JPS62193534A - Assembling of miniaturized rotary electric machine - Google Patents
Assembling of miniaturized rotary electric machineInfo
- Publication number
- JPS62193534A JPS62193534A JP3427886A JP3427886A JPS62193534A JP S62193534 A JPS62193534 A JP S62193534A JP 3427886 A JP3427886 A JP 3427886A JP 3427886 A JP3427886 A JP 3427886A JP S62193534 A JPS62193534 A JP S62193534A
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- rotor
- gap
- stator
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 125000006850 spacer group Chemical group 0.000 claims abstract description 56
- 239000000945 filler Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 31
- 239000002654 heat shrinkable material Substances 0.000 claims description 2
- 239000011800 void material Substances 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 6
- 238000003754 machining Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
この発明はステンピングモータあるいはマイクロモータ
等を対象とした小形回転電機の組立方法に関する。The present invention relates to a method for assembling a small rotating electric machine such as a stamping motor or a micro motor.
まずこの発明の実施対象である頭記モータの一触構造を
第4図に示す。図において、1はステータ、2はロータ
、3はロータを支持した回転軸、4はステータ1の左右
両側に結合した軸受支持用のブラケット、5は軸上に装
着してブラケット4との間に設置した軸受であり、前記
ブラケット4はステータ1の外周に嵌着してねじ止めな
いし接着固定され、かつ軸受5はブラケット4のセンタ
に開口した軸受装着穴へ嵌め合い式に嵌着して結合され
ている。
かかるモータでは、モータの無負荷損失を少なくして効
率を高める。およびモータの単位体積当たりの出力を大
にする等の面から、前記ステータlとロータ2との間の
空隙6に付いてはそのギャップ寸法gをできる限り狭い
寸法値に設定すること、さらには該空隙6がその全周面
域でギャップ寸法gが均一であることが要求される。す
なわち空隙6がその周域で均一でないと、磁気不平衡に
起因したトルク脈動の発生によるモータの性能低下、振
動、騒音の発生、およびステータとロータとの機械的な
接触等の不具合な事態が発生する。
したがって回転電機ではその組立に際して高い組立精度
が要求され、特にステンピングモータ等の小形精密モー
タでは前記した空隙値が0.1〜0.211111I程
度に設計されていてその許容誤差は極めて狭いために非
常に高い組立精度が要求されることになる。
かかる組立精度上の要求に対し、従来ではモータの個々
の構成部品に対する加工精度を高めることにより要求さ
れる組立精度を得るようにしており、かつ各構成部品の
寸法精度は全て加工機械の加工精度に依存しているのが
現状である。しかして個々の部品に付いて高い加工寸法
精度を得るにはそれだけ高価な精密加工機械設備が必要
であってモータの製作コストが嵩むことになることに加
え、さらに従来では次記のような問題が残る。すなわち
第4図に示す構造のモータでは各部品の間が全て嵌合式
に結合して組立構成されており、各部品の加工寸法誤差
を互いに結合し合う部品相互間では吸収することができ
ず、各部品を順に組立て行(過程で誤差分が累積して行
くようになる。
しかもこのように組立過程で累積された各部品の寸法誤
差分は最終的にステータ1とロータ2との間の空隙に集
中して加わるようになるために、この結果としてステー
タとロータとの間の全周域で均一な空隙6を確保するこ
とが極めて困難となる。
しかも先記の小形精密モータのように設計上の空隙寸法
値が小さく、かつその空隙に対する均一度の条件が厳し
い小形回転電機では、機械加工精度。
並びに組立精度に対してより高い精度が要求さることに
なり、従来の組立法のままでは回転電機の量産態勢の上
で性能上の品質維持を図ることが極めて困難である。
ここでモータ組立の際に生じる空隙不均一の原因のうち
特に影響が大きく現れる要素を第4図に付いて示すと、
■ステータ1とブラケット4との間の嵌合部における機
械加工時の寸法誤差および組立工程での同軸度の誤差。
■ブラケット4と軸受5との間の嵌合部における機械加
工時の寸法誤差および組立工程での同軸度の誤差。
等であり、このような部分に加工寸法誤差1組立工程で
の軸合わせ誤差があると、この誤差の累積が大きく影響
してステータ1とロータ2との間の芯出しが正確に行え
ず、空隙の均一性が得られなくなる。First, FIG. 4 shows the one-touch structure of the above-mentioned motor, which is an object of the present invention. In the figure, 1 is a stator, 2 is a rotor, 3 is a rotating shaft that supports the rotor, 4 is a bearing support bracket connected to both left and right sides of the stator 1, and 5 is mounted on the shaft and is placed between the bracket 4. The bracket 4 is fitted onto the outer periphery of the stator 1 and fixed with screws or adhesive, and the bearing 5 is fitted into a bearing mounting hole opened at the center of the bracket 4 and coupled. has been done. Such motors increase efficiency by reducing motor no-load losses. In order to increase the output per unit volume of the motor, the gap dimension g of the gap 6 between the stator l and rotor 2 should be set as narrow as possible; It is required that the gap 6 has a uniform gap size g over its entire circumferential area. In other words, if the air gap 6 is not uniform around the circumference, problems such as decreased motor performance due to torque pulsation caused by magnetic imbalance, generation of vibration and noise, and mechanical contact between the stator and rotor