JPS6219422B2 - - Google Patents

Info

Publication number
JPS6219422B2
JPS6219422B2 JP55011522A JP1152280A JPS6219422B2 JP S6219422 B2 JPS6219422 B2 JP S6219422B2 JP 55011522 A JP55011522 A JP 55011522A JP 1152280 A JP1152280 A JP 1152280A JP S6219422 B2 JPS6219422 B2 JP S6219422B2
Authority
JP
Japan
Prior art keywords
oxide
aromatic amines
alcohol
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55011522A
Other languages
Japanese (ja)
Other versions
JPS56110652A (en
Inventor
Kazunori Takahata
Katsuo Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1152280A priority Critical patent/JPS56110652A/en
Publication of JPS56110652A publication Critical patent/JPS56110652A/en
Publication of JPS6219422B2 publication Critical patent/JPS6219422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】 本発明は、オルトアルキル化芳銙族アミン類を
遞択的にか぀高収率で補造する方法に関する。さ
らに詳现には、酞化鉄および又は酞化マンガン
を䞻成分ずしお含む觊媒の存圚䞋に、オルト䜍に
少なくずも個の氎玠原子を有する芳銙族アミン
類および第䞀アルコヌルたたは第二アルコヌルを
加熱䞋に反応させるこずにより、オルトアルキル
化芳銙族アミン類を補造する方法に関する。 オルトアルキル化芳銙族アミン類は、医薬、蟲
薬、染料、暹脂甚安定剀、ゎム甚配合剀などの補
造䞭間䜓ずしお有甚である。 埓来、−トルむゞン、・−ゞメチルアニ
リンなどのアルキル化芳銙族アミン類を補造する
方法ずしおは、−クレゟヌル、・キシレノ
ヌルなどの盞応するアルキル化プノヌル類ずア
ンモニアたたはアミンずをアルミナたたはシリカ
アルミナなどの脱氎觊媒の存圚䞋に反応させる方
法が知られおいる。しかし、これらのオルト䜍に
アルキル基を有するプノヌル類ずアンモニアた
たはアミンずの反応は、プノヌルずアンモニア
たたはアミンずの反応に比范しお反応速床が極め
お遅く、オルトアルキル化芳銙族アミン類ぞの遞
択性が䜎くか぀その収率も䜎い。しかも前蚘脱氎
觊媒の掻性䜎䞋が著しいので、オルトアルキル化
芳銙族アミン類の工業的補法ずしお奜適な方法で
あるずは蚀い難い。 たた、ルむス酞などのフリヌデル・クラフツ型
觊媒の存圚䞋にアニリンなどの芳銙族アミン類ず
オレフむンたたはアルコヌルずを反応させる方法
も、G.A.Olah著、「Friedel Crafts and Related
Reactions、Vol.2、Part1」、Interscience
Publishers発行1964幎、に提案されおいる。
しかし、この方法では、芳銙族アミン類のアミノ
基が眮換されおいない堎合には、−モノアルキ
ル芳銙族アミン類たたは・−ゞアルキル芳銙
族アミン類などの−アルキル化芳銙族アミン類
が䞻生成物ずしお生成し、該アルキル化芳銙族ア
ミン類は副生成物ずしお僅かに生成するにすぎ
ず、しかも該アルキル化芳銙族アミン類ずしおは
オルトアルキル化芳銙族アミン類ずパラアルキル
化芳銙族アミン類ずの混合物が生成し、オルトア
ルキル化芳銙族アミン類の生成割合は䜎い。この
傟向はアルキル化剀ずしおアルコヌルを䜿甚した
堎合にずくに著しい。たた、この方法の欠点を改
善する方法ずしお、特公昭38−4569号公報にはフ
リヌデル・クラフツ型觊媒の存圚䞋にアニリンな
どの芳銙族アミン類ずオレフむンずを高枩・高圧
の条件䞋に反応させる方法が提案されおいる。し
かし、この方法ではオルトアルキル化芳銙族アミ
ン類ぞの遞択性は倚少向䞊するが、䟝然ずしお
−アルキル化芳銙族アミン類の副生が倚く、遞択
的にオルトアルキル化芳銙族アミン類を補造する
こずは困難であり、オルトアルキル化芳銙族アミ
ン類を工業的に補造する方法ずしお到底満足でき
る方法ではない。 たた、オルトアルキル化芳銙族アミン類を補造
する他の方法ずしお、米囜特蚱第2814646号明现
曞にはアルミニりムアニリドからなる觊媒の存圚
䞋にアニリンなどの芳銙族アミン類ずオレフむン
ずを加熱䞋に反応させる方法が提案されおおり、
特公昭47−24014号公報にはアルキルアルミニり
ムハラむドずアニリンなどの芳銙族アミン類ずを
反応させ、次いでこのようにしお生成した混合物
ずオレフむンずを反応させる方法が提案されおお
り、さらには特開昭50−137934号公報には芳銙族
アミノアルミニりムずハロゲン化炭化氎玠からな
る觊媒の存圚䞋にアニリンなどの芳銙族アミン類
ず䜎玚オレフむンずを反応させる方法が提案され
おいる。これらの方法のうちで、前蚘米囜特蚱第
2814646号明现曞に蚘茉された方法では、生成物
䞭のオルトアルキル化芳銙族アミン類の遞択性は
高いが、反応掻性が䜎いずいう欠点がある。た
た、前蚘特公昭47−24014号公報および特開昭50
−137934号公報に蚘茉された方法はいずれも反応
掻性が高く、しかも生成物䞭のオルトアルキル化
芳銙族アミン類ぞの遞択性も高いずいう利点はあ
る。しかし、これらのいずれの方法でも反応が高
枩・高圧の条件䞋の反応であるので、反応装眮の
点で䞍利であるこず、觊媒ずしおかなりの量のア
ルミニりム化合物を䜿甚するので反応終了埌の混
合物からアルミニりム化合物を分離陀去する埌凊
理操䜜が煩雑であるこずなどの工業化するうえで
の問題点も倚い。たた、圓然のこずながら、これ
らの方法ではオレフむンをアルキル化剀ずしお䜿
甚しおいるので、メチルアニリンやゞメチルアニ
リンなどのオルトアルキル化芳銙族アミン類たた
はアルキル基の炭玠数が以䞊であるようなオル
ト−−アルキル化芳銙族アミン類を補造するこ
ずができない。 本発明者らは、埓来法の前述の事情に鑑み、オ
ルトアルキル化プノヌル類を遞択的にか぀工業
的芏暡で補造する方法ずしお適した方法を探玢し
た結果、酞化鉄および又は酞化マンガンを䞻成
分ずしお含む觊媒の存圚䞋に、オルト䜍に少なく
ずも個の氎玠原子を有する芳銙族アミン類ず第
䞀アルコヌルたたは第二アルコヌルずを反応させ
るこずにより、前蚘目的を達成できるこずを芋出
し、本発明に到達した。 すなわち、本発明は、遷移金属酞化物を含む觊
媒の存圚䞋に、オルト䜍に少なくずも個の氎玠
原子を有する芳銙族アミン類(a)および第䞀アルコ
ヌルたたは第二アルコヌル(b)を加熱䞋に反応させ
るこずを特城ずするオルトアルキル化芳銙族アミ
ン類の補造方法である。 本発明においお原料ずしお䜿甚される芳銙族ア
ミン類(a)は、アミノ基たたは眮換アミノ基に察し
おオルト䜍に少なくずも個の氎玠原子を有する
芳銙族アミン類である。該芳銙族アミン類(a)はそ
の芳銙該がベンれン環、ナフタリン環、アントラ
セン環、プナントレン環のいずれで衚わされる
芳銙族アミン類であ぀おもよく、たた該芳銙族ア
ミン類(a)は第䞀芳銙族アミン類、第二芳銙族アミ
ン類たたは第䞉芳銙族アミン類のいずれの芳銙族
アミンであ぀おも差し぀かえない。たた、該芳銙
族アミン類(a)は、アミノ基たたは眮換アミノ基に
察しおオルト䜍に少なくずも個の氎玠原子を有
する限りにおいお前蚘ベンれン環、ナフタリン
環、アントラセン環、プナントレン環䞊の他の
炭玠原子に個たたはそれ以䞊の眮換基が結合し
たものであ぀おも差し぀かえない。眮換基ずしお
具䜓的には、アルキル基、アリヌル基、アルコキ
シル基、アリヌルオキシル基、アシル基、アシル
オキシル基、ハロゲン原子、氎酞基などを䟋瀺す
るこずができる。該芳銙族アミン類ずしお具䜓的
には、アニリン、−トルむゞン、−トルむゞ
ン、−トルむゞン、−゚チルアニリン、−
゚チルアニリン、−゚チルアニリン、−む゜
プロピルアニリン、−む゜プロピルアニリン、
−む゜プロピルアニリン、・−キシリゞ
ン、・−キシリゞン、・−キシリゞン、
・−キシリゞン、・−ゞ゚チルアニリ
ン、・−ゞ゚チルアニリン、・−ゞ゚チ
ルアニリン、・−ゞ゚チルアニリン、・
−ゞむ゜プロピルアニリン、・−ゞむ゜プロ
ピルアニリン、・−ゞむ゜プロピルアニリ
ン、−メチルアニリン、−゚チルアニリン、
−む゜プロピルアニリン、・−ゞメチルア
ニリン、・−ゞ゚チルアニリン、・−ゞ
む゜プロピロアニリン、−メチル−−トルむ
ゞン、−メチル−・−キシリゞン、−メ
チル−・キシリゞン、−メチル−・−
キシリゞン、−メチル−・−キシリゞン、
・−ゞメチル−−トルむゞン、・−ゞ
メチル−−トルむゞン、・−ゞメチル−
−トルむゞン、・−ゞメチル−・−キシ
リゞン、・−ゞメチル−・−キシリゞ
ン、・−ゞメチル−・−キシリゞン、
・−ゞメチル−・−キシリゞン、−゚
チル−−゚チルアニリン、−゚チル−−゚
チルアニリン、−゚チル−−゚チルアニリ
ン、−゚チル−・−ゞ゚チルアニリン、
−゚チル−・−ゞ゚チルアニリン、−゚チ
ル−・−ゞ゚チルアニリン、−゚チル−
・−ゞ゚チルアニリン、・−ゞ゚チル−
−゚チルアニリン、・−ゞ゚チル−−゚
チルアニリン、・−ゞ゚チル−−゚チルア
ニリン、α−ナフチルアミン、β−ナフチルアミ
ンなどを䟋瀺するこずができる。これらの芳銙族
アミン類のうちでは、アニリンたたは−アルキ
ルアニリンに本発明の方法を適甚するこずが奜た
しい。 本発明においお原料ずしお䜿甚されるアルコヌ
ル(a)は第䞀アルコヌルたたは第二アルコヌルであ
り、通垞は炭玠数ないしの第䞀䜎玚アルコヌ
ルたたは第二䜎玚アルコヌルである。第䞀アルコ
ヌルずしお具䜓的には、メタノヌル、゚タノヌ
ル、−プロパノヌル、−ブチルアルコヌル、
む゜ブチルアルコヌル、−ペンチルアルコヌ
ル、む゜ペンチルアルコヌル、−ヘキシルアル
コヌル、む゜ヘキシルアルコヌルなどを䟋瀺する
こずができる。第二アルコヌルずしお具䜓的に
は、む゜プロパヌル、sec−ブチルアルコヌル、
sec−ペンチルアルコヌル、sec−ヘキシルアルコ
ヌル、シクロヘキシルアルコヌルなどを䟋瀺する
こずができる。これらのアルコヌルのうちでは、
炭玠数ないしのアルコヌルを䜿甚するこずが
奜たしく、ずくにメタノヌル、゚タノヌルたたは
む゜プロパヌルを䜿甚するこずが奜たしい。これ
らのアルコヌルの䜿甚割合は、前蚘芳銙族アミン
類モルに察しお通垞ないし10モル、奜たしくは
ないしモルの範囲である。 本発明においお䜿甚される觊媒は酞化鉄およ
び又は酞化マンガンを䞻成分ずしお含む觊媒で
あり、ずりわけ酞化鉄を䞻成分ずしお含む觊媒を
䜿甚するこずが奜たしい。該觊媒ずしお酞化鉄お
よび又は酞化マンガンのみからなる觊媒、酞化
鉄および又は酞化マンガンを皮々の担䜓に担持
させた觊媒、酞化鉄および又は酞化マンガンに
皮々の結合剀を添加しお成圢した觊媒などを挙げ
るこずができる。本発明では酞化鉄および又は
酞化マンガンを䞻成分ずしか぀少量成分の他の金
属酞化物を配合した金属酞化物組成物を觊媒ずし
お䜿甚するこずもできる。ここで、前蚘䟋瀺の遷
移金属酞化物に少量成分ずしお配合される他の金
属酞化物ずしお具䜓的には、酞化アルミニりム、
酞化ガリりム、酞化むンゞりム、酞化硅玠、酞化
ゲルマニりム、酞化スズ、酞化アンチモン、酞化
ビスマス、酞化ナトリりム、酞化カリりム、酞化
マグネシりム、酞化カルシりム、酞化ストロンチ
りム、酞化バリりムなどの非遷移金属元玠の酞化
物を䟋瀺するこずができる。本発明では酞化鉄に
他の金属酞化物ずしお酞化ガリりム、酞化ゲルマ
ニりム、酞化錫、酞化ニオブ、酞化ゞルコニり
ム、酞化ハフニりムなどの金属酞化物を配合した
倚成分系觊媒を䜿甚するず、オルトアルキル化芳
銙族アミン類ぞの遞択性が高くか぀反応の際のア
コヌルの分解を抑制するこずができるのでずくに
奜たしい。 本発明の方法においお䜿甚される觊媒の調補法
ずしお、酞化鉄および又は酞化マンガンになり
埗る鉄化合物および又はマンガン化合物を焌成
する方法、酞化鉄および又は酞化マンガンにな
り埗る鉄化合物および又はマンガン化合物およ
び前蚘少量成分である他の金属酞化物になり埗る
金属化合物からなる混合物を焌成する方法、たた
は前蚘混合物の氎溶液を也固した埌に焌成する方
法などを䟋瀺するこずができる。 本発明の方法においお、酞化鉄および又は酞
化マンガンを䞻成分ずしお含む金属酞化物を担䜓
に担持させた觊媒を䜿甚する堎合の觊媒の調補法
ずしおは、焌成によ぀お前蚘遷移金属酞化物にな
り埗る遷移金属化合物、必芁に応じお焌成によ぀
お前蚘少量成分の他の金属酞化物になり埗る金属
化合物からなる混合物を担䜓に配合した埌成圢
し、焌成する方法、たたは前蚘金属化合物からな
る混合物の氎溶液を担䜓に含浞させた埌に焌成す
る方法などを䟋瀺するこずができる。 本発明の方法においお、前蚘遷移金属酞化物を
䞻成分ずしお含む觊媒の存圚䞋に、前蚘オルト䜍
に少なくずも個の氎玠原子を有する芳銙族アミ
ン類(a)および前蚘第䞀アルコヌルたたは第二アル
コヌル(b)を加熱䞋に反応させるこずによりオルト
アルキル化芳銙族アミン類が遞択的に生成する。
この反応は液盞反応によ぀お実斜するこずもでき
るし、気盞反応によ぀お実斜するこずもできる
が、気盞反応によ぀お実斜するのが奜たしい。 本発明の方法においお、反応を気盞法によ぀お
実斜する堎合には、反応枩床は通垞200ないし500
℃、奜たしくは250ないし450℃の範囲である。反
応を行う堎合に䟛絊原料の液䜓空間速床
LHSVは通垞0.1ないし10hr-1、奜たしくは0.4
ないし4.0hr-1の範囲である。反応は通垞枛圧䞋
でも加圧䞋でも行えるが、奜たしくはないし30
Klcm2−の範囲の圧力䞋に実斜される。反応終
了埌の混合物から未反応のアルコヌルを分離し、
次いで未反応の原料芳銙族アミン類を回収した
埌、蒞留、晶析、抜出などの垞法によ぀お凊理す
るこずにより、オルトアルキル化芳銙族アミン類
が埗られる。回収された未反応のアルコヌルおよ
びオルト䜍氎玠を有する芳銙族アミン類は反応に
埪環再䜿甚される。 次に、本発明の方法を実斜䟋によ぀お具䜓的に
説明する。 実斜䟋  硝酞第二鉄・氎和物202.0をの蒞留氎
に溶解させた埌、25アンモニア氎を埐々に加
え、液のPHをずした。生成した沈殿を氎掗過
した。これに二酞化ゲルマニりム0.55を加え、
自動乳鉢を甚いお時間混緎した。これを90℃で
䞀昌倜也燥し、次いで450℃で時間焌成し、酞
化鉄および酞化ゲルマニりムからなる觊媒を調補
した。 〜10メツシナに粉砕した觊媒20mlを内埄20mm
のパむレツクス補反応管に充填した埌、370℃に
加熱した。所定枩床に達した埌、アニリンメタ
ノヌルのモル比がの混合液を14mlhrの速
床で䟛絊し、反応を行぀た。結果を衚に瀺し
た。 実斜䟋  実斜䟋においお、原料をアニリンメタノヌ
ルH2Oのモル比がの混合液に倉えた
以倖は、同䞀条件で反応を行぀た。結果を衚に
瀺した。 実斜䟋  実斜䟋においお、觊媒をMno−SiO2に又反応
枩床を430℃に倉えた以倖は同䞀条件で反応を行
぀た。結果を衚に瀺した。 実斜䟋  実斜䟋においお、原料のメタノヌルを゚タノ
ヌルに倉えた以倖は同䞀条件で反応を行぀た。結
果を衚に瀺した。 比范䟋  実斜䟋においお、觊媒を垂販のシリカ・アル
ミナSiO2Al2O38515重量比に倉えた以
倖は同䞀条件で反応を行぀た。その結果を衚に
