JPS62193659A - Electromagnetic type crushing apparatus - Google Patents

Electromagnetic type crushing apparatus

Info

Publication number
JPS62193659A
JPS62193659A JP3427186A JP3427186A JPS62193659A JP S62193659 A JPS62193659 A JP S62193659A JP 3427186 A JP3427186 A JP 3427186A JP 3427186 A JP3427186 A JP 3427186A JP S62193659 A JPS62193659 A JP S62193659A
Authority
JP
Japan
Prior art keywords
sieve
pulverization
chamber
electromagnetic
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3427186A
Other languages
Japanese (ja)
Inventor
鶴田 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3427186A priority Critical patent/JPS62193659A/en
Publication of JPS62193659A publication Critical patent/JPS62193659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、強磁性材で作られた多数の作動体を処理容
器内に収容し、この処理容器を移動磁界の作用する磁場
の中に置いて作動体に電磁力による激しいランダム運動
を生起させ、これにより処理容器内に供給された例えば
金属粉9石炭等の砕料を数十ミクロン程度の微粉に粉砕
する等、各種被処理物の粉砕処理を行うようにした電磁
式粉砕処理装置に関する。
In this invention, a large number of actuating bodies made of ferromagnetic material are housed in a processing container, and this processing vessel is placed in a magnetic field where a moving magnetic field acts to cause intense random motion of the actuating bodies due to electromagnetic force. The present invention relates to an electromagnetic pulverization processing apparatus for pulverizing various objects to be processed, such as pulverizing material such as metal powder, coal, etc., supplied into a processing container into fine powder of approximately several tens of microns.

【従来技術とその問題点】[Prior art and its problems]

この種の電磁式粉砕処理装置として、第4図および第5
図に示す装置が例えば特開昭58−45754号公報に
より既に提案されて公知である。 すなわち第4図、第5図において、1は非磁性材で作ら
れた処理容器、2,3はこの処理容器1を挟んでその両
側に対向配置された一対の移動磁界発生装置、4は鉄系
合金等の強磁性材で作られた棒状ピースとしてなる作動
体、5が作動体4と一緒に処理容器1内に収容された被
処理物である。 また移動磁界発生装置2.3はいわゆるリニアモータと
してよく知られているものであり、鉄心6のコイルスロ
ットに例えば3相交流コイル7を巻装して構成され、こ
のコイル7に多相交流電源がら給電を行うことにより互
いに逆向きの移動磁界φ1.ψ2が生成される。 上記の構成で、移動磁界φ1.φ2の作用する磁場の中
に置かれた処理容器1内の作業空間には移動磁界φ1.
φ2の合成によって回転磁界が形成され、この回転磁界
と前記作動体4との相互作用に基づく電磁力により、作
動体4は磁界の移動方向への並進力、浮上刃、および回
転トルクを受けるとともに、さらに作動体同士の衝突2
作動体と処理容器壁との衝突が加わり、作動体4は処理
容器内で激しくランダム運動を生起する。これにより処
理容器1内に供給された被処理物5は、作動体4のラン
ダム運動に伴う作動体との衝突により細かく粉砕される
ことになる。 上記のようにこの種の電磁式粉砕処理装置では、被処理
物の粉砕処理が被処理物と作動体との衝突および被処理
物相互の衝突により進行する。このことから粉砕処理効
率を高めるには、処理容器内で同じ粒径程度の粒子同士
の衝突機会を多くして被処理物の粒度を整えることが有
効であり、また所望の粒度まで粉砕された砕製物は過粉
砕されない内に容器外に素早く取出し、過粉砕による粉
砕効率の低下を防ぐことが必要である。さらに処理容器
の内容積に対して被処理物の供給量が多すぎると作動体
4のランダム運動が阻害されて粉砕エネルギーの損失増
加を招き、逆に被処理物の量が少なすぎると処理量が減
少して処理能力が低下することから、処理容器1内には
常に適量の被処理物を収容した状態で粉砕処理を行うこ
とが望まれる。 しかして第4図、第5図に示したように処理容器内の同
じ作業空間で粗粉砕から微粉砕まで一貫して砕料を粉砕
処理するバッチ処理方式では運転効率が低く、かつ砕料
が所望粒度以下に過粉砕された超微粉が多く生じ、この
超微粉が粉砕動作の障害物となって粉砕効率を急速に低
下させる原因を作る等の問題がある。また処理容器を単
純に粗粉砕用と微粉砕用とに分けて配備し、粗粉砕用処
理容器で粉砕された粗粉砕段階の被処理物を微粉砕用処
理容器に移して微粉砕処理する方式も考えられるが、こ
の方式では粗粉砕用処理容器から取出して微粉砕用処理
容器に投入される被処理物の量が微粉砕用処理容器の内
容積に対して必ずしも適量とはならず、このままでは装
置全体として粉砕効率の向上に充分な成果を発揮するこ
とができない。
As this type of electromagnetic pulverization processing equipment, Figures 4 and 5
