996-06-13 1997-12-18 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same
JP2007243195A (en) * 2006-03-08 2007-09-20 Agere Systems Inc Laser assembly with integrated photodiode
US9105807B2 (en) 2013-04-22 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with grooved substrate providing multiple angled light emission paths

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875878A (en) * 1981-10-30 1983-05-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of photointegrated circuit
JPS58162090A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS5992592A (en) * 1982-11-18 1984-05-28 Nec Corp Semiconductor light emitting element
JPS59103394A (en) * 1982-12-06 1984-06-14 Agency Of Ind Science & Technol Laser diode with detector
JPS59119784A (en) * 1982-12-24 1984-07-11 Agency Of Ind Science & Technol Monitor built-in semiconductor laser element
JPS59127864A (en) * 1983-01-11 1984-07-23 Nec Corp Semiconductor light-emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875878A (en) * 1981-10-30 1983-05-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of photointegrated circuit
JPS58162090A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS5992592A (en) * 1982-11-18 1984-05-28 Nec Corp Semiconductor light emitting element
JPS59103394A (en) * 1982-12-06 1984-06-14 Agency Of Ind Science & Technol Laser diode with detector
JPS59119784A (en) * 1982-12-24 1984-07-11 Agency Of Ind Science & Technol Monitor built-in semiconductor laser element
JPS59127864A (en) * 1983-01-11 1984-07-23 Nec Corp Semiconductor light-emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150077A (en) * 1988-11-30 1990-06-08 Kyocera Corp Semiconductor light emitting device
JPH03179792A (en) * 1989-07-27 1991-08-05 Internatl Business Mach Corp <Ibm> Monolithic semiconductor laser diode and photodiode structure
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
WO1997048137A1 (en) * 1996-06-13 1997-12-18 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same
US6177710B1 (en) 1996-06-13 2001-01-23 The Furukawa Electric Co., Ltd. Semiconductor waveguide type photodetector and method for manufacturing the same
JP2007243195A (en) * 2006-03-08 2007-09-20 Agere Systems Inc Laser assembly with integrated photodiode
JP2013118421A (en) * 2006-03-08 2013-06-13 Agere Systems Inc Laser assembly with integrated photodiode
US8687664B2 (en) 2006-03-08 2014-04-01 Agere Systems Llc Laser assembly with integrated photodiode
US9105807B2 (en) 2013-04-22 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with grooved substrate providing multiple angled light emission paths

Also Published As

Publication number Publication date
JPH0654823B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
KR100495186B1 (en) Vertical cavity surface emitting laser device with side integrated photodetector
US20050180480A1 (en) Semiconductor laser apparatus, laser coupler, data reproduction apparatus, data recording apparatus and production method of semiconductor laser apparatus
US20070071050A1 (en) Laser diode device
JPH06302911A (en) Semiconductor surface luminescence laser with improved deflection control and transversal selectivity
EP0803943B1 (en) Surface laser diode package having an optical power monitoring function
JPS62195191A (en) Light emitting/receiving device
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
JPH1051067A (en) Reflection type power monitoring system for vertical cavity surface emission laser
JP2007201390A (en) Semiconductor laser device, and method for manufacturing same
JP2798720B2 (en) Semiconductor laser array
JP4617600B2 (en) Two-wavelength semiconductor laser device
KR100363234B1 (en) Semiconductor laser diode with selectively buried ridge structure
KR100230246B1 (en) Semiconductor laser and flooting optical pickup using it
KR0117861Y1 (en) Optical source and detector using vertical cavity surface emitting laser diode
JP2815936B2 (en) Broad area laser
JPH0824207B2 (en) Semiconductor laser device
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
KR0117860Y1 (en) Optical source and detector using vertical cavity surface emitting laser diode
JP2002223038A (en) Semiconductor laser device
JPH0510374Y2 (en)
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JP2001015865A (en) Semiconductor wavelength conversion device and wavelength conversion method
JPH04162782A (en) End face emitting diode
JP2001274516A (en) Semiconductor laser and method for manufacturing the same
JP2003133641A (en) Surface light emitting semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees