JPS6219364B2 - - Google Patents

Info

Publication number
JPS6219364B2
JPS6219364B2 JP55017127A JP1712780A JPS6219364B2 JP S6219364 B2 JPS6219364 B2 JP S6219364B2 JP 55017127 A JP55017127 A JP 55017127A JP 1712780 A JP1712780 A JP 1712780A JP S6219364 B2 JPS6219364 B2 JP S6219364B2
Authority
JP
Japan
Prior art keywords
glass
mat
temperature
heating
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55017127A
Other languages
Japanese (ja)
Other versions
JPS56114836A (en
Inventor
Jun Matsumoto
Hiroaki Arita
Toshiaki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1712780A priority Critical patent/JPS56114836A/en
Publication of JPS56114836A publication Critical patent/JPS56114836A/en
Publication of JPS6219364B2 publication Critical patent/JPS6219364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は無機ガラス繊維製品、特にガラス短繊
維製品であるガラス繊維マツト(以下単にガラス
マツトとも言う)の再資源化方法すなわち、ガラ
ス繊維マツトからガラス原料を製造する方法に関
係する。
Detailed Description of the Invention The present invention relates to a method for recycling inorganic glass fiber products, particularly glass fiber mat (hereinafter simply referred to as glass mat), which is a short glass fiber product, that is, a method for producing glass raw materials from glass fiber mat. Involved.

従来、ガラス短繊維を有機質バインダーにより
綿状に集積したガラスマツト製品の不良品とか切
りくず等はそのまま埋立て地に廃棄するとか、ま
たは再熔解用原料として使用することが知られて
いる。ガラスマツトには有機質のバインダーが含
有されているが、ガラスマツトをそのまま900℃
〜1500℃のガラス熔解窯内に投入するとバインダ
ーが分解、燃焼する前にガラスが熔融してしま
い、有機分をガラス中に巻き込みカーボン・アン
バーを生じてガラスに好ましくない着色を生じさ
せる。更にガラス中にカーボン・アンバーを含む
とガラスが強い還元状態になるのでガラス熔解窯
に使用されている熱電対の白金キヤツプや耐火物
用の白金カバーあるいはガラス繊維製造設備にお
ける種々の白金部品を損傷するという欠点があ
る。
Conventionally, it has been known that defective products, chips, etc. of glass mat products made by collecting short glass fibers in a flocculent form with an organic binder are either disposed of in a landfill or used as a raw material for remelting. Glass pine contains an organic binder, but glass pine is heated to 900℃ as is.
When placed in a glass melting kiln at ~1500°C, the glass melts before the binder decomposes and burns, entraining organic components into the glass and creating carbon amber, which causes undesirable coloration of the glass. Furthermore, if carbon amber is included in the glass, the glass becomes strongly reduced, which can damage platinum caps for thermocouples used in glass melting furnaces, platinum covers for refractories, and various platinum parts in glass fiber manufacturing equipment. There is a drawback that it does.

このような欠点をなくするためにガラスマツト
から有機質バインダーを除去してガラスマツトを
再資源化する方法が知られており、米国特許
3852108にはガラスマツトをガラスの軟化点より
も低くかつ有機質バインダーの燃焼温度よりも高
い温度に加熱して、マツト中のバインダーを燃焼
除去する方法が記載されている。
In order to eliminate these drawbacks, a method for recycling glass pine by removing organic binders from glass pine is known, and has been patented in the United States.
No. 3,852,108 describes a method for burning off the binder in the mat by heating the glass mat to a temperature lower than the softening point of the glass and higher than the combustion temperature of the organic binder.

このようにバインダーを除去したガラスマツト
は、上記のガラス着色や白金部品の損傷を防止す
ることが出来るものの、そのかさ比重がガラスマ
ツト製品と同じく0.005〜0.05と小さく、それを
ガラス熔解窯内へ投入するにはハンドリングが困
難であるという欠点がある。すなわちガラスマツ
トをスクリユーフイーダーでガラス熔解窯内に投
入するのは途中で詰つて使用困難である。またガ
ラス原料混合用ミキサーにガラス原料の粉体バツ
チとともにガラスマツトを入れて混合する場合に
も、ガラスマツトの混入率が10%以上になると嵩
ばつてミキサーへ入れにくくなるという欠点があ
る。このようなハンドリングの困難さの他に、バ
インダーを除去したガラスマツトはガス燃焼ある
いは重油燃焼方式のガラス熔解窯に入れるとマツ
ト中に含まれるガラス繊維くずが窯内気流に乗つ
て舞い上り窯壁、窯天井、蓄熱室レンガに付着し
それらを侵食するという欠点がある。
Although the glass matte from which the binder has been removed can prevent the above-mentioned glass coloring and damage to platinum parts, its bulk specific gravity is as low as 0.005 to 0.05, which is the same as glass matte products, and it is difficult to put it into a glass melting kiln. has the disadvantage of being difficult to handle. In other words, it is difficult to use the glass mat when it is fed into the glass melting kiln using a screw feeder because it gets clogged in the middle. Furthermore, when glass mat is mixed together with a powder batch of glass raw materials in a mixer for mixing glass raw materials, there is a disadvantage that if the mixing ratio of glass mat is 10% or more, it becomes bulky and difficult to put into the mixer. In addition to this difficulty in handling, if the glass mat from which the binder has been removed is placed in a gas-fired or heavy oil-fired glass melting kiln, the glass fiber waste contained in the mat will fly up on the air currents in the kiln and blow up against the walls of the kiln. It has the disadvantage that it adheres to the kiln ceiling and heat storage room bricks and corrodes them.

本発明はこのような欠点を除去して、ガラスマ
ツトからハンドリングが容易でかつ熔解窯耐火物
の侵食のおそれのないガラス原料を得ることを目
的とするものである。
The object of the present invention is to eliminate such drawbacks and to obtain a glass raw material from a glass mat that is easy to handle and is free from the risk of corroding the melting furnace refractories.

本発明者等は鋭意研究の結果、ガラスマツトを
構成するガラスの軟化点以上の適当な温度で加熱
すれば、有機質バインダーを分解・燃焼により除
去しつつガラスを半融状態にならしめ、その表面
張力によりガラスマツトを構成するガラス繊維に
自己収縮せしめ、さらにガラスマツト全体を板状
に焼結せしめ得ることを見出した。そしてこの板
状に焼結体がハンドリング時にあるいは輸送時に
嵩ばらず、ガラス熔解窯内に投入しても飛散せ
ず、熔解してもガラス中にカーボンアンバーを大
量に残さないすぐれたガラス原料であることを見
出した。
As a result of extensive research, the present inventors have found that by heating at an appropriate temperature above the softening point of the glass constituting the glass mat, the organic binder can be removed by decomposition and combustion, and the glass can be made into a semi-molten state, reducing its surface tension. It was discovered that the glass fibers constituting the glass mat can be caused to self-shrink, and the entire glass mat can be sintered into a plate shape. This plate-shaped sintered body does not bulk up during handling or transportation, does not scatter when put into a glass melting furnace, and is an excellent glass raw material that does not leave a large amount of carbon amber in the glass even when melted. I discovered something.

本発明はガラス繊維マツトをそれを構成するガ
ラスの粘度がそれぞれ10の7.0乗ポアズになる温
度と10の4.0乗ポアズになる温度の範囲内におい
て加熱することにより、ガラス繊維マツトをその
かさ比重が0.08〜1.2に増加するまで収縮させる
ことを特徴とするガラス繊維マツトからガラス原
料も製造する方法である。
In the present invention, the bulk specific gravity of the glass fiber mat is reduced by heating the glass fiber mat within a temperature range such that the viscosity of the glass constituting the mat becomes 10 to the 7.0 power poise and 10 to the 4.0 power poise, respectively. This method also produces glass raw material from glass fiber mat, which is characterized by shrinking the glass fiber mat until its shrinkage increases to 0.08 to 1.2.

本発明においてガラスマツトを構成するガラス
の粘度が10の7.0乗ポアズになる温度と10の4.0乗
ポアズになる温度の範囲内にガラスマツトを加熱
するとガラスが軟化して流動性を持つてくる上に
表面張力が強く作用し表面積を小さくしようとし
てガラス繊維の軸方向に収縮するとともに繊維の
交点でも熔着がおこり焼結状態となる。
In the present invention, when the glass mat is heated within the range of a temperature where the viscosity of the glass constituting the glass mat becomes 10 to the 7.0 power poise and 10 to the 4.0 power poise, the glass softens and becomes fluid, and the surface Strong tension acts on the glass fibers, causing them to contract in the axial direction in an attempt to reduce their surface area, and welding also occurs at the intersections of the fibers, resulting in a sintered state.

ガラスマツトはその繊維のからみの間に多量の
空気を含んでいるために繊維同志の融着、焼結は
ゆるやかに進行し、ガラスマツト表面が焼結して
表面の孔が封じられてしまうまでに、ガラスマツ
トを含有する有機質のバインダーの分解気化また
は燃焼がおこりその大部分がガラスマツトの表面
の孔を通つてその外へ出て行く。そしてこの加熱
処理後は表面がなめらかで、内部が多孔質で、か
さ比重が0.08〜1.2の板状物質になる。このよう
な熱処理物はハンドリングが容易で、ガラス原料
としてガス燃焼や重油燃焼のガラス熔解窯に入れ
てもガラス繊維くずが飛散しない。
Glass pine contains a large amount of air between its fibers, so the fusion and sintering of the fibers progresses slowly, and by the time the glass pine surface is sintered and the pores on the surface are sealed, Decomposition, vaporization, or combustion of the organic binder containing the glass mat occurs, and most of it exits through the pores on the surface of the glass mat. After this heat treatment, the material becomes a plate-like material with a smooth surface, a porous interior, and a bulk specific gravity of 0.08 to 1.2. Such a heat-treated product is easy to handle, and glass fiber waste will not scatter even if it is put into a gas-fired or heavy oil-fired glass melting kiln as a raw material for glass.

もしガラスマツトをガラスの軟化点(ガラスの
粘度が10の7.65乗になる温度)またはそれ以下の
温度で加熱した場合にはガラスマツトの収縮や焼
結は全く起こらないので、この状態ではガラスマ
ツトはバインダーをほとんど失つて繊維がバラバ
ラとなりハンドリング時やガラス熔解窯への投入
時にガラス繊維くずが極めて飛散しやすくなつて
しまう。またガラスの軟化点よりも高いがガラス
の粘度が10の7.0乗となる温度よりも低い温度に
ガラスマツトを加熱した場合には、ガラスマツト
の収縮、焼結に多大の時間を要し、しかも収縮、
焼結が不均一になりやすいので好ましくない。
If the glass mat is heated at or below the softening point of the glass (the temperature at which the viscosity of the glass is 10 to the 7.65th power), no shrinkage or sintering of the glass mat will occur. Most of the fibers are lost, and the fibers become fragmented, making it extremely easy for glass fiber waste to scatter during handling or when feeding into a glass melting kiln. Furthermore, if the glass mat is heated to a temperature that is higher than the softening point of the glass but lower than the temperature at which the viscosity of the glass is 10 to the 7.0 power, it will take a long time for the glass mat to shrink and sinter.
This is not preferred because sintering tends to be uneven.

他方、ガラスマツトをガラスの粘度が10の4.0
乗ポアズになる温度よりも高い温度に加熱した場
合には、ガラスの熔着、収縮、焼結が早く起りす
ぎて上記のような有機質バインダーが分解、燃焼
して出ていく十分な時間がとれないうちにガラス
マツト表面が封じられてしまい有機質バインダー
を主にカーボンの形でガラス中にとじ込めてしま
うことになる。
On the other hand, the glass matte has a viscosity of 10 to 4.0
If the glass is heated to a temperature higher than the temperature at which it becomes a poise, the glass will melt, shrink, and sinter too quickly, and the organic binder described above will not have enough time to decompose, burn, and come out. The surface of the glass pine becomes sealed before the glass mat is exposed, and the organic binder is trapped inside the glass, mainly in the form of carbon.

以上に述べたようにガラスマツトの加熱温度は
ガラスマツトを構成する繊維のガラスの粘度が10
の7.0乗ポアズになる温度と10の4.0乗ポアズにな
る温度の範囲内に保つ必要がある。この温度の範
囲内でガラスマツトを加熱する以前に、加熱途中
に、または加熱後に前記温度範囲よりも低い温度
に加熱することは何ら差し支えない。しかしなが
ら、前記温度範囲内でガラスマツトを加熱する以
前または加熱途中に前記温度範囲よりも高い温度
に加熱することは好ましくない。というのはいつ
たんガラスマツト表面に存在する孔が封じられて
しまうと、ガラスマツト内部に閉じ込められた有
機質バインダーをその後にガラスマツト外へ取り
出すことは困難になるからである。
As mentioned above, the heating temperature of the glass mat is determined by the viscosity of the glass fibers that make up the glass mat.
It is necessary to keep the temperature within the range between the temperature that becomes 7.0 poise and the temperature that becomes 10 4.0 poise. There is no problem in heating the glass mat to a temperature lower than the above temperature range before, during or after heating within this temperature range. However, it is not preferable to heat the glass mat to a temperature higher than the temperature range before or during heating within the temperature range. This is because once the pores existing on the surface of the glass mat are sealed, it becomes difficult to extract the organic binder trapped inside the glass mat to the outside of the glass mat.

加熱温度および加熱時間を調整することによ
り、ガラスマツトの収縮、焼結体のかさ比重を
0.5〜1.0にすることができ、この収縮焼結体は全
くけば立ちがなくかつ所定寸法の破砕も容易であ
るので好ましい。
By adjusting the heating temperature and heating time, shrinkage of the glass mat and bulk specific gravity of the sintered body can be controlled.
It is preferable that the shrinkage sintered body has no fluff and can be easily crushed to a predetermined size.