The device shown in the figure has already been proposed in, for example, Japanese Unexamined Patent Publication No. 58-45754 and is well known. That is, in FIGS. 4 and 5, 1 is a processing container made of non-magnetic material, 2 and 3 are a pair of moving magnetic field generators arranged oppositely on both sides of the processing container 1, and 4 is an iron A working body 5, which is a rod-shaped piece made of a ferromagnetic material such as a magnetic alloy, is a workpiece housed in the processing container 1 together with the working body 4. Furthermore, the moving magnetic field generator 2.3 is well known as a so-called linear motor, and is configured by winding, for example, a three-phase AC coil 7 around a coil slot of an iron core 6. By feeding power while moving magnetic fields φ1. ψ2 is generated. With the above configuration, the moving magnetic field φ1. A moving magnetic field φ1.
A rotating magnetic field is formed by the combination of φ2, and due to the electromagnetic force based on the interaction between this rotating magnetic field and the actuating body 4, the actuating body 4 receives a translational force in the direction of movement of the magnetic field, a floating blade, and a rotational torque. , and further collision between working bodies 2
Due to the collision between the actuator and the wall of the processing container, the actuator 4 causes violent random motion within the processing container. As a result, the object to be processed 5 supplied into the processing container 1 is finely pulverized by collision with the actuating body due to the random movement of the actuating body 4. As described above, in this type of electromagnetic pulverization processing apparatus, the pulverization of the object to be processed progresses through collisions between the object to be processed and the operating body and collisions between the objects to be processed. Therefore, in order to increase the efficiency of the pulverization process, it is effective to adjust the particle size of the material to be processed by increasing the chances of collisions between particles of the same particle size within the processing container, and also to improve the particle size of the material being pulverized to the desired particle size. It is necessary to quickly remove the crushed product from the container before it is over-pulverized, and to prevent a decrease in the crushing efficiency due to over-pulverization. Furthermore, if the amount of the material to be processed is too large relative to the internal volume of the processing container, the random motion of the actuating body 4 will be inhibited, resulting in an increased loss of crushing energy; conversely, if the amount of material to be processed is too small, the amount of material to be processed will be Since this decreases the processing capacity, it is desirable to carry out the pulverization process with an appropriate amount of the material to be processed stored in the processing container 1 at all times. However, as shown in Figures 4 and 5, the batch processing method, in which the crushed material is consistently pulverized from coarse to fine pulverization in the same working space inside the processing container, has low operational efficiency