瀺した。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for selectively and in high yields producing orthoalkylated aromatic amines. More specifically, aromatic amines having at least one hydrogen atom in the ortho position and a primary or secondary alcohol are heated in the presence of a catalyst containing iron oxide and/or manganese oxide as a main component. The present invention relates to a method for producing ortho-alkylated aromatic amines by reaction. Ortho-alkylated aromatic amines are useful as intermediates in the production of pharmaceuticals, agricultural chemicals, dyes, stabilizers for resins, compounding agents for rubber, and the like. Conventionally, as a method for producing alkylated aromatic amines such as o-toluidine and 2,6-dimethylaniline, a corresponding alkylated phenol such as o-cresol and 2,6-xylenol and ammonia or amine are combined with alumina. Alternatively, a method of reacting in the presence of a dehydration catalyst such as silica alumina is known. However, the reaction rate of these phenols having an alkyl group at the ortho position with ammonia or amines is extremely slow compared to the reaction of phenols with ammonia or amines, making it difficult to select ortho-alkylated aromatic amines. The yield is also low. Moreover, since the activity of the dehydration catalyst is significantly reduced, it is difficult to say that this method is suitable as an industrial method for producing ortho-alkylated aromatic amines. Additionally, a method for reacting aromatic amines such as aniline with olefins or alcohols in the presence of a Friedel-Crafts type catalyst such as a Lewis acid is also described in ``Friedel Crafts and Related
Reactions, Vol.2, Part1”, Interscience
Published by Publishers (1964).
However, in this method, when the amino group of aromatic amines is not substituted, N-alkylated aromatic amines such as N-monoalkyl aromatic amines or N·N-dialkyl aromatic amines is produced as the main product, and only a small amount of the alkylated aromatic amines are produced as a by-product, and the alkylated aromatic amines include ortho-alkylated aromatic amines and para-alkylated aromatic amines. A mixture with group amines is produced, and the production rate of ortho-alkylated aromatic amines is low. This tendency is particularly pronounced when alcohols are used as alkylating agents. In addition, as a method to improve the drawbacks of this method, Japanese Patent Publication No. 38-4569 describes the reaction of aromatic amines such as aniline with olefins under high temperature and high pressure conditions in the presence of a Friedel-Crafts type catalyst. A method has been proposed. However, although this method slightly improves the selectivity to ortho-alkylated aromatic amines, it still
-Many alkylated aromatic amines are produced as by-products, making it difficult to selectively produce ortho-alkylated aromatic amines, which is completely satisfactory as a method for industrially producing ortho-alkylated aromatic amines. Not the method. In addition, as another method for producing ortho-alkylated aromatic amines, US Pat. A method has been proposed to
Japanese Patent Publication No. 47-24014 proposes a method of reacting an alkyl aluminum halide with an aromatic amine such as aniline, and then reacting the mixture thus produced with an olefin. Japanese Patent Publication No. 137934/1983 proposes a method of reacting aromatic amines such as aniline with lower olefins in the presence of a catalyst consisting of aromatic aminoaluminum and a halogenated hydrocarbon. Among these methods, the said U.S. Pat.
The method described in No. 2814646 has a high selectivity for ortho-alkylated aromatic amines in the product, but has the drawback of low reaction activity. In addition, the above-mentioned Japanese Patent Publication No. 47-24014 and Japanese Unexamined Patent Application Publication No. 1973
