JPS6219464B2 - - Google Patents

Info

Publication number
JPS6219464B2
JPS6219464B2 JP9700777A JP9700777A JPS6219464B2 JP S6219464 B2 JPS6219464 B2 JP S6219464B2 JP 9700777 A JP9700777 A JP 9700777A JP 9700777 A JP9700777 A JP 9700777A JP S6219464 B2 JPS6219464 B2 JP S6219464B2
Authority
JP
Japan
Prior art keywords
polymer
parts
weight
acrylic rubber
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9700777A
Other languages
Japanese (ja)
Other versions
JPS5431456A (en
Inventor
Yukinori Kimata
Akihiko Kishimoto
Zenji Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9700777A priority Critical patent/JPS5431456A/en
Publication of JPS5431456A publication Critical patent/JPS5431456A/en
Publication of JPS6219464B2 publication Critical patent/JPS6219464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された性質を有する熱可塑性ポリ
アミドまたはポリエステル樹脂組成物の製造方法
に関するものである。 ポリカプロアミドやポリヘキサメチレンアジパ
ミドなどの熱可塑性ポリアミド樹脂(以下ポリア
ミドと略称する)およびポリエチレンテレフタレ
ートやポリブチレンテレフタレートなどの熱可能
性ポリエステル樹脂(以下ポリエステルと略称す
る)はともにすぐれた機械的性質、電気的性質、
耐薬品性、加工性などを有しているため、繊維、
フイルム、プラスチツク製品などの多くの分野に
利用されている。しかしポリアミドおよびポリエ
ステルはこれらすぐれた特性を有している反面、
ともに切欠き(ノツチ)をつけた場合の耐衝撃性
が低いという欠点を有しているため、さらに広範
な用途に展開するには必ずしも満足すべき素材で
はない。 従来、ポリアミドおよびポリエステルに剛性や
耐衝撃性などを付与する手段としてガラス繊維、
アスベスト繊維、炭素繊維などの繊維状強化剤を
添加する方法が知られているが、この様な繊維状
強化剤をポリアミドおよびポリエステルに添加し
た場合、耐衝撃性向上効果はいまだ不十分であ
り、しかも成形品にそりが発生するという問題を
有している。またポリアミドおよびポリエステル
の耐衝撃性を向上させるために各種重合体をポリ
アミドおよびポリエステルに配合する技術が提案
されており、その方法としてはポリアミドの場合
(A)ブタジエンゴム、スチレン類およびアクリロニ
トリル類からなる三元グラフト共重合体を混合す
る方法(特公昭38−23476号公報)、(B)オレフイン
と酢酸ビニルからなる共重合体を混合する方法
(特公昭44−29262号公報)、(C)オレフインと第3
級アルコールのアクリル酸エステルおよび/また
はメタクリル酸エステルからなる共重合体を混合
する方法(特公昭46−26791号公報)および(D)ブ
タジエン系ゴムまたはアクリル系ゴムなどのゴム
状重合体に不飽和カルボン酸のようなポリアミド
と反応性のある官能基を有する単量体を含む単量
体混合物をグラフト共重合してなる多相重合体を
混合する方法(特開昭47−6284号公報)などが挙
げられる。またポリエステルについては(E)ゴム変
性のメタクリル酸メチル−スチレン共重合体を混
合する方法(特公昭51−25261号公報)(F)アクリ
レート系ゴム変性されたアルキルメタクリレート
あるいはアルキルアクリレート樹脂を配合する方
法(特開昭49−82749号公報)(G)マトリツクス樹
脂たるポリエステル樹脂の引張弾性率の10%以下
の引張弾性率を有するランタム共重合体を配合す
る方法(特開昭51−14452号公報)、(特開昭51−
143061号公報)などが提案されている。 しかしながら上記方法で得られるポリアミド組
成物およびポリエステル組成物は耐衝撃性が若干
改良されるものの、切欠きをつけた場合の耐衝撃
性はいまだ満足すべきものではない。また上記(D)
法により得られる多層重合体はゴム状重合体に、
α・β−不飽和カルボン酸を含有する単量体を乳
化グラフト重合しているので重合後のラテツクス
から公知の電解質物質を用いて多層重合体を回収
するのが困難であり、該重合体をスプレードライ
法で回収するか、またはラテツクスをポリアミド
と直接混合する手段をとらざるを得ないため、得
られる組成物は不純物混入量が多く、その耐衝撃
性向上効果も満足すべきものではない。本発明者
らはポリアミドおよびポリエステルの耐衝撃性を
向上させてなる新規な樹脂組成物を得るべく鋭意
研究した結果、アクリル系ゴム状重合体をケン化
処理したアクリル系ゴム状重合体ケン化物あるい
はアクリル系ゴム状重合体を下層重合体とし、活
性な二重結合を有する不飽和カルボン酸エステル
系単量体を必須成分として含有するビニル系不飽
和単量体を上層重合体とするアクリル系ゴムグラ
フトビニル系重合体をケン化処理したアクリル系
ゴムグラフトビニル系重合体ケン化物がポリアミ
ドおよびポリエステルに対し、著しい耐衝撃性向
上効果を有することを見い出し、本発明に到達し
た。しかしまた繊維状強化剤を含有するポリアミ
ドまたはポリエステル組成物に上記アクリル系ゴ
ム状重合体ケン化物またはアクリル系ゴム変性ビ
ニル系重合体ケン化物を配合する場合には組成物
からなる成形品の収縮の異方性が改良され、そり
の発生が著しく抑制されることを見い出した。 すなわち本発明はA.熱可塑性ポリアミド樹脂
および熱可塑性ポリエステル樹脂から選ばれた少
なくとも1種、B.(a)アクリル系ゴム状重合体をケ
ン化処理してなるアクリル系ゴム状重合体ケン化
物および(b)アクリル系ゴム状重合体20重量部以上
を下層重合体とし、活性な二重結合を有する不飽
和カルボン酸エステル系単量体5〜100重量%と
芳香族ビニル系単量体およびシアン化ビニル系単
量体から選ばれた一種以上のビニル系単量体95〜
0重量%からなる硬質重合体80重量部以下を上層
重合体とするアクリル系ゴムグラフトビニル系重
合体をケン化処理してなるアクリル系ゴムグラフ
トビニル系重合体ケン化物から選ばれた少なくと
も1種およびC.繊維状強化剤の少なくとも1種
をA50〜95重量部とB50〜5重量部の合計100重量
部に対してCが0〜200重量部の割合となるよう
に配合してなる熱可塑性樹脂組成物の製造方法を
提供するものである。 本発明の最も特徴とするところは、ポリアミド
またはポリエステルに配合する重合体に対し、ア
クリル酸などで代表されるカルボキシル基を有す
る単量体を直接に重合することを避け、活性な二
重結合を有する不飽和カルボン酸エステル系単量
体を重合した後、この重合体をケン化処理するこ
とにより、アクリル系ゴム状重合体およびアクリ
ル系ゴムグラフトビニル重合体にカルボキシル基
を含有させる点にあり、それにより下記のごとく
すぐれた効果を得ることができる。 (1) 不飽和カルボン酸などのイオン解離性の単量
体を使用しないため重合が容易であり、また重
合系からの重合体の回収が容易である。 (2) 得られた重合体ケン化物とポリアミドまたは
ポリエステルからなる本発明組成物は著しい高
衝撃性を有し、また繊維状強化剤を配合した場
合のそりの発生を極めてよく防止する。 (3) 工業的に安価な不飽和カルボン酸エステル系
単量体が使用できる。 本発明で用いることができるポリアミドは特に
限定はなく、エチレンジアミン、ヘキサメチレン
ジアミン、デカメチレンジアミン、ドデカメチレ
ンジアミン、2・2・4−および2・4・4−ト
リメチルヘキサメチレンジアミン、1・3および
1・4−ビス(アミノメチル)シクロヘキサン、
ビス(p−アミノシクロヘキシル)メタン、m−
キシリレンジアミン、p−キシリレンジアミンな
どの脂肪族、脂環族、芳香族ジアミンとアジピン
酸、スベリン酸、セバシン酸、シクロヘキサンジ
カルボン酸、テレフタル酸、イソフタル酸などの
脂肪族、脂環族、芳香族ジカルボン酸とから導か
れるポリアミド、ε−カプロラクタム、ω−ドデ
カラクタムなどのラクタム類の開環重合によつて
得られるポリアミド、6−アミノカプロン酸、11
−アミノウンデカン酸、12−アミノドデカン酸、
などから導かれるポリアミドおよびこれらの共重
合ポリアミド、混合ポリアミドであり、工業的に
安価、かつ大量に製造されているという意味でポ
リカプロアミド(ナイロン6)、ポリドデカアミ
ド(ナイロン12)、ポリヘキサメチレンアジパミ
ド(ナイロン66)、ポリヘキサメチレンセバカミ
ド(ナイロン610)および、これらの共重合体、
たとえばナイロン6/66(〃/〃印は共重合体を
意味する)、ナイロン6/610、ナイロン6/12、
ナイロン66/12、ナイロン6/66/610/12およ
びこれらの混合体が有用である。 また、ここで用いるポリアミドの重合度も特に
制限はなく、通常、相対粘度(ポリマ1gを98%
硫酸100mlに溶解し、25℃で測定以下同じ)が1.8
〜6.0の範囲内にあるポリアミドを任意に選択で
きるが、大きな耐衝撃性を得るためには、一般的
に高粘度のポリアミドが望ましい。ポリアミドの
分子構造についても制限はなく、線状ポリアミ
ド、分岐ポリアミドは原料中にポリアミド形成可
能な官能基を3つ以上有する分岐剤、たとえばビ
ス(ω−アミノヘキシル)アミン、ジエチルトリ
アミン、トリメシン酸、ビスラクタムなどを少量
添加して重合する。重合方法は溶融重合、界面重
合、溶液重合、塊状重合、固相重合およびこれら
の方法を組み合わせた方法が利用され、一般的に
は溶融重合が最も適当である。また、特にポリア
ミド原料がラクタム類の場合にはアニオン重合に
よつてポリマを得てもよい。 本発明で用いることのできるポリエステルはと
くに限定されないが、ジカルボン酸またはジカル
ボン酸のアルキルエステルの様な誘導体とジオー
ルの重縮合物によつて得られたものであり、ポリ
エステルの構成成分のうちジカルボン酸によつて
構成される部分の70〜100モル%はテレフタル酸
によつて導入されたものであり、30〜0モル%は
イソフタル酸、ナフタレンジカルボン酸、アジピ
ン酸、セバシン酸等によつて導入されたものであ
る。 グリコールによつて構成される部分はエタンジ
オール、プロパンジオール、ブタンジオール、ペ
ンタンジオール、ヘキサンジオールによつて導入
されたものであり、これらの2種類以上から構成
されていてもよい。またオキシ安息香酸、ビスフ
エノールAにより導入された部分があつてもよ
く、さらにこれらのポリエステルの1種類以上を
混合した混合ポリエステルも本発明の範中に含ま
れる。この様なポリエステルにはポリエチレンテ
レフタレート、ポリトリメチレンテレフタレー
ト、ポリブチレンテレフタレートポリヘキサメチ
レンテレフタレートおよびこれらの共重合体、混
合重合体またこれら重合体のテレフタル酸の0〜
30モル%までイソフタル酸に置き換えたものが含
まれる。 次に上記ポリアミドまたはポリエステルに配合
するアクリル系ゴム状重合体またはアクリル系ゴ
ムグラフトビニル系重合体のケン化物について説
明する。 まず本発明におけるアクリル系ゴム状重合体と
はアクリル酸エチル、アクリル酸プロピル、アク
リル酸ブチル、アクリル酸アミル、アクリル酸−
2−エチルヘキシル、アクリル酸オクチル、アク
リル酸ラウリル等のアルキル基の炭素数2〜12個
を有するアクリル酸エステルを主体とするガラス
転移温度0℃以下の重合体であつて、ガラス転移
温度が0℃以下で常温でゴム弾性を示すならばア
クリル酸エステル系単量体と他のカルボキシル基
を含有しない共重合可能可単量体との共重合体も
含まれる。またアクリル系ゴムグラフトビニル系
重合体の下層重合体とは上記アクリル系ゴム状重
合体であつて、ジビニルベンゼン、モノアリルマ
レート、トリアリルシアヌレート等の多官能性単
量体を含有するのが好ましい。アクリル系ゴム状
重合体およびアクリル系ゴムグラフトビニル系重
合体の下層重合体の製造方法としては乳化重合、
懸濁重合、溶液重合などが可能であり、特に技術
的制限はないが、下層重合体については次の工程
で活性な二重結合を有する不飽和カルボン酸エス
テル系単量体1重量%以上を必須成分として含有
する単量体を上層重合体とする際に乳化重合する
場合には下層重合体が乳化状態である必要があ
る。またアクリル系ゴム状重合体およびアクリル
系ゴムグラフトビニル重合体の下層重合体のガラ
ス転移温度は0℃以下でないとゴム的性質が十分
でなくなるため好ましくない。 次にアクリル系ゴムグラフトビニル重合体の上
層重合体を形成する単量中に必須成分として含ま
れる活性な二重結合を有する不飽和カルボン酸エ
ステル系単量体とはメタクリル酸メチル、メタク
リル酸ブチル、メタクリル酸アミル、メタクリル
酸シクロヘキシルなどのメタクリル酸エステル系