本発明において、ガラスマツトを加熱する際の
ガラスマツトの雰囲気は必ずしも空気または酸化
性雰囲気である必要はないが、ガラスマツト中の
有機バインダーの燃焼はガラスマツトの加熱を幾
分助けるので、空気または酸化性雰囲気が好まし
い。
In the present invention, the atmosphere of the glass mat when heating the glass mat does not necessarily have to be air or an oxidizing atmosphere, but the combustion of the organic binder in the glass mat helps the heating of the glass mat to some extent, so air or an oxidizing atmosphere is necessary. preferable.

本発明による方法において、上記の領域の温度
に加熱する場合、加熱処理に要する時間は加熱温
度によつて異なるが1分〜5分ぐらいが熱経済上
から好都合である。
In the method according to the present invention, when heating to a temperature in the above range, the time required for the heat treatment varies depending on the heating temperature, but from a thermoeconomic point of view, it is convenient to take about 1 to 5 minutes.

ガラスマツトが常温から上記処理温度にさらさ
れた場合には、有機質バインダーは10秒から60秒
くらいでガラスマツトの外へ出てしまい焼結は30
秒から90秒で完了してしまうので処理時間は1分
〜2分で十分である。加熱処理時間が2分よりも
大となつても収縮、焼結はそれ以上進行しない。
なお、ガラスマツトに含まれる有機質バインダー
を先にガラスの粘度が10の7乗になる温度よりも
低い温度で処理してからガラス粘度が10の7.0乗
ポアズになる温度と10の4.0乗ポアズになる温度
の範囲内で加熱してもよいが、それだけ大きな設
備が必要となり、またガラス繊維の融着、焼結に
有機質バインダーの燃焼熱を利用できないので不
利である。常温のガラスマツトを上記温度領域に
一気にさらすのが、経済的に有利である。
When the glass mat is exposed to the above processing temperature from room temperature, the organic binder comes out of the glass mat in about 10 to 60 seconds, and sintering takes about 30 seconds.
Since the process is completed in seconds to 90 seconds, a processing time of 1 to 2 minutes is sufficient. Even if the heat treatment time is longer than 2 minutes, shrinkage and sintering do not proceed any further.
In addition, the organic binder contained in the glass mat is first treated at a temperature lower than the temperature at which the viscosity of the glass becomes 10 to the 7th power, and then the temperature at which the glass viscosity becomes 10 to the 7.0 power poise and 10 to the 4.0 power poise. Heating may be carried out within a temperature range, but this is disadvantageous because it requires larger equipment and the heat of combustion of the organic binder cannot be used for fusing and sintering the glass fibers. It is economically advantageous to expose the room temperature glass mat to the above temperature range all at once.

本発明による方法において処理するガラスマツ
トを構成するガラス自身の高温における表面張力
が大きい程好ましい結果が得られる。これは前記
のごとくガラスの粘度が10の7.0乗ポアズになる
温度以上でのガラス繊維の収縮が大きいと高密度
の板状物質になりやすいためである。例えばガラ
スマツトを構成するガラスの組成がSiO2で35重
量%〜47重量%、Al2O3で9重量%〜15重量%、
CaOで18重量%〜40重量%、MgOで0重量%〜
7重量%、Na2OとK2Oの合計が0重量%〜19重
量%、B2O3で1重量%〜8重量%からなるガラ
スマツト(粘度が10の7.0乗ポアズになる温度;
450〜600℃、同じく10の4.0乗ポアズになる温
度;700〜900℃)は特に表面張力が大きいので
550〜800℃でしかもガラスの粘度が10の7.0乗ポ
アズになる温度と10の4.0乗ポアズになる温度の
範囲内ですくなくとも60秒熱処理すると高密度の
処理物が得られる。また、SiO238〜42、Al2O312
〜15、CaO18〜25、MgO1〜5、Na2OとK2Oのい
ずれかまたは両方が含まれる場合はその合計12〜
19、B2O35〜8各重量%の組成を有するガラス
(粘度が10の7.0乗ポアズになる温度は470〜550℃
であり、同じく10の4.0乗ポアズになる温度は780
〜830℃である)からなるガラスマツトも特に表
面張力が大きいので580〜750℃でしかもガラスの
粘度がそれぞれ10の7.0乗ポアズになる温度と10
の4.0乗ポアズになる温度の範囲内ですくなくと
も30秒加熱することにより高密度の処理物である
ガラス原料が得られる。
The higher the surface tension at high temperatures of the glass itself constituting the glass mat treated in the method of the present invention, the better the results obtained. This is because, as mentioned above, if the glass fiber shrinks significantly above the temperature at which the viscosity of the glass becomes 10 to the power of 7.0 poise, it tends to become a high-density plate-like material. For example, the composition of the glass constituting the glass mat is 35% to 47% by weight of SiO2 , 9% to 15% by weight of Al2O3 ,
18wt%~40wt% for CaO, 0wt%~ for MgO
7% by weight, a total of 0% to 19% by weight of Na 2 O and K 2 O, and 1% to 8% by weight of B 2 O 3 (temperature at which the viscosity becomes 10 to the power of 7.0 poise;
The surface tension is particularly high at temperatures of 450 to 600℃ (also 10 to the power of 4.0 poise; 700 to 900℃).
A high-density treated product can be obtained by heat-treating for at least 60 seconds at 550 to 800°C and within the temperature range where the viscosity of the glass is between 10 to the 7.0 power poise and 10 to the 4.0 power poise. Also, SiO 2 38~42, Al 2 O 3 12
~15, CaO18~25, MgO1~5, if either or both of Na 2 O and K 2 O is included, the total 12 ~
19, Glass having a composition of 5 to 8% by weight of each B 2 O 3 (The temperature at which the viscosity becomes 10 to the 7.0th power poise is 470 to 550°C
Similarly, the temperature at which 10 to the 4.0 power poise is 780
The surface tension of glass matte, which is made up of 10 to 7.0 poise, is 580 to 750 degrees Celsius.
A glass raw material, which is a high-density processed material, can be obtained by heating for at least 30 seconds within a temperature range of 4.0 poise.