All of the methods described in JP-137934 have the advantage of high reaction activity and high selectivity to ortho-alkylated aromatic amines in the product. However, in both of these methods, the reaction is carried out under conditions of high temperature and high pressure, which is disadvantageous in terms of the reaction equipment, and since a considerable amount of aluminum compound is used as a catalyst, There are many problems in industrialization, such as the complicated post-processing operations to separate and remove aluminum compounds. Naturally, since these methods use olefin as an alkylating agent, ortho-alkylated aromatic amines such as methylaniline and dimethylaniline, or those whose alkyl group has 3 or more carbon atoms, Ortho-n-alkylated aromatic amines cannot be produced. In view of the above-mentioned circumstances of the conventional methods, the present inventors searched for a method suitable for selectively producing ortho-alkylated phenols on an industrial scale. It has been discovered that the above object can be achieved by reacting an aromatic amine having at least one hydrogen atom in the ortho position with a primary alcohol or a secondary alcohol in the presence of a catalyst contained as a component, and the present invention Reached. That is, the present invention involves heating an aromatic amine (a) having at least one hydrogen atom in the ortho position and a primary alcohol or a secondary alcohol (b) in the presence of a catalyst containing a transition metal oxide. This is a method for producing ortho-alkylated aromatic amines, which is characterized by reacting with. The aromatic amine (a) used as a raw material in the present invention is an aromatic amine having at least one hydrogen atom at the ortho position to the amino group or substituted amino group. The aromatic amine (a) may be an aromatic amine represented by a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring; Any aromatic amine such as monoaromatic amines, secondary aromatic amines, or tertiary aromatic amines may be used. Further, as long as the aromatic amine (a) has at least one hydrogen atom at the ortho position with respect to the amino group or substituted amino group, the aromatic amines (a) may be One or more substituents may be bonded to a carbon atom. Specific examples of the substituent include an alkyl group, an aryl group, an alkoxyl group, an aryloxyl group, an acyl group, an acyloxyl group, a halogen atom, and a hydroxyl group. Specifically, the aromatic amines include aniline, o-toluidine, m-toluidine, p-toluidine, o-ethylaniline, m-
Ethylaniline, p-ethylaniline, o-isopropylaniline, m-isopropylaniline,
p-isopropylaniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine,
3,5-xylidine, 2,3-diethylaniline, 2,4-diethylaniline, 2,5-diethylaniline, 3,5-diethylaniline, 2,3
-diisopropylaniline, 2,4-diisopropylaniline, 3,5-diisopropylaniline, N-methylaniline, N-ethylaniline,
N-isopropylaniline, N・N-dimethylaniline, N・N-diethylaniline, N・N-diisopropyloaniline, N-methyl-o-toluidine, N-methyl-2・3-xylidine, N-methyl- 2,4 xylidine, N-methyl-2,5-
Xylidine, N-methyl-3,5-xylidine,
N·N-dimethyl-o-toluidine, N·N-dimethyl-m-toluidine, N·N-dimethyl-p
-Toluidine, N.N-dimethyl-2.3-xylidine, N.N-dimethyl-2.4-xylidine, N.N-dimethyl-2.5-xylidine,
N・N-dimethyl-3,5-xylidine, N-ethyl-o-ethylaniline, N-ethyl-m-ethylaniline, N-ethyl-p-ethylaniline, N-ethyl-2,3-diethylaniline, N