may occur. Occur. Therefore, high assembly precision is required when assembling rotating electric machines, and in particular, small precision motors such as stamping motors are designed with the above-mentioned air gap value of about 0.1 to 0.211111I, and the tolerance is extremely narrow. Extremely high assembly precision is required. In order to meet such demands for assembly accuracy, the required assembly accuracy has conventionally been achieved by increasing the machining accuracy of each component of the motor, and the dimensional accuracy of each component is entirely dependent on the machining accuracy of the processing machine. The current situation is that it depends on However, in order to obtain high machining dimensional accuracy for individual parts, expensive precision machining equipment is required, which increases the manufacturing cost of the motor.In addition, conventional methods have the following problems: remains. In other words, in the motor having the structure shown in FIG. 4, all the parts are assembled in a fitting manner, and the machining dimensional errors of each part cannot be absorbed between the parts that are connected to each other. Assemble each part one by one (in the process, errors will accumulate). Moreover, the dimensional errors of each part accumulated in this way will eventually reduce the gap between the stator 1 and rotor 2. As a result, it becomes extremely difficult to maintain a uniform air gap 6 over the entire circumferential area between the stator and rotor. Small rotating electric machines have small air gap dimensions and strict uniformity requirements for the air gap, which requires higher machining accuracy and assembly accuracy, and conventional assembly methods cannot be used. It is extremely difficult to maintain performance quality in a mass production system for rotating electric machines. Figure 4 shows the factors that have a particularly large effect on the causes of uneven air gaps that occur during motor assembly. As shown below: ■ Dimensional errors during machining at the fitting part between stator 1 and bracket 4 and errors in coaxiality during assembly process. ■ During machining at the fitting part between bracket 4 and bearing 5. dimensional error and coaxiality error in the assembly process.If there is a machining dimensional error 1 alignment error in the assembly process in such a part, the accumulation of this error will have a large effect and cause the stator 1 and rotor to 2 cannot be accurately centered, making it impossible to obtain uniformity of the gap.
【発明の目的]
この発明は上記の点にかんがみなされたものであり、前
記した各構成部品の加工寸法精度の誤差分を空隙以外の
組立部分で吸収させ、組立完成状態ではステータとロー
タとの間に均一な空隙が容易に確保できるようにした小
形回転電機の組立方法を提供することを目的とする。
【発明の要点】
上記目的を達成するために、この発明はあらがじめブラ
ケットのセンタには軸受外径よりも充分に径大な軸受装
着穴を開口しておき、ロータをステータ内に組込んだ状
態でロータの外周面とステータの内周面との間の空隙が
その全周域で均一保持されるように前記空隙の全周域な
いし一部にスペーサを介装して両者間を芯出し状態に仮
止めする仮組立工程、前記工程による仮組立状態でステ
ータに結合されたブラケットの軸受装着穴の内周面と軸
上に嵌合装着された軸受の外輪外周面との間の残余間隙
に硬化性充填材を充填してブラケットと軸受の外輪との
間を固着する軸受固着工程、および前記の仮組立工程で
ロータとステータとの間の空隙に介装したスペーサを空
隙の領域外へ除去して空隙を確保するスペーサ除去工程
とを経て組立を行うことにより、ステータとロータとの
間でスペーサの介在により仮組立状態で強制的に均一な
空隙を設定し、各部品の加工寸法誤差の累積骨を全て後
から硬化性充填材で充填されるブラケットと軸受との間
の残余間隙で一括吸収させてモータの高精度な組立が行