and There is a problem in that a large amount of ultrafine powder is generated which is over-pulverized to a particle size below the desired particle size, and this ultrafine powder becomes an obstacle to the grinding operation, causing a rapid decrease in grinding efficiency. Another method is to simply separate the processing containers into one for coarse pulverization and one for fine pulverization, and transfer the material to be processed at the coarse pulverization stage that has been pulverized in the pulverization container to the pulverization container for pulverization. However, with this method, the amount of material to be processed taken out of the coarse pulverization processing container and put into the pulverization processing container is not necessarily an appropriate amount for the internal volume of the pulverization processing container. In this case, the entire device cannot achieve sufficient results in improving the grinding efficiency.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、連
続式に供給される処理容器内の被処理物充填量を常に適
量に維持させつつ、かつ粉砕工程における被処理物の粒
度を整えて過粉砕を防止することにより粉砕効率を大幅
に向上できるようにした連続処理式の電磁式粉砕処理装
置を提供することを目的とする。
This invention has been developed in consideration of the above points, and it is possible to maintain the filling amount of the processed material in the processing container that is continuously supplied at an appropriate level while adjusting the particle size of the processed material in the pulverization process. It is an object of the present invention to provide a continuous processing type electromagnetic pulverization device that can significantly improve pulverization efficiency by preventing pulverization.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は処理容器の内部
をその入口側から順に粗粉砕室および微粉砕室の複数段
の粉砕室に区分し、かつ各室の境目および容器の出口側
端に各粉砕室に対応する粗粉、微粉用の分級篩を介装装
備するとともに、各段の粉砕室の内容積をそれぞれ単位
処理時間、単位容積当たりでその処理室内に生成される
分級篩の篩目に対応した粒径範囲の粒子生成量の逆数比
に分割して構成することにより、各段の粉砕室内毎にそ
の被処理物の粒度を一定範囲内に調整して粉砕効果を高
め、さらに連続式に供給される各粉砕室内の被処理物の
充填量を常に適量に維持し、これにより装置全体として
の粉砕効率の向上が図れるようにしたものである。
In order to achieve the above object, the present invention divides the inside of a processing container into a plurality of stages of grinding chambers, a coarse grinding chamber and a fine grinding chamber, in order from the inlet side. Each crushing chamber is equipped with a classification sieve for coarse powder and fine powder, and the internal volume of each stage of the crushing chamber is calculated based on the rate of the classification sieve produced in the processing chamber per unit processing time and unit volume. By dividing the particle size into the reciprocal ratio of the amount of particles produced in the particle size range corresponding to the grain size, the particle size of the material to be processed is adjusted within a certain range in each stage of the grinding chamber, increasing the grinding effect. The filling amount of the material to be processed in each grinding chamber that is continuously supplied is always maintained at an appropriate amount, thereby improving the grinding efficiency of the apparatus as a whole.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例による連続処理方式の電磁式