単量体およびその誘導体、および同様なエステル
基を有するアクリル酸、マレイン酸、フマル酸、
イタコン酸、桂皮酸などの分子中に活性な二重結
合を有する不飽和カルボン酸のエステルおよびそ
の誘導体である。また必要に応じこれら活性な二
重結合を有する不飽和カルボン酸エステルと共重
合されるビニル系単量体とはスチレンで代表され
る芳香族ビニル単量体、アクリロニトリルで代表
されるシアン化ビニル系単量体からなるビニル系
単量体である。アクリル系ゴム状重合体およびア
クリル系ゴム状重合体の上層重合体に共重合され
るビニル系単量体がカルボキシル基の様な水中で
電離性の官能基を有する場合にはそのイオン性の
ために乳化グラフト重合時に凝固物が発生しやす
く、また得られた重合体の回収が通常の電解質に
よる凝固方法では著しく困難となるため好ましく
ない。 アクリル系ゴムグラフトビニル系重合体中に占
める下層重合体は20重量部以上、好ましくは40重
量部以上であることが望ましく、20重量部以下で
はアクリル系ゴムグラフトビニル系重合体中のゴ
ム状重合体の割合が相対的に少なくなり、それに
伴なつて最終的に得られるポリアミドおよびポリ
エステルとの混合組成物の耐衝撃性が低下し、本
発明の目的が達成されないので好ましくない。ま
た上層重合体とする単量体組成としては活性な二
重結合を有する不飽和カルボン酸エステル系単量
体が上層重合体を基準として5〜100重量%であ
る。アクリル系ゴム状重合体を下層重合体とし活
性な二重結合を有する不飽和カルボン酸エステル
系単量体1なし100重量%と他のカルボキシル基
を含有しない共重合可能なビニル系単量体99ない
し0重量%との混合単量体を上層重合体とする複
層系重合体の製造方法としては通常のゴム変性耐
衝撃性樹脂を製造する手法を利用することができ
る。 たとえばアクリル系ゴム状重合体の存在下に上
層重合体となる単量体を重合させる際に、過硫酸
カリウム、過硫酸アンモニウム、ベンゾイルパー
オキサイド、クメンハイドロパーオキサイド、t
−ブチルパーベンゾエート、t−ブチルパーアセ
テートなどの過酸化物系開始剤、ラウリン酸、オ
レイン酸などの高級脂肪酸のナトリウム塩、カリ
ウム塩、アルキルベンゼンスルホン酸のアルカリ
塩、不均化ロジン酸塩などから選ばれたアニオン
系界面活性剤または非イオン系界面活性剤および
重合助剤を共存させることによつて重合体を乳化
重合方式で容易に製造することができる。また別
に重合して得た上層重合体と下層重合体を混合し
て得てもよい。 次に本発明でいうところのケン化は通常、アク
リル系ゴム状重合体およびアクリル系ゴムグラフ
トビニル系重合体を塩基性または酸性の水溶液中
で処理することによつて達成される。ここでいう
塩基性水溶液とは、周期律表で表わされる第1
族、第2族のアルカリ金属、アルカリ土類金属の
水酸化物、炭酸化物、カルボン酸塩、アルコキシ
化合物などの水溶液が挙げられる。また酸性水溶
液とは硫酸、塩酸などの水溶液であり、いわゆる
水溶液が塩基性または酸性を呈すればよい。ケン
化処理に供するアクリル系ゴム状重合体およびア
クリル系ゴムグラフトビニル系重合体の形態とし
ては、これらを得た重合の最終状態である懸濁、
乳化、溶液状態でもよく、またこれをあらかじめ
電解質などで凝固、洗浄、脱水して回収した粉状
でもよく、またそれを溶媒に溶解した溶液でもよ
い。本発明において用いられるアクリル系ゴム状
重合体およびアクリル系ゴムグラフトビニル系重
合体のケン化の一般的条件はケン化処理における
経済性も考慮すれば下記のごとくである。
The present invention relates to a method for producing thermoplastic polyamide or polyester resin compositions with improved properties. Thermoplastic polyamide resins (hereinafter referred to as polyamides) such as polycaproamide and polyhexamethylene adipamide, and thermoplastic polyester resins (hereinafter referred to as polyesters) such as polyethylene terephthalate and polybutylene terephthalate, both have excellent mechanical properties. properties, electrical properties,
Due to its chemical resistance and processability, fibers,
It is used in many fields such as films and plastic products. However, while polyamide and polyester have these excellent properties,
Both materials have the disadvantage of low impact resistance when notched, so they are not necessarily satisfactory materials for use in a wider range of applications. Traditionally, glass fiber,
A method of adding fibrous reinforcing agents such as asbestos fibers and carbon fibers is known, but when such fibrous reinforcing agents are added to polyamides and polyesters, the effect of improving impact resistance is still insufficient. Moreover, there is a problem in that warpage occurs in the molded product. In addition, in order to improve the impact resistance of polyamide and polyester, a technology has been proposed in which various polymers are blended with polyamide and polyester.
(A) A method of mixing a tertiary graft copolymer consisting of butadiene rubber, styrenes and acrylonitriles (Japanese Patent Publication No. 38-23476), (B) A method of mixing a copolymer of olefin and vinyl acetate ( (Special Publication No. 44-29262), (C) Olefin and No. 3
A method of mixing copolymers consisting of acrylic esters and/or methacrylic esters of alcohols (Japanese Patent Publication No. 46-26791) and (D) unsaturated rubber-like polymers such as butadiene rubber or acrylic rubber. A method of mixing a multiphase polymer obtained by graft copolymerizing a monomer mixture containing a monomer having a reactive functional group with a polyamide such as a carboxylic acid (Japanese Unexamined Patent Publication No. 47-6284), etc. can be mentioned. Regarding polyester, (E) a method of mixing a rubber-modified methyl methacrylate-styrene copolymer (Japanese Patent Publication No. 51-25261), and (F) a method of blending an acrylate-based rubber-modified alkyl methacrylate or alkyl acrylate resin. (Japanese Unexamined Patent Publication No. 1982-82749) (G) A method of blending a lantum copolymer having a tensile modulus of 10% or less of the tensile modulus of the polyester resin serving as the matrix resin (Japanese Unexamined Patent Publication No. 51-14452) , (Unexamined Japanese Patent Publication No. 1973-
143061) have been proposed. However, although the polyamide composition and polyester composition obtained by the above method have slightly improved impact resistance, the impact resistance when notched is still unsatisfactory. Also above (D)
The multilayer polymer obtained by this method is a rubber-like polymer,
Since monomers containing α/β-unsaturated carboxylic acids are subjected to emulsion graft polymerization, it is difficult to recover the multilayer polymer from the latex after polymerization using known electrolytes. Since the latex must be recovered by a spray drying method or the latex must be directly mixed with the polyamide, the resulting composition contains a large amount of impurities, and its impact resistance improvement effect is also unsatisfactory. The present inventors conducted extensive research to obtain a new resin composition made by improving the impact resistance of polyamide and polyester, and found that a saponified acrylic rubber-like polymer or An acrylic rubber whose lower layer polymer is an acrylic rubber-like polymer and whose upper layer polymer is a vinyl unsaturated monomer containing as an essential component an unsaturated carboxylic acid ester monomer having an active double bond. The inventors have discovered that a saponified acrylic rubber grafted vinyl polymer obtained by saponifying a grafted vinyl polymer has a remarkable effect of improving the impact resistance of polyamides and polyesters, and have arrived at the present invention. However, when the saponified acrylic rubber-like polymer or saponified acrylic rubber-modified vinyl polymer is blended into a polyamide or polyester composition containing a fibrous reinforcing agent, shrinkage of the molded article made from the composition may be reduced. It has been found that the anisotropy is improved and the occurrence of warpage is significantly suppressed. That is, the present invention provides A. at least one selected from thermoplastic polyamide resins and thermoplastic polyester resins; B. (a) a saponified acrylic rubber-like polymer obtained by saponifying an acrylic rubber-like polymer; (b) 20 parts by weight or more of an acrylic rubber-like polymer as the lower layer polymer, 5 to 100% by weight of an unsaturated carboxylic acid ester monomer having an active double bond, an aromatic vinyl monomer, and cyanide. One or more vinyl monomers selected from vinyl monomers95~