えるようにしたものである。[Object of the Invention] The present invention has been made in view of the above points, and is designed to absorb the error in the machining dimensional accuracy of each of the component parts in the assembly parts other than the air gap, so that the stator and rotor are connected in the assembled state. It is an object of the present invention to provide a method for assembling a small rotating electrical machine that can easily ensure a uniform gap between the parts. [Summary of the Invention] In order to achieve the above object, the present invention first opens a bearing mounting hole in the center of the bracket with a diameter sufficiently larger than the outer diameter of the bearing, and then assembles the rotor into the stator. In order to maintain a uniform gap between the outer circumferential surface of the rotor and the inner circumferential surface of the stator over the entire circumferential area when the rotor is closed, a spacer is interposed between the outer circumferential surface of the rotor and the inner circumferential surface of the stator. Temporary assembly step for temporary fixing in a centered state, and a step between the inner circumferential surface of the bearing mounting hole of the bracket coupled to the stator and the outer circumferential surface of the outer ring of the bearing fitted and mounted on the shaft in the temporarily assembled state in the above step. A bearing fixing process in which the remaining gap is filled with a curable filler to fix the bracket and the outer ring of the bearing, and a spacer inserted in the gap between the rotor and stator in the above temporary assembly process is used to fix the spacer in the gap area. By assembling the spacer through the spacer removal process, which removes the spacer to the outside and secures the air gap, a uniform air gap is forcibly set between the stator and rotor in the temporarily assembled state using the spacer, and each part can be processed. All the accumulated bone with dimensional errors is absorbed in the remaining gap between the bracket and the bearing, which is later filled with a hardening filler, so that the motor can be assembled with high precision.
第1図ないし第3図はそれぞれこの発明の異なる実施例
による組立方法の組立工程を示すものであり、第4図に
対応する同一部材には同じ符号が付しである。
まず第1図(al、(blに示す実施例において、fa
1図はモータ組立途中の仮組立状態図を、(b)図は組
立完成状態図を示すもので、まずfa1図で示すように
ブラケット4のセンタ部分にはあらがじめ軸受5の外径
寸法dよりも充分に径大な径りに選定した軸受装着穴4
aが開口されている。またロータ2にはその外周面の両
縁部に周面と段差のある溝部2aが形成され、かっこの
溝部2aには図示の仮組立状態で熱収縮性材で作られた
リング状スペーサ7が介装配備される。このスペーサ7
はステータ1の内周面とロータ2の外周面の間の全周域
に均一なギャップの空隙6を設定してステータ1とロー
タ2との間を仮止めし、この状態でステータとロータと
の相対的な芯出し保持を行っている。一方、ステータ1
の左右両端にはブラケット4がねじ止めないし接着によ
り固定され、かつロータ2を挟んで軸3の両側には軸受
5がブラケット4の軸受支持部と対向する部位に嵌合装
着されている。なお、5aは軸受の外輪、 5bは内輪
であり、かつこの仮組立状態ではブラケット4と軸受5
との間は非接触でフリーの状態にあり、両者間には隙間
8が残存している。ここで前記の隙間8の背面を封じる
ようにブラケット5の後端面と軸受外輪5aの周上突出
しフランジ部との間には例えばゴム材で作られたリング
状のブツシュ9が介装配備される。
このブツシュ9は次段の工程で前記の残余間隙内に硬化
性充填材を充填する際のシールの役目を果たすものであ
る。
次に上記工程によりスペーサ7を介してステータ1とロ
ータ2との間に均一な空隙6を設定した仮組立の状態で
、山)図で示すようにブラケット4のセンタに開口した
軸受装着穴の内周面と軸受5の外輪5aの外周面との間
の残余間隙には例えば常温硬化性のモールド樹脂である
硬化性充填材10を充填してブラケット4と軸受の外輪
5aとの間を固着する軸受固着工程を施す、なお硬化性
充填材10としては、常温硬化性モールド樹脂の代わり
に前記した熱収縮性スペーサ7の熱収縮温度以下の温度
で硬化する加熱硬化性モールド樹脂を採用してもよい、
またここで軸受5の外輪と充填材10とが接触する部分
に剥型材を塗布して置くことにより、必要により後から
軸受の外輪を軸方向へ押し込んで外輪5aと内輪5bの
間のガタッキを無くすことが可能である。
上記の軸受固着工程が終了して硬化性充填材10が充分
に硬化した後に次いでスペーサ除去工程に移り、ここで
はモータ全体を加熱して熱収縮性スペーサ7の熱収縮処
理が行われる。すなわちモータ加熱により、前記した熱
収縮性のリング状スペーサ7はaQ)図のように熱収縮
し、いままで空隙6内に突出していた部分がロータ2側
の溝部2a内に収まるように後退して空気領域から排除
される。
これによりモータ組立が完了し、ステータ1とロータ2
との間にはその全周域で均一な空隙6が確保されること
になる。しかも各構成部品の加工スペーサ誤差1組立誤
差の集積分は全てtat図に示した仮組立の状態でブラ
ケット4と軸受5との間の残余間隙8で一括吸収され、
組立完成状態ではステータ1とロータ2との間の空隙6
に影響を及ぼすことはない。
次に第2図fa1.(blで別な実施例を説明する。こ
の実施例例では、仮組立工程でステータ1とロータ2と
の間の空隙6内に介装した熱収縮性のスペーサ11がス
テータ1側に装着されている。すなわちスペーサ11は
熱収縮処理を行う前の段階ではfa1図のように断面工
学形のレール状体を成しており、図示のようにステータ
1のコイル1aがj8装されこ鉄心1bのコイルスロッ
トlcに沿って軸方向に挿入され、コイルスロッ)lc
の入口側隘路に基部を嵌着してその先端が空隙6内に突
出するように取付けられている。かかるスペーサ11は
ステータ鉄心の周面上で複数箇所のコイルスロットに分
散して配備され、仮組立状態でステータ1とロータ2と
の間の空隙6を全周面で均一なギャップに設定して芯出
し保持している。なおスペーサ11の装着されてないコ
イルスロットには符号12で示す喫を挿入してコイルを
スロット内に保持している。
次ぎに前記工程で芯出し保持した仮組立状態のまま、第
1図と同様にステータ1に結合されたブラケット4とロ
ータ軸上に装着された軸受5との間の残余間隙内に硬化
性充填材10を充填してブラケット4と軸受5との間を
固着し、さらに続くスペーサ除去工程でモータ全体を加