粉砕処理装置の構成を示すものであり、図中第4図、第
5図に対応する同一部材には同じ符号が付しである。す
なわちその内部に多数の作動体4を収容した処理容器1
はその前後面を開口して被処理物の入口、出口となし、
かつその入口側には被処理物供給管8.ホッパ9を介し
て被処理物の定量供給用フィーダ10に連繋するととも
に、出口側には砕製物取出管11を介してバグフィルタ
等の気流式砕製物回収装置12が接続されている。 なお13は搬送気流生成用の空気ブロア、14は製品回
収弁、15は砕製物製品の回収容器であり、これらで気
流搬送方式による連続粉砕処理装置を構成している。 ここで前記処理容器1に関して、この発明により処理容
器1はその内部空間が入口側より順に粗粉砕室IAと微
粉砕室IBとに直列区分され、かつ粗粉砕室IAと微粉
砕室IBとの境目、および微粉砕室IBの出口側端には
それぞれ粗粉用の分級篩16^および微粉用の分級篩1
6Bが介装配備されている。 へらに前記分級篩16A、 16Bの篩面を覆って粉砕
室内側には符号17で示す篩保護用の多孔板が設置され
ている。この多孔板17は前記分級篩の篩目よりも径大
でかつ作動体4が通過しない程度の孔が板面に分散開口
した分級篩よりも強度の強い例えばパンチングメタル板
として成る。一方、前記した粗粉砕室IA、微粉砕室I
Bの内容積Vl、 V2は、それぞれ単位処理時間、単
位容積光たりで各粉砕室IA。 IBの室内に生成される砕製物の内、それぞれ分級篩1
6A、 16Bの篩目を透過可能な粒径範囲の粒子生成
量をPi、 P2として、その粒子生成量Pi、 P2
の逆数の比に分割設定して画成されている。なお各粉砕
室IA、 IBにはあらかじめそれぞれ所定量の作動体
4が充填されている。 上記の構成でフィーダ10よりホッパ9へ被処理物5を
定量ずつ連続式に投入すると、被処理物5はプロア15
の吸引力による搬送気流に乗り、供給管8を介して処理
容器1の粗粉砕室IAに導入され、ここで粗粉砕処理さ
れる。その後に粗粉5aは粗粉用分級篩16^の篩目を
透過して微粉砕室IBに移行し、ここで微粉砕処理され
る。また微粉砕室IB内でさらに細かく粉砕処理された
微粉5bは微粉用分級篩16Bの篩目を透過し、気流搬
送により取出管11を経て砕製物回収装置12に入り、
ここで搬送気流より分離回収される。なお回収装置12
に回収された砕製物は回収弁14を開放することにより
製品として回収容器15へ向けて取出される。 上記粉砕処理工程で、前述のように粗粉砕室IAで粉砕
処理された粗粉5aの内、粗粉用分級篩16Aの篩目を
透過可能な粒径範囲の単位処理時間、単位容積光たりの
粒子生成量をPL、粗粉砕室1への内容積をvlとすれ
ば、搬送気流とともに粗粉用分級篩16Aを通過して微
粉砕室IBに移行する被処理物の単位時間当たりの量0
1は、 Q1キPIXシ1−−−−−−−−一・−−−−−−−
−−−−−−−−−−−−−−(11であり、同様に微
粉砕室IBで粉砕処理された微粉5bの内、微粉用分級
篩16Bを透過可能な粒径範囲の単位処理時間、単位容
積光たりの粒子生成量をP2. 微粉砕室IBの内容積
をv2とすれば、微分用分級篩16Bの篩目を通過して
回収装置12側に取出される所望粒度の砕製物製品5c
の単位時間当たりの取出量02は、 Q 2 = P 2 x V 2−−−−−−−−−−
−−−−−−−−−−−−−(2)となる。しかして粗
粉砕室1八および微粉砕室IBの内容積VL V2はそ
れぞれ前記粒子生成1tP1. P2の逆数の比となる
ように設定されているのでその比例定数をkとすれば、 V 1 = ](/ P 1−−−−−−一・−・−−
−−−−−−−−−−−−−−−(3)v 2 = k
/ P 2−−−−−−−−−−−−−−−−−−−−
−−− (41として表される。したがって前記(11
,(21式に(3)。 (4)式を代入すれば、 Q1=P1・k /P1= k 、 Q2=P2・k/
P2=にとなり、Ql、 Q2が共に等しくなる。つま
り粗粉砕室1八と微粉砕室IBとの間で被処理物の導入
、排出量がバランスして各粉砕室IA、 ITIで粉砕
処理される被処理物の充填量が常にほぼ一定した適量に
維持されることになり、したがって電磁式粉砕処理装置
を常に最適な運転条件で運転することができるようにな
る。しかも各段の粉砕室IAおよびIBの内部では粒径
が略同程度に調整された被処理物が存在して粉砕処理さ
れることになるので、粉砕が均等に進行して過粉砕の発
生も抑止できるようになる。 上記の効果を確認するために、パーマロイの金属粉を被
処理物として発明者の行った実験によれば次記のような
結果が得られた。すなわち広範囲な粒度組成のパーマロ
イ金属粉を単一容器内に収容して電磁粉砕処理した際に
得られる単位処理時間、単位容積当たりの粒度分布は第
3図における線工であるのに対し、70メソシユ以下に
分級された微粉を被処理物として電磁粉砕処理した場合
の粒度分布は線■であった。ここで第1図に示した装置
に付き、粗粉用分級篩16Aの篩目を70メツシユ、i
粉用分級篩16Bの篩目を100メソシユに定め、かつ
粗粉砕室1八と微粉砕室IBとの内容積比を、1 / 
(100−92,5)  : 1 / (100−86
,5)−9:5 に設定して粉砕処理した場合と、前記の微粉用分級篩1
6Aを用いず、処理容器1の出口側端にのみ微粉用分級
篩16Bを装備して粉砕処理した場合とを比較したとこ
ろ、前者の方が後者と比べて粉砕処理能力が約18%向
上する結果が得られた。しかも各分級篩16A、 16
Bの篩面を覆うように室内側には篩保護用の多孔板17
を介装配備したことにより、分級篩16A、 16Bに
作動体4が直接衝突するのが防止され、これにより分級
篩の破損無しに長時間安定して粉砕処理を行うことが確
認できた。 次に第2図にこの発明の別な実施例を示す。この実施例
と第1図に示した実施例との相違点は、処理容器1の設
置姿勢をその出口側を下にして傾斜配置とし、被処理物
5の搬送を重力搬送方式とした点にあり、処理容器1内
に区分した粗粉砕室1八、微粉砕室IBの内容積、およ
び粗粉用、WI粉用の分級篩16A、 16Bは第1図
のものと同一である。 これにより第1図と同等な効果を奏するとともに、一方
では第1図の実施例に組み込まれたバグフィルタ等の砕
製物回収装置、ブロア等が省略できて設備費および運転
コストが軽減できる。
FIG. 1 shows the configuration of a continuous processing electromagnetic crushing apparatus according to an embodiment of the present invention, and the same members corresponding to FIGS. 4 and 5 are given the same reference numerals. . That is, the processing container 1 accommodates a large number of working bodies 4 therein.