-Ethyl-2,4-diethylaniline, N-ethyl-2,5-diethylaniline, N-ethyl-
3.5-diethylaniline, N.N-diethyl-
Examples include o-ethylaniline, N·N-diethyl-m-ethylaniline, N·N-diethyl-p-ethylaniline, α-naphthylamine, and β-naphthylamine. Among these aromatic amines, it is preferable to apply the method of the present invention to aniline or o-alkylaniline. The alcohol (a) used as a raw material in the present invention is a primary alcohol or a secondary alcohol, and is usually a primary lower alcohol or a secondary lower alcohol having 1 to 6 carbon atoms. Specifically, primary alcohols include methanol, ethanol, n-propanol, n-butyl alcohol,
Examples include isobutyl alcohol, n-pentyl alcohol, isopentyl alcohol, n-hexyl alcohol, and isohexyl alcohol. Specifically, the secondary alcohols include isopropal, sec-butyl alcohol,
Examples include sec-pentyl alcohol, sec-hexyl alcohol, and cyclohexyl alcohol. Among these alcohols,
Preference is given to using alcohols having 1 to 3 carbon atoms, particularly methanol, ethanol or isopropal. The proportion of these alcohols used is usually in the range of 1 to 10 mol, preferably 3 to 6 mol, per 1 mol of the aromatic amine. The catalyst used in the present invention is a catalyst containing iron oxide and/or manganese oxide as a main component, and it is particularly preferable to use a catalyst containing iron oxide as a main component. The catalyst includes a catalyst consisting only of iron oxide and/or manganese oxide, a catalyst in which iron oxide and/or manganese oxide is supported on various carriers, and a catalyst formed by adding various binders to iron oxide and/or manganese oxide. Examples include catalysts. In the present invention, a metal oxide composition containing iron oxide and/or manganese oxide as a main component and a small amount of other metal oxides can also be used as a catalyst. Here, specific examples of other metal oxides added as minor components to the above-mentioned transition metal oxides include aluminum oxide,
Examples include oxides of non-transition metal elements such as gallium oxide, indium oxide, silicon oxide, germanium oxide, tin oxide, antimony oxide, bismuth oxide, sodium oxide, potassium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide. be able to. In the present invention, when a multicomponent catalyst containing iron oxide and other metal oxides such as gallium oxide, germanium oxide, tin oxide, niobium oxide, zirconium oxide, and hafnium oxide is used, ortho-alkylated aromatic It is particularly preferred because it has high selectivity to amines and can suppress the decomposition of alcohol during the reaction. The method for preparing the catalyst used in the method of the present invention includes a method of calcining an iron compound and/or a manganese compound that can become iron oxide and/or manganese oxide, a method of calcining an iron compound and/or a manganese compound that can become iron oxide and/or manganese oxide, Alternatively, a method of firing a mixture consisting of a manganese compound and a metal compound that can become another metal oxide as a minor component, or a method of firing after drying an aqueous solution of the mixture can be exemplified. In the method of the present invention, when using a catalyst in which a metal oxide containing iron oxide and/or manganese oxide as a main component is supported on a carrier, the method for preparing the catalyst is to convert the transition metal oxide to the metal oxide by calcination. A method in which a mixture consisting