本発明の方法においてガラスマツトを加熱する
のにはふく射熱の形で行うと効率がよい。550℃
〜800℃といつた高温の大量の熱風を用いてガラ
スマツトを伝導熱により加熱するとエネルギー
が、加熱炉外へリークし能率がよくない。
In the method of the present invention, it is efficient to heat the glass mat in the form of radiant heat. 550℃
When glass mats are heated by conduction heat using a large amount of hot air at temperatures as high as ~800℃, energy leaks out of the heating furnace, resulting in poor efficiency.

ふく射熱の形で加熱するには赤外線放射型ヒー
ターやラジエイシヨン型バーナーなどが用いられ
る。ただしふく射熱タイプではない普通のカスバ
ーナーなどのフレームを直接ガラスマツトにあて
ても前記のようなガラスの収縮、焼結化現象は見
られない。あくまで、赤熱したバーナータイルな
どからふく射熱を受けるラジエイシヨン型バーナ
ー(市販の例えば中外炉工業KK製のHFB−1R
(S)型とかHFB−0.5R(S)型)が好まし
い。)ふく射熱はガラスマツトの内部までよく吸
収される上にガラス自体の吸収がよい。またフエ
ノール樹脂や尿素樹脂といつたガラスマツト用の
有機質バインダーはガラスからの伝熱によりおよ
び直接ふく射熱を受けて加熱されて速やかに分解
するので加熱後カーボンの形で残りにくい利点が
ある。
Infrared radiant heaters and radiation burners are used to provide heat in the form of radiant heat. However, even if the frame of an ordinary gas burner, which is not a radiant heat type, is applied directly to the glass mat, the glass shrinkage and sintering phenomenon described above will not be observed. This is limited to radiation-type burners that receive radiant heat from red-hot burner tiles (for example, commercially available HFB-1R manufactured by Chugai Roko Kogyo KK).
(S) type or HFB-0.5R (S) type) is preferable. ) The radiant heat is well absorbed into the interior of the glass mat, and is also well absorbed by the glass itself. In addition, organic binders for glass mats such as phenolic resins and urea resins are heated by heat transfer from the glass or by direct radiant heat and are quickly decomposed, so they have the advantage that they do not remain in the form of carbon after heating.

本発明において使用するガラスマツトは帯状ま
たは板状に限らず中空円筒状、棒状その他のいか
なる形状を有していてもよく、更にそのような形
状のガラスマツトを任意の寸法に切断したもので
もよい。またこのガラスマツトを加熱して収縮さ
せた焼結体はそのままで、または必要に応じて粉
砕してガラス原料として用いられる。
The glass mat used in the present invention is not limited to the shape of a band or plate, but may have any other shape such as a hollow cylinder or a rod. Furthermore, a glass mat of such shape may be cut into any size. The sintered body obtained by heating and shrinking the glass mat can be used as a raw material for glass either as it is or by crushing it if necessary.

次に本発明を実施例をあげて説明する。 Next, the present invention will be explained by giving examples.