The front and rear surfaces are opened to serve as the inlet and outlet of the processed material.
And on the inlet side there is a supply pipe 8 for the material to be treated. It is connected via a hopper 9 to a feeder 10 for quantitatively supplying the material to be processed, and an air flow type crushed product recovery device 12 such as a bag filter is connected to the outlet side via a crushed product take-out pipe 11. Note that 13 is an air blower for generating a conveying air flow, 14 is a product recovery valve, and 15 is a recovery container for crushed products, and these constitute a continuous pulverization processing apparatus using an air flow conveyance system. Regarding the processing container 1, according to the present invention, the processing container 1 has an internal space divided in series from the inlet side into a coarse grinding chamber IA and a fine grinding chamber IB, and a coarse grinding chamber IA and a fine grinding chamber IB. A classification sieve 16^ for coarse powder and a classification sieve 1 for fine powder are installed at the boundary and at the exit side end of the fine grinding chamber IB, respectively.
6B is deployed as an intermediary. A perforated plate 17 for protecting the sieves is installed on the inside of the crushing chamber to cover the sieve surfaces of the classification sieves 16A and 16B. This perforated plate 17 is made of, for example, a punched metal plate which has a diameter larger than the sieve mesh of the classification sieve and is stronger than a classification sieve which has holes dispersedly opened in the plate surface to the extent that the working body 4 cannot pass through. On the other hand, the above-mentioned coarse grinding chamber IA and fine grinding chamber I
The internal volumes Vl and V2 of B are unit processing time and unit volume light of each grinding chamber IA, respectively. Of the crushed products produced in the IB room, each classification sieve 1
The amount of particles produced in the particle size range that can pass through the sieves of 6A and 16B is Pi, P2, and the amount of particles produced Pi, P2
It is divided and defined by the ratio of the reciprocal of . Note that each of the crushing chambers IA and IB is filled with a predetermined amount of the working body 4 in advance. With the above configuration, when the workpiece 5 is continuously fed into the hopper 9 from the feeder 10 in fixed quantities, the workpiece 5 is transferred to the proa 15.
The particles are introduced into the coarse pulverization chamber IA of the processing container 1 through the supply pipe 8, and are coarsely pulverized there. Thereafter, the coarse powder 5a passes through the mesh of the coarse powder classification sieve 16^ and moves to the pulverization chamber IB, where it is pulverized. Further, the fine powder 5b that has been further finely crushed in the fine crushing chamber IB passes through the sieve of the fine powder classification sieve 16B, and enters the crushed product recovery device 12 through the take-out pipe 11 by air flow conveyance.