of a transition metal compound that can become a transition metal compound, and a metal compound that can become another metal oxide as a minor component by firing if necessary, is blended into a carrier, then molded and fired, or a mixture that is made of the metal compound. Examples include a method in which a carrier is impregnated with an aqueous solution of the mixture and then fired. In the method of the present invention, in the presence of a catalyst containing the transition metal oxide as a main component, the aromatic amine (a) having at least one hydrogen atom at the ortho position and the primary alcohol or secondary alcohol By reacting (b) under heating, ortho-alkylated aromatic amines are selectively produced.
This reaction can be carried out by a liquid phase reaction or a gas phase reaction, but it is preferably carried out by a gas phase reaction. In the method of the present invention, when the reaction is carried out by a gas phase method, the reaction temperature is usually 200 to 500°C.
℃, preferably in the range of 250 to 450℃. When carrying out the reaction, the liquid hourly space velocity (LHSV) of the feedstock is usually between 0.1 and 10 hr -1 , preferably 0.4.
to 4.0hr -1 . The reaction can usually be carried out under reduced pressure or increased pressure, but preferably 1 to 30
It is carried out under pressures in the range Kl/cm 2 -G. Separate unreacted alcohol from the mixture after the reaction is complete,
Next, unreacted raw material aromatic amines are recovered and treated by conventional methods such as distillation, crystallization, and extraction to obtain ortho-alkylated aromatic amines. The recovered unreacted alcohol and aromatic amines having hydrogen at the ortho position are recycled and reused in the reaction. Next, the method of the present invention will be specifically explained using examples. Example 1 After dissolving 202.0 g of ferric nitrate nonahydrate in distilled water from Step 2, 25% ammonia water was gradually added to adjust the pH of the liquid to 7. The generated precipitate was washed with water. Add 0.55g of germanium dioxide to this,
The mixture was kneaded for 1 hour using an automatic mortar. This was dried at 90°C for a day and night, and then calcined at 450°C for 3 hours to prepare a catalyst consisting of iron oxide and germanium oxide. 20ml of catalyst crushed into 6-10 meshes with inner diameter of 20mm
After filling a Pyrex reaction tube, the mixture was heated to 370°C. After reaching a predetermined temperature, a mixture of aniline and methanol in a molar ratio of 1:5 was supplied at a rate of 14 ml/hr to carry out a reaction. The results are shown in Table 1. Example 2 The reaction was carried out under the same conditions as in Example 1 except that the raw materials were changed to a mixture of aniline:methanol:H 2 O in a molar ratio of 1:5:2. The results are shown in Table 1. Example 3 The reaction was carried out under the same conditions as in Example 1 except that the catalyst was changed to Mno-SiO 2 and the reaction temperature was changed to 430°C. The results are shown in Table 1. Example 4 The reaction was carried out under the same conditions as in Example 1 except that methanol as a raw material was changed to ethanol. The results are shown in Table 1. Comparative Example 1 The reaction was carried out under the same conditions as in Example 1 except that the catalyst was changed to commercially available silica-alumina (SiO 2 :Al 2 O 3 =85:15 weight ratio). The results are shown in Table 1. 【table】