実施例 1 ガラスの組成が重量%であらわしてSiO240.0
%、Al2O313.0%、CaO19.0%、MgO3%、
Na2O14.5%、K2O3.5%、B2O37.0%からなる繊維
径約4ミクロン、かさ比重0.008g/cm3、樹脂含有
量7.0%で厚さ60mm、たて200mm、よこ200mmの大
きさに切つたガラスマツトをそのガラスの粘度が
10の5.8乗ポアズとなる温度である620℃の雰囲気
温度にした容積8リツトル、電力5KWのニクロ
ム線加熱炉の中に入れて2分間保持したところガ
ラスマツトは含有樹脂分の90%以上が分解、燃焼
して除去されており、厚さ1.5mm、たて120mm、よ
こ120mmの大きさに収縮してかさ比重0.85の板状
になつた。表面はなめらかで毛羽だつておらず少
し力を加えるとせんべいのように割れガラス熔解
窯の熔解用原料として利用しやすい形にすること
ができた。
Example 1 The composition of glass is SiO 2 40.0 expressed in weight%
%, Al2O3 13.0 %, CaO19.0%, MgO3%,
Fiber diameter approximately 4 microns, bulk specific gravity 0.008g/cm 3 , resin content 7.0%, thickness 60mm, height 200mm, consisting of Na 2 O 14.5%, K 2 O 3.5%, B 2 O 3 7.0%. The viscosity of the glass pine cut into 200mm wide pieces is
When the glass mat was placed in a nichrome wire heating furnace with a volume of 8 liters and a power of 5 KW at an ambient temperature of 620°C, which is the temperature of 10 to the 5.8 poise, and held for 2 minutes, more than 90% of the resin content of the glass mat decomposed. It was burned and removed, and it shrunk into a plate with a thickness of 1.5 mm, a height of 120 mm, and a width of 120 mm, with a bulk specific gravity of 0.85. The surface was smooth and not fluffy, and by applying a little force, it could be broken into a shape that could be easily used as a raw material for melting in a glass-melting kiln, like a rice cracker.

実施例 2 ガラスの組成が重量%であらわして、SiO240.0
%、Al2O313.0%、CaO23.5%、MgO3.0%、
Na2O12.0%、K2O2.0%、B2O36.5%からなる繊維
径約4ミクロン、かさ比重0.008、樹脂含有量7
%で厚さ60mm、たて200mm、よこ200mmの大きさに
切つたガラスマツトをガラスの粘度が10の5.8乗
ポアズとなる温度である670℃の雰囲気温度にし
た容積8リツトル電力5KWのニクロム線加熱炉
において2分間処理したところガラスマツトは含
有樹脂分のほぼ100%が分解、燃焼して除去され
ており、厚さ2mm、たて150mm、よこ150mmの大き
さに収縮してかさ比重0.42の板状になつた。実施
例1と同様に熔解用原料として使用しやすい形に
することができた。
Example 2 The composition of the glass expressed in weight% is SiO 2 40.0
%, Al2O3 13.0 %, CaO23.5%, MgO3.0%,
Fiber diameter approximately 4 microns, bulk specific gravity 0.008, resin content 7, consisting of Na 2 O 12.0%, K 2 O 2.0%, B 2 O 3 6.5%
A glass mat cut into pieces 60mm thick, 200mm long, and 200mm wide was heated to an ambient temperature of 670℃, the temperature at which the viscosity of the glass is 10 to the power of 5.8 poise, using a nichrome wire with a volume of 8 liters and a power of 5KW. When treated in a furnace for 2 minutes, almost 100% of the resin contained in the glass pine was decomposed, burned and removed, and the glass pine shrunk to a size of 2 mm thick, 150 mm long, and 150 mm wide, and became a plate with a bulk specific gravity of 0.42. It became. As in Example 1, it was possible to form a shape that was easy to use as a raw material for melting.

実施例 3 ガラス組成が重量%であらわして、SiO272.7
%、Al2O31.8%、Fe2O30.1%、CaO7.3%、
MgO3.9%、Na2O313.4%、K2O0.8%からなる繊
維径約4ミクロン、かさ比重0.008g/cm3、樹脂含
有量7%で厚さ60mm、たて200mm、よこ200mmの大
きさに切つたガラスマツトをそのガラスの粘度が
10の5.8乗ポアズとなる温度である750℃の雰囲気
温度にした容積8リツトル、電力5KWのニクロ
ム線加熱炉において2分間処理したところ、ガラ
スマツトは含有樹脂分のほぼ100%が分解、燃焼
して除去されており、厚さ8mm、たて150mm、よ
こ150mmの大きさに収縮して、かさ比重0.11の板
状になつた。実施例1と同様に熔解用原料として
利用しやすい形にすることができた。
Example 3 Glass composition expressed in weight percent: SiO 2 72.7
%, Al2O3 1.8 %, Fe2O3 0.1 %, CaO7.3%,
Fiber diameter approximately 4 microns, bulk specific gravity 0.008g/cm 3 , resin content 7%, thickness 60mm, length 200mm, width 200mm, consisting of MgO 3.9%, Na 2 O 3 13.4%, K 2 O 0.8% The viscosity of the glass is
When the glass mat was treated for 2 minutes in a nichrome wire heating furnace with a volume of 8 liters and a power of 5 kW at an ambient temperature of 750°C, which is the temperature of 10 to the 5.8th power poise, almost 100% of the resin contained in the glass mat was decomposed and burned. It was removed and shrunk into a plate with a thickness of 8 mm, a height of 150 mm, and a width of 150 mm, and a bulk specific gravity of 0.11. As in Example 1, it was possible to make it into a form that was easy to use as a raw material for melting.