Here, it is separated and collected from the conveying airflow. In addition, the collection device 12
By opening the collection valve 14, the crushed material collected is taken out as a product to a collection container 15. In the above-mentioned pulverization process, the unit processing time and unit volume of light of the particle size range that can pass through the sieve of the coarse-powder classification sieve 16A among the coarse powder 5a that has been pulverized in the coarse-pulverization chamber IA as described above. If the amount of particles produced is PL, and the internal volume of the coarse grinding chamber 1 is vl, then the amount of processed material passing through the coarse powder classification sieve 16A together with the conveying airflow and transferred to the fine grinding chamber IB per unit time is 0
1 is Q1 Ki PIX 1----------1・------
---------------- (11, unit processing of the particle size range that can pass through the fine powder classification sieve 16B among the fine powders 5b similarly pulverized in the pulverization chamber IB) If the amount of particles produced per time and unit volume of light is P2.If the internal volume of the pulverization chamber IB is v2, then the crushed particles of the desired particle size that pass through the sieve openings of the differentiation sieve 16B and are taken out to the recovery device 12 side. Manufactured product 5c
The amount taken out per unit time 02 is: Q 2 = P 2 x V 2
−−−−−−−−−−−−(2). Therefore, the internal volumes VL V2 of the coarse grinding chamber 18 and the fine grinding chamber IB are respectively the particle production 1tP1. Since it is set to be the ratio of the reciprocal of P2, if the constant of proportionality is k, then V 1 = ](/ P 1−−−−−−−−−−−−−
−−−−−−−−−−−−−−(3) v 2 = k
/ P 2---------------------
--- (represented as 41. Therefore, the above (11
, ((3) into equation 21. Substituting equation (4), Q1=P1・k /P1= k, Q2=P2・k/
P2=, and Ql and Q2 are both equal. In other words, the introduction and discharge of the material to be processed is balanced between the coarse grinding chamber 18 and the fine grinding chamber IB, so that the filling amount of the material to be processed in each of the grinding chambers IA and ITI is always approximately constant and appropriate. Therefore, the electromagnetic pulverization processing apparatus can be operated under optimum operating conditions at all times. Moreover, inside the grinding chambers IA and IB of each stage, there are objects to be processed whose particle sizes are adjusted to be approximately the same, so that the grinding proceeds evenly and over-grinding does not occur. It will be possible to suppress it. In order to confirm the above effects, the inventor conducted an experiment using permalloy metal powder as a workpiece, and the following results were obtained. In other words, the unit processing time and particle size distribution per unit volume obtained when permalloy metal powder with a wide range of particle size compositions is housed in a single container and subjected to electromagnetic pulverization is 70% compared to the wirework in Figure 3. The particle size distribution when electromagnetic pulverization was performed using a fine powder classified as below mesoscale was line (■). Here, with the apparatus shown in FIG.
The sieve size of the powder classification sieve 16B is set to 100 mesh, and the internal volume ratio of the coarse grinding chamber 18 and the fine grinding chamber IB is set to 1/1.
(100-92,5): 1/(100-86
, 5) -9:5 setting and pulverization, and the above-mentioned fine powder classification sieve 1
A comparison was made with a case where the fine powder classification sieve 16B was installed only at the outlet end of the processing container 1 without using the pulverization process, and the pulverization capacity of the former was improved by about 18% compared to the latter. The results were obtained. Moreover, each classification sieve 16A, 16
A perforated plate 17 for protecting the sieve is installed on the indoor side so as to cover the sieve surface of B.