熱してスペーサ11の熱収縮処理を行う、これによりス
ペーサ11は第2図1)で示すように体積収縮し、スペ
ーサ11の先端は空隙6の領域からコイルスロット内に
後退し、ステータ1とロータ2との間には全周で均一な
空隙6が形成確保されることになる。なお、この実施例
は第1図の実施例のようにロータ2の周面上に溝部を形
成する必要がなく、モータの磁気特性に与える影響も少
なくて済む利点がある。
第3図はさらに異なるこの発明の実施例を示すものであ
り、第1図の実施例と異なる点は、スペーサとしてステ
ータ1とロータ2との間の空隙6のギャップ値とほぼ等
しい厚さを持つ非熱収縮性のフィルム状スペーサ13を
使用し、該スペーサ13を空隙6の全周域ないし一部域
に介装してステータ1とロータ2との間の芯出し設定、
仮止めを行い、続いてブラケット4と軸受5との間の残
余間隙に硬化性充填材を充填してブラケット4と軸受5
との間を固着する。次にスペーサ除去工程では、ブラケ
ット4の端面にあらかじめ開口した穴4bを通して矢印
Pのように前記フィルム状スペーサ13を外部へ引出し
除去する。これによりステータ1とロータ2との間で均
一なギャップの空隙6が確保されることになる。なお、
フィルムスペーサ13としては機械的強度が強くて摩擦
係数の小さな材料1例えばポリエステル樹脂のフィルム
が適当である。1 to 3 each show an assembly process of an assembly method according to a different embodiment of the present invention, and the same members corresponding to FIG. 4 are given the same reference numerals. First, in the embodiment shown in FIG. 1 (al, (bl), fa
Figure 1 shows a temporary assembly state in the middle of motor assembly, and Figure (b) shows a diagram of the completed assembly.First, as shown in figure fa1, the outer diameter of the bearing 5 is pre-assembled in the center part of the bracket 4. Bearing mounting hole 4 selected to have a diameter sufficiently larger than dimension d
a is open. Further, the rotor 2 has a groove 2a formed at both edges of its outer circumferential surface with a step difference from the circumferential surface, and a ring-shaped spacer 7 made of a heat-shrinkable material is installed in the bracket groove 2a in the temporarily assembled state shown in the figure. Interventions are deployed. This spacer 7
The stator 1 and rotor 2 are temporarily fixed by setting a uniform gap 6 in the entire circumferential area between the inner circumferential surface of the stator 1 and the outer circumferential surface of the rotor 2, and in this state, the stator and rotor are connected. The relative centering is maintained. On the other hand, stator 1
Brackets 4 are fixed to both left and right ends of the shaft 3 by screws or adhesive, and bearings 5 are fitted on both sides of the shaft 3 with the rotor 2 in between, at portions of the brackets 4 facing the bearing support portions. Note that 5a is the outer ring of the bearing, 5b is the inner ring, and in this temporarily assembled state, the bracket 4 and the bearing 5 are
are in a free state with no contact between them, and a gap 8 remains between them. Here, a ring-shaped bushing 9 made of, for example, a rubber material is interposed between the rear end surface of the bracket 5 and the circumferentially protruding flange portion of the bearing outer ring 5a so as to seal the back surface of the gap 8. . This bushing 9 serves as a seal when the remaining gap is filled with a curable filler in the next step. Next, in the temporarily assembled state where a uniform gap 6 is set between the stator 1 and the rotor 2 via the spacer 7 in the above process, the bearing mounting hole opened in the center of the bracket 4 is The remaining gap between the inner circumferential surface and the outer circumferential surface of the outer ring 5a of the bearing 5 is filled with a curable filler 10, which is, for example, a molding resin that cures at room temperature, thereby fixing the space between the bracket 4 and the outer ring 5a of the bearing. As the curable filler 10, instead of the room temperature curable mold resin, a thermosetting mold resin that cures at a temperature below the heat shrinkage temperature of the heat shrinkable spacer 7 is used as the curable filler 10. Good too,