At least one type selected from saponified acrylic rubber grafted vinyl polymers obtained by saponifying acrylic rubber grafted vinyl polymers in which the upper layer polymer is 80 parts by weight or less of a hard polymer consisting of 0% by weight. and C. Thermoplastic material containing at least one fibrous reinforcing agent in a ratio of 0 to 200 parts by weight of C to a total of 100 parts by weight of 50 to 95 parts by weight of A and 50 to 5 parts by weight of B. A method for producing a resin composition is provided. The most distinctive feature of the present invention is to avoid direct polymerization of monomers having carboxyl groups, such as acrylic acid, into the polymer blended into polyamide or polyester, and to prevent active double bonds from being directly polymerized. After polymerizing an unsaturated carboxylic acid ester monomer, the polymer is saponified to contain carboxyl groups in the acrylic rubber-like polymer and the acrylic rubber-grafted vinyl polymer, As a result, the following excellent effects can be obtained. (1) Polymerization is easy because no ionically dissociable monomers such as unsaturated carboxylic acids are used, and the polymer can be easily recovered from the polymerization system. (2) The composition of the present invention comprising the obtained saponified polymer and polyamide or polyester has extremely high impact strength, and also extremely well prevents warping when a fibrous reinforcing agent is blended. (3) Industrially inexpensive unsaturated carboxylic acid ester monomers can be used. The polyamides that can be used in the present invention are not particularly limited, and include ethylenediamine, hexamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, 1,3 and 1,4-bis(aminomethyl)cyclohexane,
Bis(p-aminocyclohexyl)methane, m-
Aliphatic, alicyclic, and aromatic diamines such as xylylene diamine and p-xylylene diamine, and aliphatic, alicyclic, and aromatic diamines such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid. Polyamides derived from dicarboxylic acids of the group A, polyamides obtained by ring-opening polymerization of lactams such as ε-caprolactam and ω-dodecalactam, 6-aminocaproic acid, 11
-aminoundecanoic acid, 12-aminododecanoic acid,
Polyamides derived from polyamides, copolyamides and mixed polyamides of these polyamides are industrially inexpensive and manufactured in large quantities, so polycaproamide (nylon 6), polydodecaamide (nylon 12), polyhexane Methylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610) and copolymers thereof,
For example, nylon 6/66 (〃/〃 symbol means copolymer), nylon 6/610, nylon 6/12,
Nylon 66/12, nylon 6/66/610/12 and mixtures thereof are useful. Furthermore, there is no particular restriction on the degree of polymerization of the polyamide used here, and usually the relative viscosity (1 g of polymer is 98%
Dissolved in 100ml of sulfuric acid and measured at 25℃ (same below) is 1.8
Although any polyamide within the range of ~6.0 can be selected, high viscosity polyamides are generally desirable to obtain high impact resistance. There are no restrictions on the molecular structure of polyamide, and linear polyamides and branched polyamides are prepared by using branching agents that have three or more functional groups capable of forming polyamides in the raw materials, such as bis(ω-aminohexyl)amine, diethyltriamine, trimesic acid, Polymerize by adding a small amount of bislactam, etc. As the polymerization method, melt polymerization, interfacial polymerization, solution polymerization, bulk polymerization, solid phase polymerization, and a combination of these methods are used, and melt polymerization is generally most suitable. Further, particularly when the polyamide raw material is a lactam, the polymer may be obtained by anionic polymerization. The polyester that can be used in the present invention is not particularly limited, but it is one obtained from a polycondensate of dicarboxylic acid or a derivative such as an alkyl ester of dicarboxylic acid and a diol, and among the constituent components of the polyester, dicarboxylic acid Of the moiety constituted by It is something that The moiety composed of glycol is introduced by ethanediol, propanediol, butanediol, pentanediol, and hexanediol, and may be composed of two or more of these. There may also be a portion introduced by oxybenzoic acid or bisphenol A, and mixed polyesters containing one or more of these polyesters are also included within the scope of the present invention. Such polyesters include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, copolymers and mixed polymers thereof, and terephthalic acid of these polymers.
Contains up to 30 mol% of isophthalic acid. Next, the saponified product of the acrylic rubber-like polymer or the acrylic rubber-grafted vinyl polymer to be blended with the above-mentioned polyamide or polyester will be explained. First, the acrylic rubber-like polymers used in the present invention are ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, and acrylic acid.