It was confirmed that the intervening arrangement prevented the operating body 4 from directly colliding with the classification sieves 16A and 16B, and that the crushing process could be carried out stably for a long period of time without damaging the classification sieves. Next, FIG. 2 shows another embodiment of the invention. The difference between this embodiment and the embodiment shown in FIG. 1 is that the processing container 1 is installed in an inclined position with its outlet side facing down, and the material to be processed 5 is transported by gravity transport. The internal volumes of the coarse grinding chamber 18 and the fine grinding chamber IB divided into the processing container 1, and the classification sieves 16A and 16B for coarse powder and WI powder are the same as those shown in FIG. As a result, the same effect as in FIG. 1 can be obtained, and on the other hand, the crushed material recovery device such as a bag filter, a blower, etc. incorporated in the embodiment of FIG. 1 can be omitted, and equipment costs and operating costs can be reduced.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、処理容器の内部を
その入口側から順に粗粉砕室および微粉砕室の複数段の
粉砕室に区分し、かつ各室の境目および容器の出口側端
に各粉砕室に対応する粗粉。 微粉用の分級篩を介装装備するとともに、各段の粉砕室
の内容積をそれぞれ単位処理時間、単位容積当たりでそ
の処理室内に生成される分級篩の篩目に対応した粒径範
囲の粒子生成量の逆数比に分割して構成したことにより
、各段の粉砕室内毎にその被処理物の粒度を一定範囲内
に調整して粉砕効果を高め、しかも各粉砕室内の被処理
物の量を常に適量に維持して装置全体としての粉砕効率
の向上が図れる粉砕効率の優れた電磁式粉砕処理装置を
提供することができる。
As described above, according to the present invention, the interior of the processing container is divided into a plurality of grinding chambers including a coarse grinding chamber and a fine grinding chamber in order from the inlet side, and the boundaries between each chamber and the outlet side end of the container are Coarse powder corresponding to each grinding chamber. In addition to being equipped with a classification sieve for fine powder, the internal volume of each stage of the crushing chamber can be divided into particles within the particle size range corresponding to the sieve mesh of the classification sieve produced in the processing chamber per unit processing time and unit volume. By dividing the product into reciprocal ratios, the particle size of the material to be processed in each stage of the grinding chamber can be adjusted within a certain range to enhance the grinding effect, and the amount of material to be processed in each grinding chamber can be adjusted to within a certain range. It is possible to provide an electromagnetic pulverization device with excellent pulverization efficiency, which can always maintain an appropriate amount of pulverization and improve the pulverization efficiency of the entire device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の異なる実施例
の構成図、第3図はパーマロイ金属粉を被処理物として
電磁粉砕処理した実験結果の粒度分布図、第4図は電磁
式粉砕処理装置の原理構成図、第5図は第4図の矢視V
−V断面図である。 各図において、 1:処理容器、IA:粗粉砕室、IB:微粉砕室、2.
3:移動磁界発生装置、4:作動体、5:被処理物、5
a:粗粉、5b:p粉、5c:砕製物製品、16A:粗
粉用分級篩、16B;微粉用分級篩、17;第1図 bC 第2図 第4図 第5図
Figures 1 and 2 are configuration diagrams of different embodiments of the present invention, Figure 3 is a particle size distribution diagram of the experimental results of electromagnetic pulverization of permalloy metal powder as a workpiece, and Figure 4 is a diagram of electromagnetic pulverization. The principle configuration diagram of the device, Figure 5 is the arrow V in Figure 4.
-V sectional view. In each figure, 1: processing container, IA: coarse grinding chamber, IB: fine grinding chamber, 2.