In addition, by applying a release material to the area where the outer ring of the bearing 5 and the filler 10 contact, the outer ring of the bearing can be pushed in the axial direction later if necessary to prevent looseness between the outer ring 5a and the inner ring 5b. It is possible to eliminate it. After the above-mentioned bearing fixing step is completed and the curable filler 10 is sufficiently hardened, the next step is a spacer removal step, in which the entire motor is heated to heat-shrink the heat-shrinkable spacer 7. That is, due to the heating of the motor, the heat-shrinkable ring-shaped spacer 7 heat-shrinks as shown in Figure aQ), and the portion that had been protruding into the gap 6 retreats to fit within the groove 2a on the rotor 2 side. removed from the air area. This completes the motor assembly, stator 1 and rotor 2.
A uniform gap 6 is ensured over the entire circumference between the two. Moreover, the accumulated amount of machining spacer error 1 assembly error of each component is all absorbed in the remaining gap 8 between the bracket 4 and the bearing 5 in the temporarily assembled state shown in the TAT diagram.
In the assembled state, there is a gap 6 between the stator 1 and the rotor 2.
It has no effect on Next, Figure 2 fa1. (Another embodiment will be described in bl. In this embodiment, a heat-shrinkable spacer 11 inserted into the gap 6 between the stator 1 and the rotor 2 during the temporary assembly process is attached to the stator 1 side. In other words, the spacer 11 forms a rail-shaped body with an engineering cross section as shown in Figure fa1 before being subjected to heat shrinkage treatment, and as shown in the figure, the coil 1a of the stator 1 is attached to the iron core 1b. is inserted axially along the coil slot lc of the coil slot) lc
The base is fitted into the entrance side bottleneck of the air gap 6, and the tip thereof is attached so as to protrude into the cavity 6. These spacers 11 are distributed and arranged in a plurality of coil slots on the circumferential surface of the stator core, and set the gap 6 between the stator 1 and rotor 2 to a uniform gap over the entire circumferential surface in the temporarily assembled state. Centering is maintained. Note that a coil slot indicated by reference numeral 12 is inserted into the coil slot where the spacer 11 is not attached to hold the coil within the slot. Next, while maintaining the temporarily assembled state centered and maintained in the above step, the remaining gap between the bracket 4 connected to the stator 1 and the bearing 5 mounted on the rotor shaft is filled with hardening material as shown in FIG. The spacer 11 is filled with a material 10 to fix the space between the bracket 4 and the bearing 5, and then in the subsequent spacer removal process the entire motor is heated to heat-shrink the spacer 11. As a result, the spacer 11 becomes as shown in Fig. 2 (1). As shown, the volume shrinks, and the tip of the spacer 11 retreats from the area of the air gap 6 into the coil slot, and a uniform air gap 6 is formed between the stator 1 and the rotor 2 over the entire circumference. This embodiment has the advantage that it is not necessary to form a groove on the circumferential surface of the rotor 2 as in the embodiment shown in FIG. 1, and that the influence on the magnetic characteristics of the motor is small. FIG. 3 shows a further different embodiment of the present invention, and the difference from the embodiment of FIG. 1 is that the spacer has a thickness approximately equal to the gap value of the air gap 6 between the stator 1 and the rotor 2. Centering between the stator 1 and the rotor 2 is set by using a non-heat-shrinkable film-like spacer 13 having the spacer 13 and interposing the spacer 13 in the entire circumference area or a part of the gap 6.