Claims (1)

【特蚱請求の範囲】  酞化鉄および又は酞化マンガンを䞻成分ず
しお含む觊媒の存圚䞋に、オルト䜍に少なくずも
個の氎玠原子を有する芳銙族アミン類(a)および
第䞀アルコヌルたたは第二アルコヌル(b)を加熱䞋
に反応させるこずを特城ずするオルトアルキル化
芳銙族アミン類の補法。  觊媒が、酞化鉄を䞻成分ずしお含む觊媒であ
る特蚱請求の範囲第項に蚘茉の方法。  オルト䜍に少なくずも個の氎玠原子を有す
る芳銙族アミン類(a)が、アニリンたたは−アル
キルアニリンである特蚱請求の範囲第項ないし
第項に蚘茉のいずれかの方法。  アルコヌルが、メタノヌル、゚タノヌルたた
はむ゜プロパノヌルである特蚱請求の範囲第項
ないし第項に蚘茉のいずれかの方法。  反応を気盞法で行う特蚱請求の範囲第項な
いし第項に蚘茉のいずれかの方法。  反応を、250ないし450℃の範囲の枩床で行う
特蚱請求の範囲第項ないし第項に蚘茉のいず
れかの方法。
[Claims] 1. Aromatic amines (a) having at least one hydrogen atom in the ortho position and a primary alcohol or a secondary alcohol in the presence of a catalyst containing iron oxide and/or manganese oxide as a main component. A method for producing ortho-alkylated aromatic amines, which comprises reacting alcohol (b) under heating. 2. The method according to claim 1, wherein the catalyst is a catalyst containing iron oxide as a main component. 3. The method according to any one of claims 1 to 2, wherein the aromatic amine (a) having at least one hydrogen atom at the ortho position is aniline or o-alkylaniline. 4. The method according to any one of claims 1 to 3, wherein the alcohol is methanol, ethanol, or isopropanol. 5. The method according to any one of claims 1 to 4, wherein the reaction is carried out by a gas phase method. 6. A method according to any one of claims 1 to 5, wherein the reaction is carried out at a temperature in the range of 250 to 450°C.
JP1152280A 1980-02-04 1980-02-04 Preparation of ortho-alkylated aromatic amine Granted JPS56110652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152280A JPS56110652A (en) 1980-02-04 1980-02-04 Preparation of ortho-alkylated aromatic amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152280A JPS56110652A (en) 1980-02-04 1980-02-04 Preparation of ortho-alkylated aromatic amine