実施例 4 図に示すようにガラスの組成が重量%であらわ
してSiO240.0%、Al2O313.0%、CaO19.0%、
MgO3.0%、Na2O14.5%、K2O3.5%、B2O37.0%
からなる繊維径約4ミクロン、かさ比重0.008g/
cm3、樹脂含有量7.0%で厚さ60mm、巾100mm、長さ
50mのガラスマツト・ロール品1を長さ10m、巾
2.5m、高さ1.5mの大きさで雰囲気温度をガラス
の粘度が10の6.0乗ポアズないし5.4乗ポアズとな
る600〜670℃にした、ステンレス製のネツトコン
ベア2によつて運搬する方式のガス加熱炉3の内
部を通過スピード5m/分にて帯状にして通過せ
しめたところ、マツトのロール品は含有樹脂分の
ほぼ100%が除去されておりロール品全体が帯状
で厚さ4mm、巾800mmに収縮(長さは50mで不
変)して、かさ比重0.19の板状になつた。これを
簡単なクラツシヤー4でほぼ50mm×50mmの大きさ
になるようにくだいて重油燃焼方式のガラス熔解
窯(図示せず)へ投入すると繊維くずが飛散する
ことなく熔解せしめることができた。ガス加熱炉
3の構造は図のとおりであり、60本のラジエイシ
ヨン型ガスバーナー5を下向きに天井6にとりつ
けた。バーナー5として燃焼容量が15000Kcal/
Hr(中外炉KK製HFB−1R(S))ものを使用
し、バーナー燃料としてブタンガスを使用した。
Example 4 As shown in the figure, the composition of the glass expressed in weight percent is SiO 2 40.0%, Al 2 O 3 13.0%, CaO 19.0%,
MgO3.0%, Na2O14.5 %, K2O3.5 %, B2O3 7.0 %
Fiber diameter approximately 4 microns, bulk specific gravity 0.008g/
cm3 , resin content 7.0%, thickness 60mm, width 100mm, length
50m glass mat roll product 1, length 10m, width
The gas is conveyed by a stainless steel net conveyor 2, which is 2.5 m long and 1.5 m high, and has an ambient temperature of 600 to 670°C, where the viscosity of the glass is 10 to the 6.0 poise to 5.4 poise. When the pine roll product was passed through the heating furnace 3 in a belt shape at a passing speed of 5 m/min, almost 100% of the resin contained in the pine roll product was removed, and the entire roll product was in the shape of a belt with a thickness of 4 mm and a width of 800 mm. It contracted (the length remained unchanged at 50 m) and became a plate with a bulk specific gravity of 0.19. When this was broken into pieces approximately 50 mm x 50 mm in size using a simple crusher 4 and placed in a heavy oil-burning glass melting kiln (not shown), it was possible to melt the fibers without scattering them. The structure of the gas heating furnace 3 is as shown in the figure, and 60 radiation-type gas burners 5 are mounted on the ceiling 6 facing downward. Burner 5 has a combustion capacity of 15000Kcal/
Hr (HFB-1R (S) manufactured by Chugairo KK) was used, and butane gas was used as the burner fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するための装置の1例を示
す断面図である。 1……ガラス繊維マツト、2……ネツトコンベ
ア、3……加熱炉、4……クラツシヤー、5……
ラジエイシヨン型バーナー。
The drawing is a sectional view showing an example of an apparatus for implementing the present invention. 1...Glass fiber mat, 2...Net conveyor, 3...Heating furnace, 4...Crusher, 5...
Radiation type burner.

Claims (1)