After temporarily fixing the bracket 4 and the bearing 5, the remaining gap between the bracket 4 and the bearing 5 is filled with a hardening filler, and the bracket 4 and the bearing 5 are bonded together.
to fix between. Next, in the spacer removal step, the film-like spacer 13 is drawn out to the outside as indicated by arrow P through the hole 4b previously opened in the end face of the bracket 4 and removed. This ensures a uniform gap 6 between the stator 1 and rotor 2. In addition,
As the film spacer 13, a material 1 having strong mechanical strength and a small coefficient of friction, such as a polyester resin film, is suitable.
以上述べたようにこの発明によれば、あらかじめブラケ
ットのセンタには軸受外径よりも充分に径大な軸受装着
穴を開口しておき、ロータをステータ内に組込んだ状態
でロータの外周面とステータの内周面との間の空隙がそ
の全周域で均一保持されるように前記空隙の全周域ない
し一部にスペーサを介装して両者間を芯出し状態に仮止
めする仮組立工程、前記工程による仮組立状態でステー
タに結合されたブラケットの軸受装着穴の内周面と軸上
に嵌合装着された軸受の外輪外周面との間の残余間隙に
硬化性充填材を充填してブラケットと軸受の外輪との間
を固着する軸受固着工程、および前記の仮組立工程でロ
ータとステータとの間の空隙に介装したスペーサを空隙
の領域外へ除去して空隙を確保するスペーサ除去工程と
を経て組立を行うことにより、回転電機を構成する各部
品の加工寸法誤差分を全て組立途中の仮組立状態でブラ
ケットと軸受との間の残余間隙部分へ一括吸収させてス
テータとロータとの間で芯出しおよび全周域での均一な
空隙を確保することができ、かくして各構成部品の機械
加工による加工精度の条件を緩和しつつ、しかも特性面
でのバラツキが無い高組立精度の回転電機を容易かつ安
価に製作することができる。As described above, according to the present invention, the bearing mounting hole is previously opened in the center of the bracket with a diameter sufficiently larger than the outer diameter of the bearing, and when the rotor is assembled in the stator, the outer peripheral surface of the rotor is A spacer is interposed in the entire circumferential area or a part of the gap so that the gap between the inner circumferential surface of the stator and the inner peripheral surface of the stator is maintained uniformly over the entire circumferential area, and the two are temporarily fixed in a centered state. In the assembly process, a hardening filler is applied to the remaining gap between the inner peripheral surface of the bearing mounting hole of the bracket connected to the stator in the temporarily assembled state in the above step and the outer peripheral surface of the outer ring of the bearing fitted and mounted on the shaft. A bearing fixing process in which the spacer is filled and fixed between the bracket and the outer ring of the bearing, and a spacer inserted in the gap between the rotor and stator in the above temporary assembly process is removed outside the gap area to secure the gap. By assembling the rotating electrical machine through a spacer removal process, all machining dimensional errors of the parts that make up the rotating electrical machine are absorbed into the remaining gap between the bracket and the bearing in the temporarily assembled state during assembly, and the stator is then assembled. It is possible to ensure centering and a uniform air gap over the entire circumference between the rotor and the rotor, thereby easing the machining accuracy requirements for machining each component, while also achieving high performance with no variation in characteristics. A rotating electric machine with assembly precision can be easily and inexpensively manufactured.