A polymer with a glass transition temperature of 0°C or lower, which is mainly composed of an acrylic ester having an alkyl group of 2 to 12 carbon atoms, such as 2-ethylhexyl, octyl acrylate, and lauryl acrylate. In the following, copolymers of acrylic acid ester monomers and other copolymerizable monomers that do not contain carboxyl groups are also included if they exhibit rubber elasticity at room temperature. The lower layer polymer of the acrylic rubber-grafted vinyl polymer is the above-mentioned acrylic rubber-like polymer containing polyfunctional monomers such as divinylbenzene, monoallyl maleate, and triallyl cyanurate. is preferred. Methods for producing the lower layer polymer of acrylic rubber-like polymers and acrylic rubber-grafted vinyl polymers include emulsion polymerization,
Suspension polymerization, solution polymerization, etc. are possible, and there are no particular technical restrictions, but for the lower layer polymer, 1% by weight or more of an unsaturated carboxylic acid ester monomer having an active double bond is added in the next step. When the monomer contained as an essential component is emulsion polymerized to form the upper layer polymer, the lower layer polymer needs to be in an emulsified state. Further, if the glass transition temperature of the lower layer polymer of the acrylic rubber-like polymer and the acrylic rubber-grafted vinyl polymer is not lower than 0°C, the rubbery properties will be insufficient, which is not preferable. Next, the unsaturated carboxylic acid ester monomers having active double bonds that are included as essential components in the monomers forming the upper layer polymer of the acrylic rubber grafted vinyl polymer are methyl methacrylate and butyl methacrylate. , methacrylic acid ester monomers such as amyl methacrylate, cyclohexyl methacrylate, and derivatives thereof, and acrylic acid, maleic acid, fumaric acid, which have similar ester groups,
It is an ester of unsaturated carboxylic acid having an active double bond in the molecule, such as itaconic acid and cinnamic acid, and its derivatives. Vinyl monomers to be copolymerized with unsaturated carboxylic acid esters having active double bonds are aromatic vinyl monomers represented by styrene, cyanide vinyl monomers represented by acrylonitrile, etc., if necessary. It is a vinyl monomer consisting of monomers. If the vinyl monomer copolymerized into the acrylic rubbery polymer and the upper layer polymer of the acrylic rubbery polymer has a functional group that is ionizable in water, such as a carboxyl group, due to its ionic nature. This is undesirable because coagulation is likely to occur during emulsion graft polymerization, and recovery of the obtained polymer is extremely difficult by a conventional coagulation method using an electrolyte. The amount of the lower layer polymer in the acrylic rubber grafted vinyl polymer is preferably 20 parts by weight or more, preferably 40 parts by weight or more. This is not preferable because the proportion of coalescence becomes relatively small and the impact resistance of the finally obtained mixed composition with polyamide and polyester decreases, so that the object of the present invention is not achieved. The monomer composition of the upper layer polymer is 5 to 100% by weight of an unsaturated carboxylic acid ester monomer having an active double bond based on the upper layer polymer. An acrylic rubber-like polymer is used as the lower layer polymer, and 100% by weight of unsaturated carboxylic acid ester monomers containing active double bonds and other copolymerizable vinyl monomers containing no carboxyl groups 99 As a method for producing a multilayer polymer in which the upper layer polymer is a monomer mixed with 0% to 0% by weight, a conventional method for producing rubber-modified impact-resistant resins can be used. For example, when polymerizing monomers that will become the upper layer polymer in the presence of an acrylic rubbery polymer, potassium persulfate, ammonium persulfate, benzoyl peroxide, cumene hydroperoxide, t
- Peroxide initiators such as butyl perbenzoate and t-butyl peracetate, sodium salts and potassium salts of higher fatty acids such as lauric acid and oleic acid, alkali salts of alkylbenzene sulfonic acids, disproportionated rosin salts, etc. By coexisting a selected anionic surfactant or nonionic surfactant and a polymerization aid, a polymer can be easily produced by emulsion polymerization. Alternatively, it may be obtained by mixing an upper layer polymer and a lower layer polymer obtained by separate polymerization. Next, saponification as referred to in the present invention is usually achieved by treating the acrylic rubber-like polymer and the acrylic rubber-grafted vinyl polymer in a basic or acidic aqueous solution. The basic aqueous solution mentioned here refers to the first
Examples include aqueous solutions of hydroxides, carbonates, carboxylates, and alkoxy compounds of Group 2 alkali metals and alkaline earth metals. Further, the acidic aqueous solution is an aqueous solution of sulfuric acid, hydrochloric acid, etc., and it is sufficient if the so-called aqueous solution exhibits basicity or acidity. The forms of the acrylic rubber-like polymer and the acrylic rubber-grafted vinyl polymer to be subjected to the saponification treatment include suspension, which is the final state of polymerization in which they are obtained;
It may be in an emulsified or solution state, or it may be in the form of a powder obtained by coagulating it in advance with an electrolyte, washing, and dehydration, or it may be in a solution obtained by dissolving it in a solvent. The general conditions for saponification of the acrylic rubber-like polymer and the acrylic rubber-grafted vinyl polymer used in the present invention are as follows, taking into account the economic efficiency of the saponification process.