【特許請求の範囲】 1 ガラス繊維マツトをそれを構成するガラスの
粘度がそれぞれ10の7.0乗ポアズになる温度と10
の4.0乗ポアズになる温度の範囲内において加熱
することによりガラス繊維マツトをそのかさ比重
が0.08〜1.2に増加するまで収縮させることを特
徴とするガラス繊維マツトからガラス原料を製造
する方法。 2 前記加熱はふく射熱型バーナーを用いること
によつておこなう特許請求の範囲第1項記載のガ
ラス原料を製造する方法。 3 前記ガラス繊維マツトは SiO2 35〜47 Al2O3 9〜15 CaO 18〜40 MgO 0〜7 (Na2O+K2O) 0〜19 B2O3 1〜8 各重量%の組成を有するガラスで構成される特許
請求の範囲第1項または第2項記載のガラス原料
を製造する方法。 4 前記加熱の温度は550℃〜800℃である特許請
求の範囲第3項記載のガラス原料を製造する方
法。 5 前記加熱はすくなくとも60秒おこなわれる特
許請求の範囲第3項または第4項記載のガラス原
料を製造する方法。 6 前記ガラス繊維マツトは SiO2 38〜42 Al2O3 12〜15 CaO 18〜25 MgO 1〜5 (Na2O+K2O) 12〜19 B2O3 5〜8 各重量%の組成を有するガラスで構成される特
許請求の範囲第1項または第2項記載のガラス原
料を製造する方法。 7 前記加熱の温度は580〜750℃である特許請求
の範囲第6項記載の再生ガラス原料を製造する方
法。 8 前記加熱はすくなくとも30秒おこなわれる特
許請求の範囲第6項または第7項記載のガラス原
料を製造する方法。
[Claims] 1. The temperature at which the viscosity of the glass constituting the glass fiber mat becomes 10 to the 7.0th power poise and 10
A method for producing a glass raw material from glass fiber mat, which comprises shrinking the glass fiber mat until its bulk specific gravity increases from 0.08 to 1.2 by heating within a temperature range of 4.0 poise. 2. The method for producing a glass raw material according to claim 1, wherein the heating is performed using a radiant burner. 3 The glass fiber mat has a composition of SiO 2 35-47 Al 2 O 3 9-15 CaO 18-40 MgO 0-7 (Na 2 O + K 2 O) 0-19 B 2 O 3 1-8 by weight. A method for producing a glass raw material according to claim 1 or 2, which is made of glass. 4. The method for manufacturing a glass raw material according to claim 3, wherein the heating temperature is 550°C to 800°C. 5. The method for producing a glass raw material according to claim 3 or 4, wherein the heating is performed for at least 60 seconds. 6 The glass fiber mat has a composition of SiO 2 38-42 Al 2 O 3 12-15 CaO 18-25 MgO 1-5 (Na 2 O + K 2 O) 12-19 B 2 O 3 5-8 by weight. A method for producing a glass raw material according to claim 1 or 2, which is made of glass. 7. The method for producing recycled glass raw material according to claim 6, wherein the heating temperature is 580 to 750°C. 8. The method for producing a glass raw material according to claim 6 or 7, wherein the heating is performed for at least 30 seconds.
JP1712780A 1980-02-14 1980-02-14 Method of preparing starting material of glass Granted JPS56114836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1712780A JPS56114836A (en) 1980-02-14 1980-02-14 Method of preparing starting material of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1712780A JPS56114836A (en) 1980-02-14 1980-02-14 Method of preparing starting material of glass

Publications (2)

Publication Number Publication Date
JPS56114836A JPS56114836A (en) 1981-09-09
JPS6219364B2 true JPS6219364B2 (en) 1987-04-28

Family

ID=11935360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1712780A Granted JPS56114836A (en) 1980-02-14 1980-02-14 Method of preparing starting material of glass

Country Status (1)

Country Link
JP (1) JPS56114836A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2520726B1 (en) * 1982-02-03 1986-02-07 Saint Gobain Isover GLASS COMPOSITION SUITABLE FOR THE MANUFACTURE OF FIBERS

Also Published As

Publication number Publication date
JPS56114836A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
US5935885A (en) Manufacture of ceramic tiles from fly ash
JP4234211B2 (en) Method and apparatus for recycling scrap in a factory for producing mineral fibers
EP1342032B1 (en) Method for destroying and/or inerting waste
CA1115527A (en) Energy efficient process for manufacture of glass
US5156545A (en) Method and apparatus for the treatment and recovery of mineral fiber or glass waste
ES2104175T3 (en) METHOD AND APPARATUS FOR THE MELTING AND REFINING OF GLASS IN AN OXYGEN OVEN.
WO1999016727A1 (en) Manufacture of ceramic tiles from industrial waste
US8876964B2 (en) Method of making particulate material
US3354024A (en) Cellular glass nodules and method of making them
EP2138470B1 (en) A mixture of dangerous refuse and a relative treatment
US4188228A (en) Fiber glass making pellets containing fiber glass cullet
ATE32874T1 (en) METHOD AND APPARATUS FOR MELTING VITREOUS MINERAL MATERIALS.
US2291534A (en) Method of making refractories
JPS6219364B2 (en)
US4414013A (en) Method of making black glass by utilizing incinerated waste glass
EP4097057B1 (en) Method for making man-made vitreous fibres
US5207572A (en) Method and apparatus for the treatment and recovery of mineral fiber or glass waste
US2496203A (en) Beneficiation of volcanic ash
Panov et al. High-performance thermal insulation material based on waste glass
JPH1111953A (en) Melting of glass and device therefor
JP4111568B2 (en) Method for producing rock wool
JP3683699B2 (en) Method for treating fibrous glass covered with organic matter
JP3899563B2 (en) FRP waste disposal method
JPS649252B2 (en)
EA045803B1 (en) METHOD FOR MANUFACTURING ARTIFICIAL GLASSY FIBERS