第1図(al、(blはこの発明の一実施例によるモー
タ組立工程の仮組立および組立完成状態を示すモータの
軸方向断面図、第2図fa)、Cb)は第1図と異なる
実施例の仮組立および組立完成状態を示すモータの要部
拡大横断面図、第3図はさらに異なる実施例の組立途中
段階を示すモータの軸方向断面図、第4図は従来におけ
るモータの構造断面図である。各図において、
1:ステータ、1c:コイルスロット、2:ロータ、2
a:溝部3:軸、4ニブラケツト、4a:軸受装着穴、
5:軸受、5a:軸受の外輪、6;空隙、7:熱収縮性
のリング状スペーサ、10:硬化性充填材、11:熱収
縮性のレール状スペーサ、13:フ(CI)
第1図
(b)
第2図
第3図
一ン1
第4図FIGS. 1A and 1B are axial cross-sectional views of the motor showing preliminary assembly and completed assembly states in the motor assembly process according to an embodiment of the present invention, FIGS. FIG. 3 is an axial cross-sectional view of the motor showing an intermediate stage of assembly in a different embodiment; FIG. 4 is a structural cross-section of a conventional motor. It is a diagram. In each figure, 1: stator, 1c: coil slot, 2: rotor, 2
a: Groove 3: Shaft, 4 nib bracket, 4a: Bearing mounting hole,
5: Bearing, 5a: Bearing outer ring, 6: Gap, 7: Heat-shrinkable ring-shaped spacer, 10: Curable filler, 11: Heat-shrinkable rail-shaped spacer, 13: Fu (CI) Figure 1 (b) Figure 2 Figure 3 Figure 1-1 Figure 4
Claims (1)
持した軸との対向部位の間に軸受を装着して成る小形回
転電機の組立方法であって、あらかじめブラケットのセ
ンタには軸受外径よりも充分に径大な軸受装着穴を開口
しておき、ロータをステータ内に組込んだ状態でロータ
の外周面とステータの内周面との間の空隙がその全周域
で均一保持されるように前記空隙の全周域ないし一部に
スペーサを介装して両者間を芯出し状態に仮止めする仮
組立工程、前記工程による仮組立状態でステータに結合
されたブラケットの軸受装着穴の内周面と軸上に嵌合装
着された軸受の外輪外周面との間の残余間隙に硬化性充
填材を充填してブラケットと軸受の外輪との間を固着す
る軸受固着工程、および前記の仮組立工程でロータとス
テータとの間の空隙に介装したスペーサを空隙の領域外
へ除去して空隙を確保するスペーサ除去工程とを経て組
立を行うことを特徴とする小形回転電機の組立方法。 2)特許請求の範囲第1項記載の組立方法において、ス
ペーサが熱収縮性材で作られ、かつスペーサ除去工程で
行う熱収縮処理により収縮して空隙領域外へ後退除去さ
れるものであることを特徴とする小形回転電機の組立方
法。 3)特許請求の範囲第2項記載の組立方法において、熱
収縮性のスペーサがロータの周面に形成した溝部に嵌着
してステータとの間の空隙内に介装されたリング状スペ
ーサであることを特徴とする小形回転電機の組立方法。 4)特許請求の範囲第2項記載の組立方法において、熱
収縮性のスペーサがその取付基部をステータ側鉄心のコ
イルスロット内に挿入してロータとの間の空隙内に介装
されたレール状スペーサであることを特徴とする小形回
転電機の組立方法。 5)特許請求の範囲第1項記載の組立方法において、ス
ペーサが空隙に対応した厚さを有する非熱収縮性のフィ
ルム状スペーサで、かつスペーサ除去工程で外部に取出
し除去されるものであることを特徴とする小形回転電機
の組立方法。[Scope of Claims] 1) A method for assembling a small rotating electric machine in which a bearing is installed between opposing parts of brackets connected to both ends of a stator and a shaft supporting a rotor, the method comprising: installing a bearing in the center of the bracket in advance; A bearing mounting hole with a diameter sufficiently larger than the bearing outer diameter is opened, and when the rotor is assembled into the stator, the gap between the outer circumferential surface of the rotor and the inner circumferential surface of the stator covers the entire circumference. A temporary assembly step in which a spacer is interposed in the entire circumferential area or a part of the gap so that the space is maintained uniformly, and the two are temporarily fixed in a centered state. A bearing fixing process in which the remaining gap between the inner circumferential surface of the bearing mounting hole and the outer circumferential surface of the outer ring of the bearing fitted on the shaft is filled with a curable filler to fix the bracket and the outer ring of the bearing. , and a spacer removal step in which the spacer inserted in the gap between the rotor and the stator in the temporary assembly step is removed outside the gap area to secure the gap. How to assemble electrical equipment. 2) In the assembly method as set forth in claim 1, the spacer is made of a heat-shrinkable material, and is shrunk by a heat-shrinking treatment performed in the spacer removal step to be retreated and removed outside the void area. A method for assembling a small rotating electric machine characterized by: 3) In the assembly method according to claim 2, the heat-shrinkable spacer is a ring-shaped spacer that fits into a groove formed on the circumferential surface of the rotor and is interposed in the gap between the rotor and the stator. A method for assembling a small rotating electric machine characterized by the following. 