JPS6219347A - Control method when surface is cut by rotary toll - Google Patents

Control method when surface is cut by rotary toll

Info

Publication number
JPS6219347A
JPS6219347A JP15669685A JP15669685A JPS6219347A JP S6219347 A JPS6219347 A JP S6219347A JP 15669685 A JP15669685 A JP 15669685A JP 15669685 A JP15669685 A JP 15669685A JP S6219347 A JPS6219347 A JP S6219347A
Authority
JP
Japan
Prior art keywords
cutting
rotary tool
tool
workpiece
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15669685A
Other languages
Japanese (ja)
Inventor
Shunsuke Wakaoka
俊介 若岡
Saburo Tanaka
三郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP15669685A priority Critical patent/JPS6219347A/en
Publication of JPS6219347A publication Critical patent/JPS6219347A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a tool to decrease its vibration so as to improve a life of the tool and its cutting efficiency, by controlling a cutting feed speed, given in a region when an edge of the rotary tool starts cutting and retracts from a work, to be in a low value for a cutting feed speed command. CONSTITUTION:When a rotary tool is in a 16phi diameter, the method, commanding in N10 a main spindle to 2,000rpm to be rotated by M3 in N11 and commanding an adaptive control in VMPC1=#20H, assigns a tool depth of cut in regions VD1=18, VD2=26. Next the method, positioning the tool in N12 by a quick feed speed to a position of X13, Y50 before a cutting position, quickly feeds the tool in N13 to a position of Z-15 in the position of N12 before the cutting position. while the method commands the tool in N14 by a cutting feed speed F800 to a position X-313. In this way, the method, turning off the adaptive control in the region VD1=18, from the present position of N13 to a feed command value X-313, that is, from the position X13 to X-5, and performing 100% feed spindle speed override,performs the adaptive control in the region after the position X-5 to the region VD2=26 before the assigned value X-313.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は工作機械、特にマシニングセンタ等においてエ
ンドミル、フライス工具により素材加工物の荒引き加工
の場合に好適な回転工具による平面切削時の制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling plane cutting using a rotary tool suitable for rough cutting of a workpiece using an end mill or a milling tool in a machine tool, particularly a machining center.

従来技術 エンドミル、フライス工具により鋳物等の素材加工物の
荒引き加工を行う場合、工具の刃の入り始めと刃の抜け
際は断続切削となり衝撃振動が大きくまた鋳肌表面はチ
ルされ硬度が高いので刃を損耗させ易い、また切削加工
に適応制御を働かせた場合、第7図のように切削負荷が
かかり始めると同時に適応制御が働き、削り始めは加工
物と工具が充分接していないため切削負荷が小さいので
当然のことに送り速度は早くなる。しかし工具は不連続
な片当たりをしているため送り速度を上げることは工具
の逃げ、振動をひきおこして工具摩耗を早めるという結
果になっていた。
Conventional technology When rough cutting a material workpiece such as a casting using an end mill or milling tool, there is an intermittent cutting at the beginning of the tool's entry and exit, resulting in large impact vibrations and the casting surface is chilled and hard. Therefore, it is easy to wear out the blade.Also, when adaptive control is activated during cutting, as shown in Figure 7, the adaptive control is activated as soon as the cutting load starts to be applied, and the workpiece and tool are not in sufficient contact at the beginning of cutting, resulting in cutting. Since the load is small, the feed speed is naturally faster. However, since the tool has discontinuous uneven contact, increasing the feed rate causes the tool to escape, causes vibration, and accelerates tool wear.

発明が解決しようとする問題点 回転工具の振動を極力小さくして工具の寿命を長くさせ
るとともに切削能率を向上させうろことである。
The problem to be solved by the invention is to minimize the vibration of a rotary tool to extend the life of the tool and improve cutting efficiency.

問題点を解決するための手段 回転工具の刃の入り始め及び刃の抜け際の領域の切削送
り速度を切削送り速度指令に対して低いイ直となるよう
に制御するものである。
Means for Solving the Problems The present invention is to control the cutting feed rate in the areas where the blade of the rotary tool begins to enter and when the blade exits so as to have a low deviation relative to the cutting feed rate command.

実施例 本発明の方法を実施する回路をブロック線図で示した第
1図において、1はマシニングセンタ等の機械本体、2
はNC装置、3はNC装置2の指令で働く主軸駆動ユニ
ット及び送り軸駆動ユニット、4はマシニングセンタ駆
動モータ、5はモータ4の無負荷時及び切削時の負荷電
流を検出するシャント、6は検出電流のA/D変換器で
ディジタル数値に変換する。7は無負荷電流の記憶回路
、8は減算器で切削時負荷電流値より無負荷時の電流値
が減算されて実切削負荷電流値が算出される。
Embodiment In FIG. 1 showing a block diagram of a circuit for carrying out the method of the present invention, 1 is a machine body such as a machining center, 2 is
is an NC device, 3 is a main shaft drive unit and feed shaft drive unit that operate according to the commands of the NC device 2, 4 is a machining center drive motor, 5 is a shunt that detects the load current of the motor 4 at no load and during cutting, and 6 is a detection The current is converted into a digital value using an A/D converter. 7 is a no-load current storage circuit, and 8 is a subtracter that subtracts the no-load current value from the cutting load current value to calculate the actual cutting load current value.