〔アクリル系ゴム状重合体の調整とケン化処理〕[Adjustment and saponification treatment of acrylic rubber-like polymer]

温度計、撹拌機、滴下ロート、ガス導入管およ
び還流冷却器を備えた反応器に水200部、ラウリ
ル硫酸ナトリウム3部および過硫酸カリウム0.4
部を仕込み、反応器内を窒素置換し、70℃に温調
しながら、アクリル酸ブチル(BA)92部、アク
リロニトリル(AN)8部、ジビニルベンゼン
(DVB)0.2部の単量体混合物を撹拌下1時間にわ
たつて滴下した。 反応はさらに3時間経続して終了した。この重
合体ラテツクスの温度を80℃に昇温し、このラテ
ツクス中へ水酸化ナトリウム5部と水50部の溶液
を添加して8時間撹拌してケン化処理した。この
ラテツクスを硫酸で中和後、塩化カルシウム(対
ポリマに100部あたり)5部で凝固し、ロ過、乾
燥して(BA−AN−DVB)共重合体ケン化物を得
た。 〔ポリアミドおよびポリエステルと重合体ケン
化物の混合と組成物の評価〕 ε−カプロラクタムを溶融重合して得た相体粘
度:ηr3.40のポリカプロアミド(ナイロン6)
と上記方法で得た(BA−AN−DVB)共重合体ケ
ン化物を80/20の割合で混合し、40mm口径ベツト
付押出機で溶融混練し、ペレツト化した。このペ
レツトを真空乾燥した後、射出成形して得た成形
品の耐衝撃性を中心とする機械的性質を調べ、結
果を第1表に示した。またテレフタル酸ジメチル
エステルとテトラメチレングリコールとを縮重合
して得た相対粘度:ηr1.70のポリブチレンテレ
フタレート(PBT)と上記重合体ケン化物を
80/20の割合で混合したものを、全く同様な方法
で組成物の物性を測定し、結果を第1表に示し
た。いずれの組成物も非常にすぐれた耐衝撃性を
有していることが明らかである。 実施例 2、3 実施例1において重合する単量体の組成を各々
下記の様にした以外、全く同様な処方で重合およ
びケン化処理した後、これを実施例1と同様にポ
リアミド、ポリエステルと混練して、組成物の物
性を測定した。これの結果を第1表に示す。
200 parts of water, 3 parts of sodium lauryl sulfate and 0.4 parts of potassium persulfate are placed in a reactor equipped with a thermometer, stirrer, dropping funnel, gas inlet tube and reflux condenser.
The inside of the reactor was purged with nitrogen, and while the temperature was controlled at 70°C, a monomer mixture of 92 parts of butyl acrylate (BA), 8 parts of acrylonitrile (AN), and 0.2 parts of divinylbenzene (DVB) was stirred. The solution was added dropwise over 1 hour. The reaction continued for an additional 3 hours and was completed. The temperature of this polymer latex was raised to 80°C, and a solution of 5 parts of sodium hydroxide and 50 parts of water was added to this latex and stirred for 8 hours for saponification. This latex was neutralized with sulfuric acid, coagulated with 5 parts of calcium chloride (per 100 parts of polymer), filtered and dried to obtain a saponified copolymer (BA-AN-DVB). [Mixing of polyamide, polyester, and saponified polymer and evaluation of composition] Polycaproamide (nylon 6) obtained by melt polymerizing ε-caprolactam and having a phase viscosity of η r 3.40.
and the saponified copolymer (BA-AN-DVB) obtained by the above method were mixed in a ratio of 80/20, melt-kneaded in an extruder with a 40 mm diameter bed, and pelletized. After vacuum drying the pellets, the molded products obtained by injection molding were examined for mechanical properties, mainly impact resistance, and the results are shown in Table 1. In addition, polybutylene terephthalate (PBT) with a relative viscosity of η r 1.70 obtained by condensation polymerization of terephthalic acid dimethyl ester and tetramethylene glycol and the saponified product of the above polymer were used.
The physical properties of a composition mixed in a ratio of 80/20 were measured in exactly the same manner, and the results are shown in Table 1. It is clear that both compositions have very good impact resistance. Examples 2 and 3 Polymerization and saponification were carried out in the same manner as in Example 1, except that the composition of the monomers to be polymerized was changed as shown below. After kneading, the physical properties of the composition were measured. The results are shown in Table 1.