3: Moving magnetic field generator, 4: Working body, 5: Processed object, 5
a: Coarse powder, 5b: P powder, 5c: Crushed product, 16A: Classifying sieve for coarse powder, 16B; Classifying sieve for fine powder, 17; Fig. 1 bC Fig. 2 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 1)強磁性材で作られた多数の作動体を収容した非磁性
の処理容器と、該処理容器を挟んでその両側に対向配備
された互いに逆向きの移動磁界を生成する移動磁界発生
装置とから成り、移動磁界との相互作用に基づく電磁力
で生起した前記作動体のランダム運動により処理容器内
へ供給された被処理物を粉砕処理し、その砕製物を処理
容器から取り出すようにした電磁式粉砕処理装置におい
て、前記処理容器の内部をその入口側から順に粗粉砕室
および微粉砕室の複数段の粉砕室に区分し、かつ各室の
境目および容器の出口側端に各粉砕室に対応する粗粉、
微粉用の分級篩を介装配備するとともに、各段の粉砕室
の内容積をそれぞれ単位処理時間、単位容積当たりでそ
の処理室内に生成される分級篩の篩目に対応した粒径範
囲の粒子生成量の逆数比に分割して構成したことを特徴
とする電磁式粉砕処理装置。 2)特許請求の範囲第1項記載の電磁式粉砕処理装置に
おいて、各段の粉砕室毎に分級篩の篩面を覆って作動体
と分級篩との衝突を防止する篩保護用の多孔板が配備さ
れていることを特徴とする電磁式粉砕処理装置。
[Scope of Claims] 1) A non-magnetic processing container containing a large number of actuating bodies made of ferromagnetic material, and generating moving magnetic fields in opposite directions opposite to each other on both sides of the processing container. A moving magnetic field generating device is used to pulverize the processed material supplied into the processing container by the random movement of the operating body generated by electromagnetic force based on the interaction with the moving magnetic field, and the crushed product is processed. In an electromagnetic pulverization processing device that is taken out from a container, the inside of the processing container is divided into a plurality of stages of pulverization chambers, a coarse pulverization chamber and a fine pulverization chamber, in order from the entrance side, and a boundary between each chamber and an outlet of the container. Coarse powder corresponding to each grinding chamber at the side edge,
A classification sieve for fine powder is installed, and the internal volume of each stage of the crushing chamber is divided into particles with a particle size range corresponding to the sieve size of the classification sieve that is generated in the processing chamber per unit processing time and unit volume. An electromagnetic crushing device characterized in that it is configured to divide the production amount into reciprocal ratios. 2) In the electromagnetic crushing apparatus according to claim 1, a perforated plate for protecting the sieve covers the sieve surface of the classifying sieve in each stage of the crushing chamber to prevent collision between the operating body and the classifying sieve. An electromagnetic crushing device characterized by being equipped with.
JP3427186A 1986-02-19 1986-02-19 Electromagnetic type crushing apparatus Pending JPS62193659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3427186A JPS62193659A (en) 1986-02-19 1986-02-19 Electromagnetic type crushing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3427186A JPS62193659A (en) 1986-02-19 1986-02-19 Electromagnetic type crushing apparatus

Publications (1)

Publication Number Publication Date
JPS62193659A true JPS62193659A (en) 1987-08-25

Family

ID=12409494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3427186A Pending JPS62193659A (en) 1986-02-19 1986-02-19 Electromagnetic type crushing apparatus

Country Status (1)

Country Link
JP (1) JPS62193659A (en)

Similar Documents

Publication Publication Date Title
CN102574126B (en) Ferromagnetic material separation apparatus
JP3578880B2 (en) Crusher
KR101354982B1 (en) Ferromagnetic material separation apparatus
US5143303A (en) Method and equipment for processing of particularly finely divided material
US1621571A (en) Pulverizer
JPS62193659A (en) Electromagnetic type crushing apparatus
KR20120016473A (en) Manufacturing method of silicon powder and manufacturing device for the same
JPH0275357A (en) Method for dispersing, crushing or deflocculating and sorting solid substance and sorting jet crusher
EP0140613A2 (en) Apparatus for and method of obtaining a comminuted product from a solid feed material
JPH0376184B2 (en)
US1875531A (en) Pboduction of abrasive floubs
US1905780A (en) Apparatus for grinding materials which contain particles of iron
CN113145290A (en) Method for accelerating material cleaning by strong magnet particles and application thereof
JPS5952536A (en) Moving magnet field type crushing apparatus
JPS5949858A (en) Sorting device of powder
JPS5946146A (en) Electromagnetic type crushing treating device
JPS61166905A (en) Production of raw material powder for permanent magnet
JPS61153130A (en) Electromagnetic crushing and mixing apparatus
JPS58214355A (en) Electromagnetic type crushing processing device
JPS6242753A (en) Method and apparatus for producing fine powder
JPH0376193B2 (en)
RU2162752C1 (en) Method of dry classification of powder material particles
JPS58210866A (en) Electromagnetic type crushing treating device treating material to be crushed of small bulk density
JPS62204866A (en) Grinding and classifying apparatus
JPS5955360A (en) Electromagnetic type crushing and mixing apparatus