4) In the assembly method according to claim 2, the heat-shrinkable spacer has a rail-shaped spacer whose mounting base is inserted into the coil slot of the stator side core and inserted into the gap between the heat-shrinkable spacer and the rotor. A method for assembling a small rotating electric machine characterized by a spacer. 5) In the assembly method described in claim 1, the spacer is a non-heat-shrinkable film-like spacer having a thickness corresponding to the void, and is removed by being taken out to the outside in the spacer removal step. A method for assembling a small rotating electric machine characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3427886A JPS62193534A (en) | 1986-02-19 | 1986-02-19 | Assembling of miniaturized rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3427886A JPS62193534A (en) | 1986-02-19 | 1986-02-19 | Assembling of miniaturized rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62193534A true JPS62193534A (en) | 1987-08-25 |
Family
ID=12409694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3427886A Pending JPS62193534A (en) | 1986-02-19 | 1986-02-19 | Assembling of miniaturized rotary electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62193534A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007036415A1 (en) * | 2005-09-26 | 2007-04-05 | Siemens Aktiengesellschaft | Secondary part of a linear electrical machine and method for its manufacture |
-
1986
- 1986-02-19 JP JP3427886A patent/JPS62193534A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007036415A1 (en) * | 2005-09-26 | 2007-04-05 | Siemens Aktiengesellschaft | Secondary part of a linear electrical machine and method for its manufacture |
US7851951B2 (en) | 2005-09-26 | 2010-12-14 | Siemens Aktiengesellschaft | Secondary part of a linear electrical machine, and method for its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10498202B2 (en) | Manufacturing method for rotor for rotary electric machine | |
JP2574007B2 (en) | Synchronous motor rotor | |
CA1278013C (en) | Permanent magnet rotor assembly | |
US4674178A (en) | Method of fabricating a permanent magnet rotor | |
CN110663159B (en) | Rotor, rotating electric machine, and method for manufacturing rotor | |
US6465924B1 (en) | Magnetic bearing device and a vacuum pump equipped with the same | |
US3002261A (en) | Method of assembling a dynamoelectric machine | |
US5907206A (en) | Rotor for electric motors | |
US3863336A (en) | Method of manufacturing flat-type rotors | |
JPH02231945A (en) | Method and apparatus for manufacture of permanent magnet rotor | |
JPH0919091A (en) | Rotor for synchronous motor | |
CN110800197A (en) | Motor assembling method, centering jig, and electric motor | |
US3571921A (en) | Method of manufacturing an electric motor by high-speed forming | |
JP2002199666A (en) | Rotary electric machine and its manufacturing method | |
JP2006304409A (en) | Permanent magnet rotary machine | |
KR20020021674A (en) | Rotary electric machine and method for making windings | |
JPS62193534A (en) | Assembling of miniaturized rotary electric machine | |
JP3508209B2 (en) | Manufacturing method of permanent magnet type rotor | |
JP2001136692A (en) | Inner rotor motor and manufacturing method of its rotor | |
KR930006798Y1 (en) | Structure for fixing radial type rotor to output shaft of synchronous motor | |
JP3053052B2 (en) | Rotor manufacturing jig and rotor manufacturing method using the same | |
JP2003037953A (en) | Dc brushless motor | |
JP7079763B2 (en) | How to manufacture rotors for rotary electric machines, permanent magnet assemblies, and rotors for rotary electric machines | |
JPH0147099B2 (en) | ||
JPS631338A (en) | Bearing assembly structure of smallsized rotary electric machine |