【表】 比較例 1 実施例1で得た重合体ラテツクスをケン化処理
しないで、凝固して回収した重合体を全く同様に
ポリアミド、ポリエステルと混練し、組成物の物
性を測定した。結果を第1表に示す。 比較例 2 実施例1において重合する単量体の組成をアク
リル酸ブチル75部、アクリロニトリル10部、アク
リル酸15部、ジビニルベンゼン0.2部に変更した
以外、全く同様にした後、塩化カルシウムで凝固
を試みたが、対ポリマ100部あたり20部を加えて
も凝固しなかつたのでスプレドライ法で重合体を
回収した。同様にポリアミド、ポリエステルと溶
融混練し、組成物の物性を測定した。結果を第1
表に示す。
[Table] Comparative Example 1 The polymer latex obtained in Example 1 was coagulated and recovered without being saponified, and the polymer was kneaded with polyamide and polyester in exactly the same manner, and the physical properties of the composition were measured. The results are shown in Table 1. Comparative Example 2 The same procedure as in Example 1 was repeated except that the composition of the monomers to be polymerized was changed to 75 parts of butyl acrylate, 10 parts of acrylonitrile, 15 parts of acrylic acid, and 0.2 parts of divinylbenzene, and then coagulation was performed with calcium chloride. However, the polymer did not coagulate even after adding 20 parts per 100 parts of the polymer, so the polymer was recovered by a spray drying method. Similarly, the composition was melt-kneaded with polyamide and polyester, and the physical properties of the composition were measured. Results first
Shown in the table.

【表】【table】

【表】 実施例 4 実施例1において重合した単量体組成をスチレ
ン24部、アクリロニトリル4部、メタクリル酸メ
チル72部に変更した以外、全く同様な処方で重合
体を得、その重合体40部(固形分比)と実施例1
で得られたアクリル系ゴム状重合体60部(固形分
比)をラテツクスブレンドした後、水酸化カリウ
ム10部と水100部の水溶液を添加し、90℃、10時
間ケン化処理することによりアクリル系ゴムグラ
フトビニル系重合体のケン化物を得た。 ついで実施例1と同様な方法で重合体ケン化物
を回収後、これをポリアミド、ポリエステルと混
練し、組成物の物性を測定した。この結果を第2
表に示す。
[Table] Example 4 A polymer was obtained using the same recipe as in Example 1 except that the monomer composition was changed to 24 parts of styrene, 4 parts of acrylonitrile, and 72 parts of methyl methacrylate, and 40 parts of the polymer was obtained. (solid content ratio) and Example 1
After latex blending 60 parts (solid content ratio) of the acrylic rubber-like polymer obtained, an aqueous solution of 10 parts of potassium hydroxide and 100 parts of water was added, and the mixture was saponified at 90°C for 10 hours. A saponified product of an acrylic rubber-grafted vinyl polymer was obtained. Next, the saponified polymer was collected in the same manner as in Example 1, and then kneaded with polyamide and polyester, and the physical properties of the composition were measured. This result is the second
Shown in the table.

〔アクリル系ゴムグラフトビニル重合体の下層重合体の調整〕[Adjustment of lower layer polymer of acrylic rubber grafted vinyl polymer]