Publications (2)

Publication Number Publication Date
JPS56110652A JPS56110652A (en) 1981-09-01
JPS6219422B2 true JPS6219422B2 (en) 1987-04-28

Family

ID=11780301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152280A Granted JPS56110652A (en) 1980-02-04 1980-02-04 Preparation of ortho-alkylated aromatic amine

Country Status (1)

Country Link
JP (1) JPS56110652A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309354C2 (en) * 1983-03-16 1994-02-24 Basf Ag Process for the preparation of 2-substituted 6-methylanilines
US5068435A (en) * 1985-11-08 1991-11-26 Air Products And Chemicals, Inc. Ortho-alkylated aromatic amines via gamma alumina catalyst
US4876377A (en) * 1985-11-08 1989-10-24 Air Products And Chemicals, Inc. Alkylation of aromatic amines with olefins on partially dealuminated zeolites
US4760184A (en) * 1986-05-12 1988-07-26 Air Products And Chemicals, Inc. Alkylation of aromatic amines in the presence of non-zeolitic molecular sieves
US4851579A (en) * 1987-04-07 1989-07-25 Air Products And Chemicals, Inc. Alkylation of aromatic amines over Al exchanged zeolites

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829727A (en) * 1971-08-20 1973-04-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829727A (en) * 1971-08-20 1973-04-19

Also Published As

Publication number Publication date
JPS56110652A (en) 1981-09-01

Similar Documents

Publication Publication Date Title
US4351958A (en) Process for producing orthoalkylated aromatic amine
JPH0255413B2 (en)
US4415744A (en) Vapor phase nitration of aromatic compounds
US6316673B2 (en) Process for producing aminodiphenylamines
US4057581A (en) Process for preparing diphenylamines
US4605766A (en) Alkylation process
JPS6219422B2 (en)
EP0807620B1 (en) Alkylation of aromatic amines using a heteropoly acid catalyst
EP0073277B1 (en) Process for producing orthoalkylated aromatic amines
US4721810A (en) Catalytic alkylation of aromatic amines with ethers
JP2916002B2 (en) Method for producing N-alkylated aromatic amines
US5986138A (en) Process for producing alkylated aromatic amines with high selectivity using new catalyst
JPH0784420B2 (en) Process for producing orthoalkylated aromatic amines
JPS6391351A (en) Production of n-alkylated aromatic amines
US4456760A (en) Process for the preparation of indoles
JPH0784419B2 (en) Process for producing orthoalkylated aromatic amines
SU644526A1 (en) Catalyst for alkylation of aromatic amines with alcohols
JPS61238768A (en) Production of n-alkylated aromatic amine
JPH0784421B2 (en) Process for producing orthoalkylated aromatic amines
US2565428A (en) N-alkyl substituted anilines
KR100554583B1 (en) Process for Preparing Aromatic Polyamine Mixtures
EP1002789B1 (en) Preparation of alkylated aromatic amines
JPH024741A (en) Method for manufacturing a mono-ortho-tertiary butyl -aniline with use of a silica-alumina catalyst
JPS58128371A (en) Preparation of indole compound
JPS6152132B2 (en)