実施例1で使用した反応容器に水200部、ラウ
リル硫酸ナトリウム1.5部および過硫酸カリウム
0.3部を仕込み、窒素ふん囲気下で70℃に温調
し、ブチルアクリレート46部、2エチルヘキシル
アクリレート46部、アクリロニトリル4部、モノ
アリルマレート4部からなる単量体混合物を1.5
時間にわたり滴下した。滴下終了後、70℃で3時
間重合を経続し、アクリル系ゴムグラフトビニル
重合体の下層重合体を得た。 〔アクリル系ゴムグラフトビニル重合体の調整
とケン化処理およびポリアミド、ポリエステル
の混合と組成物の評価〕 実施例1で使用した反応容器に上記で得た下層
重合体ラテツクス50部(固形分)、ナトリウムホ
ルムアルデヒドスルホキシレート0.4部、エチレ
ンジアミン四酢酸ナトリウム0.5部、水180部(ラ
テツクス中の水も含む)を仕込み、65℃に温調し
た。撹拌しながらスチレン8部、アクリロニトリ
ル2部、メタクリル酸メチル40部およびn−ドデ
シルメルカプタン0.3部の混合物を4時間にわた
り滴下した。一方別に準備したクメンハイドロパ
ーオキサイド0.3部、ドデシルベンゼンスルホン
酸ナトリウム2部および水20部の混合物を上記単
量体混合物滴下開始と同様に5時間で滴下した。
反応は6時間で停止した。このグラフト重合体ラ
テツクス中に水酸化ナトリウム14部と水50部の溶
液を添加し、130℃に温調し、4時間撹拌してケ
ン化処理した。室温に冷却後、実施例1と同様に
して重合体ケン化物を回収し、ポリアミドおよび
ポリエステルと混練し物性を測定した。結果を第
3表に示す。 比較例 3 実施例5で得たアクリル系ゴムグラフトビニル
重合体をケン化せずに凝固、洗浄、脱水、乾燥し
た後、ポリアミド、ポリエステルと溶融混練し、
組成物の物性を測定した。結果を第3表に示す。
ケン化処理をしないアクリル系ゴムグラフトビニ
ル系重合体を配合した場合は衝撃強度が低い。 比較例 4 実施例5において上層重合体として重合した単
量体混合物をアクリロニトリル8部、スチレン32
部、アクリル酸10部に変更して、同一処方でグラ
フト重合し、グラフト重合体ラテツクスを得た。
これを塩化カルシウムで凝固しようと試みたが、
対ポリマ100部あたり20部を加えても凝固しなか
つたので、スプレドライ法で重合体を回収した。
ポリアミド、ポリエステルと溶融混練し、組成物
の物性を測定した。結果を第3表に示す。
Into the reaction vessel used in Example 1 were added 200 parts of water, 1.5 parts of sodium lauryl sulfate, and potassium persulfate.
The temperature was adjusted to 70°C under a nitrogen atmosphere, and 1.5 parts of a monomer mixture consisting of 46 parts of butyl acrylate, 46 parts of 2-ethylhexyl acrylate, 4 parts of acrylonitrile, and 4 parts of monoallyl maleate was charged.
It was dripped over a period of time. After completion of the dropwise addition, polymerization was continued for 3 hours at 70°C to obtain a lower layer polymer of acrylic rubber grafted vinyl polymer. [Preparation of acrylic rubber-grafted vinyl polymer, saponification treatment, mixing of polyamide and polyester, and evaluation of composition] Into the reaction vessel used in Example 1, 50 parts (solid content) of the lower layer polymer latex obtained above, 0.4 parts of sodium formaldehyde sulfoxylate, 0.5 parts of sodium ethylenediaminetetraacetate, and 180 parts of water (including water in the latex) were charged, and the temperature was adjusted to 65°C. While stirring, a mixture of 8 parts of styrene, 2 parts of acrylonitrile, 40 parts of methyl methacrylate and 0.3 parts of n-dodecylmercaptan was added dropwise over 4 hours. On the other hand, a separately prepared mixture of 0.3 parts of cumene hydroperoxide, 2 parts of sodium dodecylbenzenesulfonate, and 20 parts of water was added dropwise over 5 hours in the same manner as when the monomer mixture was started.
The reaction was stopped after 6 hours. A solution of 14 parts of sodium hydroxide and 50 parts of water was added to this graft polymer latex, the temperature was adjusted to 130°C, and the mixture was stirred for 4 hours for saponification. After cooling to room temperature, the saponified polymer was collected in the same manner as in Example 1, kneaded with polyamide and polyester, and its physical properties were measured. The results are shown in Table 3. Comparative Example 3 The acrylic rubber-grafted vinyl polymer obtained in Example 5 was coagulated without saponification, washed, dehydrated, and dried, and then melt-kneaded with polyamide and polyester,
The physical properties of the composition were measured. The results are shown in Table 3.
When an acrylic rubber-grafted vinyl polymer that is not saponified is blended, the impact strength is low. Comparative Example 4 The monomer mixture polymerized as the upper layer polymer in Example 5 was mixed with 8 parts of acrylonitrile and 32 parts of styrene.
graft polymerization was carried out using the same recipe except that 10 parts of acrylic acid was used, and a graft polymer latex was obtained.
I tried to coagulate this with calcium chloride, but
Since it did not coagulate even after adding 20 parts per 100 parts of the polymer, the polymer was recovered by a spray drying method.
The composition was melt-kneaded with polyamide and polyester, and the physical properties of the composition were measured. The results are shown in Table 3.

【表】 実施例 6、7 実施例1および5で得た重合体ケン化物20部と
ポリヘキサメチレンアジパミドおよびポリエチレ
ンテレフタレート(各80部)を実施例1と同様に
溶融混練し、組成物の物性を測定した。この結果
を第4表に示す。 比較例 5 ポリカプロアミド(ナイロン6)、ポリヘキサ
メチレンアジパミド(ナイロン66)、ポリブチレ
ンテレフタレート(PBT)およびポリエチレン
テレフタレート(PET)の物性を測定し、この
結果を第4表に示す。
[Table] Examples 6 and 7 20 parts of the saponified polymer obtained in Examples 1 and 5, polyhexamethylene adipamide and polyethylene terephthalate (80 parts each) were melt-kneaded in the same manner as in Example 1, and a composition was prepared. The physical properties of the material were measured. The results are shown in Table 4. Comparative Example 5 The physical properties of polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polybutylene terephthalate (PBT) and polyethylene terephthalate (PET) were measured, and the results are shown in Table 4.

【表】【table】

【表】 実施例 8、9 実施例1、5で得た重合体ケン化物20重量部と
ポリカプロアミド、ポリヘキサメチレンアジパミ
ド、ポリブチレンテレフタレート、ポリエチレン
テレフタレート各80部の合計100部とガラス繊維
(日東紡製CSX−3P−231)50部を均一に混練し
た後、ベント付押出機で溶融混練し、組成物の機
械的性質および80×80×3mmの角板を成形し、そ
の角板を水平面上に置き、水平面から最も離れた
部分までの距離をそり量として測定した。この結
果を第5表に示す。 比較例 6 ポリカプロアミド、ポリヘキサメチレンアジパ
ミド、ポリエチレンテレフタレートおよびポリブ
チレンテレフタレート各100部とガラス繊維50部
からなる組成物の物性を第6表に示す。
[Table] Examples 8 and 9 20 parts by weight of the saponified polymer obtained in Examples 1 and 5, a total of 100 parts each of polycaproamide, polyhexamethylene adipamide, polybutylene terephthalate, and polyethylene terephthalate, and glass. After uniformly kneading 50 parts of fiber (CSX-3P-231 manufactured by Nittobo Co., Ltd.), it was melt-kneaded in a vented extruder, and the mechanical properties of the composition were determined. The board was placed on a horizontal surface, and the distance from the horizontal surface to the farthest part was measured as the amount of warpage. The results are shown in Table 5. Comparative Example 6 Table 6 shows the physical properties of a composition consisting of 100 parts each of polycaproamide, polyhexamethylene adipamide, polyethylene terephthalate and polybutylene terephthalate and 50 parts of glass fiber.

【表】【table】

【表】【table】

【表】 実施例 10 実施例5において上層重合体として重合した単
量体混合物をアクリロニトリル8部、スチレン32
部、メチルメタクリレート10部に変更した以外、
同一処方でグラフト重合し、グラフト重合体ラテ
ツクスを得た。このラテツクス中へ水酸化ナトリ
ウム5部と水50部の溶液を添加して8時間撹拌し
てケン化処理した。このラテツクスを硫酸で中和
後、塩化カルシウム(対ポリマに100部あたり)
5部で凝固し、ロ過、乾燥してアクリル系ゴムグ
ラフトビニル系共重合体ケン化物を得た。これを
実施例1と同様にポリアミド、ポリエステルと混
練して、組成物の物性を測定した。これの結果を
第7表に示す。
[Table] Example 10 The monomer mixture polymerized as the upper layer polymer in Example 5 was mixed with 8 parts of acrylonitrile and 32 parts of styrene.
1 part, except that it was changed to 10 parts of methyl methacrylate.
Graft polymerization was carried out using the same recipe to obtain a graft polymer latex. A solution of 5 parts of sodium hydroxide and 50 parts of water was added to this latex and stirred for 8 hours for saponification. After neutralizing this latex with sulfuric acid, calcium chloride (per 100 parts of polymer)
It was coagulated with 5 parts, filtered and dried to obtain a saponified acrylic rubber grafted vinyl copolymer. This was kneaded with polyamide and polyester in the same manner as in Example 1, and the physical properties of the composition were measured. The results are shown in Table 7.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 A.熱可塑性ポリアミド樹脂及び熱可塑性ポ
リエステル樹脂から選ばれた少なくとも1種、B.
(a)アクリル系ゴム状重合体をケン化処理してなる
アクリル系ゴム状重合体ケン化物および(b)アクリ
ル系ゴム状重合体20重量部以上を下層重合体と
し、活性な二重結合を有する不飽和カルボン酸エ
ステル系単量体5〜100重量%と芳香族ビニル系
単量体およびシアン化ビニル系単量体から選ばれ
た一種以上のビニル系単量体95〜0重量%からな
る硬質重合体80重量部以下を上層重合体とするア
クリル系ゴムグラフトビニル系重合体をケン化処
理してなるアクリル系ゴムグラフトビニル系重合
体ケン化物から選ばれた少なくとも1種および
C.繊維状強化剤の少なくとも1種をA50〜95重量
部とB50〜5重量部の合計100重量部に対してC
が0〜200重量部の割合となるように配合してな
る熱可塑性樹脂組成物の製造方法。
1 A. At least one selected from thermoplastic polyamide resin and thermoplastic polyester resin, B.
(a) A saponified acrylic rubbery polymer obtained by saponifying an acrylic rubbery polymer and (b) 20 parts by weight or more of an acrylic rubbery polymer as the lower polymer, and active double bonds are formed. 5 to 100% by weight of unsaturated carboxylic acid ester monomers and 95 to 0% by weight of one or more vinyl monomers selected from aromatic vinyl monomers and vinyl cyanide monomers. At least one selected from saponified acrylic rubber-grafted vinyl polymers obtained by saponifying acrylic rubber-grafted vinyl polymers containing 80 parts by weight or less of a hard polymer as an upper layer polymer, and
C. Add at least one fibrous reinforcing agent to 100 parts by weight of 50 to 95 parts by weight of A and 50 to 5 parts by weight of B.
1. A method for producing a thermoplastic resin composition, which is blended in a proportion of 0 to 200 parts by weight.
JP9700777A 1977-08-15 1977-08-15 Thermoplastic resin composition Granted JPS5431456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9700777A JPS5431456A (en) 1977-08-15 1977-08-15 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9700777A JPS5431456A (en) 1977-08-15 1977-08-15 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5431456A JPS5431456A (en) 1979-03-08
JPS6219464B2 true JPS6219464B2 (en) 1987-04-28

Family

ID=14180192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9700777A Granted JPS5431456A (en) 1977-08-15 1977-08-15 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5431456A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2045775B (en) * 1979-04-02 1983-06-15 Gen Electric Polyester compositions containing acrylic ester resin modifiers
CA1166781A (en) * 1979-11-19 1984-05-01 Peter Bier Process for injection molding a rapidly crystallizing polyethylene terephthalate composition at reduced mold temperatures
JPS63199925A (en) * 1987-02-13 1988-08-18 Koyo Seiko Co Ltd Material for retaining ring of tapered roller bearing

Also Published As

Publication number Publication date
JPS5431456A (en) 1979-03-08

Similar Documents

Publication Publication Date Title
EP1111008B1 (en) Thermoplastic resin composition
JPH0472855B2 (en)
EP0362855B1 (en) Core-shell polymer, composition containing the polymers and its molded articles
RU2008127448A (en) POLYCARBONATE FORMING MASSES
CA2500347A1 (en) Thermoplastic polyester resin composition and molded article comprising the same
JP2733326B2 (en) Reinforced / filled blends of thermoplastic interpolymers and polyamides and methods for their preparation
JP2001508093A (en) (Methyl) methacrylate-maleic anhydride-copolymers as polymer modifiers for plastics and formulations and composites produced with the copolymers
JPS6219464B2 (en)
HU209703B (en) Process for improvement of sheological properties of thermoplastic sesius and process for producing of formed wares of such a thermoplastic sesius
US8653188B2 (en) Thermoplastic resin composition and resin molded product
JP2546344B2 (en) Thermoplastic resin composition
JPS5911322A (en) Production of rubber-modified maleimide copolymer
US20070149687A1 (en) Viscosity modifier for a thermoplastic polyester resin and thermoplastic polyester resin composition containing the same
JPH05105797A (en) Thermoplastic resin composition
JPS6021621B2 (en) impact resistant polyamide composition
US20040230019A1 (en) Poly (alpha-methylene-gama-methyl-gamma-butyrolactone-c-glycidyl methacrylate): preparation, polymer blends derived therefrom, and end uses thereof
JPS6039093B2 (en) Thermoplastic polyester resin composition
JP3771179B2 (en) Thermoplastic resin composition
JP2606325B2 (en) Polyester resin composition
JP5469804B2 (en) Thermoplastic resin composition and molded article
JPS6086161A (en) Polyamide resin composition
JPH06192535A (en) Thermoplastic resin composition
JPH03177453A (en) Specific graft polymer molding material of polyamide and tert-alkylester
US5340876A (en) Thermoplastic moulding compounds of polyamides and resin copolymers
JPH0674375B2 (en) Thermoplastic resin composition