9は0,01秒ごとにサンプリングした実切削負荷電流
値の20回、即ち0.2秒間の平均値演算回路、10は
その工具の実切削負荷電流の0. 2秒毎の平均値の最
大値を制御値とする記憶回路、11は加工物切削時の実
切削負荷電流平均値演算回路9のデータと制御値記憶回
路lOの制御値を比較して大小を出力する比較回路、1
2は比較回路の出力値の大小によって送り軸の送り速度
のオーバライドを大のときは10%ダウンし、小のとき
は10%アップするオーバライド速度指令回路でN C
’A W 2にその値が入力される。このオーバライド
指令にもとづきNC装置2は駆動ユニット3を制御する
。13はユーザ加工プログラムの入力部で14は切削位
置指令と主軸回転数、切削送り速度、クーラントのを無
等の切削条件指令入力部、15は適応制御指令入力部、
16はVD1指令入力部、17はVD2指令入力部で必
要によりVD33指令入力部を付加する。これらの入力
部はテープまたはMDIで入力され、その指令値はNC
装置2に入力される。18は機械本体1のマガジン等に
貯蔵されたタッチセンサでATCで主軸に装着され加工
物に接触したとき及び接触中タッチ信号をNC装置2に
制御信号として出力する。
9 is an average value calculation circuit for 20 times of the actual cutting load current sampled every 0.01 seconds, that is, 0.2 seconds, and 10 is a circuit for calculating the average value of the actual cutting load current of the tool. A memory circuit 11 uses the maximum value of the average value every 2 seconds as a control value, and 11 compares the data of the actual cutting load current average value calculation circuit 9 during cutting of the workpiece with the control value of the control value memory circuit 10 to determine the magnitude. Comparison circuit to output, 1
2 is an override speed command circuit that reduces the override of the feed speed of the feed axis by 10% when it is large and increases it by 10% when it is small depending on the magnitude of the output value of the comparison circuit.
'A W 2 is entered with that value. Based on this override command, the NC device 2 controls the drive unit 3. 13 is an input section for a user machining program; 14 is an input section for cutting position commands, spindle speed, cutting feed rate, and coolant; 15 is an adaptive control command input section;
16 is a VD1 command input section, 17 is a VD2 command input section, and a VD33 command input section is added if necessary. These input sections are input by tape or MDI, and the command values are NC
It is input to device 2. Reference numeral 18 denotes a touch sensor stored in a magazine or the like of the machine body 1, which is attached to the spindle by ATC and outputs a touch signal as a control signal to the NC device 2 when and during contact with a workpiece.

なおタッチセンサは特別に設けず工具と加工物との間の
導通をとるように構成して接触中の信号を取り出すこと
もできる。19はテーブル、主軸頭の位置検出器で加工
物の現在値をNC装置2に入力する0本制御回路は出願
人が先に提案した特願昭60−92087号の第1図の
ブロック線図に準拠するものである。
Note that a touch sensor may not be specially provided, and the tool may be configured to establish continuity between the tool and the workpiece, and a signal during contact may be extracted. Reference numeral 19 denotes a table, a position detector for the spindle head, which inputs the current value of the workpiece to the NC device 2. The control circuit is the block diagram shown in Fig. 1 of Japanese Patent Application No. 1987-92087, which was previously proposed by the applicant. It complies with the following.

次に制御をプログラムによって説明する。Next, control will be explained using a program.

プログラム例1 (第2図) タッチ信号を使用しない場合で回転工具径16φとする
Program example 1 (Figure 2) When touch signals are not used, the rotary tool diameter is 16φ.

NIO5200O Nil  M3  VMPCI−#20HDI−18 D2−26 N12  Go  X13  Y5O N13     Z−15 N14  GI  X−313F80ON15  GO
Y100 N16  GI  X13 N100    MO2 即ちNIOにおいて主軸を200Or、p、mを指令し
、NilにおいてM3で主軸を回転させVMPCI=#
20Hで適応制御1を指令し、VDI−18,VD2−
26で回転工具例えばエンドミルの加工物への入り込み
量を指定する。N12において切削位置の手前X13.
Y2Oの位置に工具を早送り速度で位置決めする。N1
3において切削位1の手前のN12の位置でZ−15の
位置に早送りする。N14において切削送り速度F80
0にてX−313へ指令する。これによりN13の現在
位置より送り指令値X−313までの■D1=18即ち
X13の現在位置からX−5の位置まで適応制御をオフ
としてこの間送り軸速度オーバライド100%とし、X
−5以後指定値X−313の手前VD2=26迄は適応
制御に入る。
NIO5200O Nil M3 VMPCI-#20HDI-18 D2-26 N12 Go X13 Y5O N13 Z-15 N14 GI X-313F80ON15 GO
Y100 N16 GI
Adaptive control 1 is commanded at 20H, VDI-18, VD2-
At 26, the amount of penetration of a rotary tool, such as an end mill, into the workpiece is designated. At N12, in front of the cutting position X13.
Position the tool at the Y2O position at rapid traverse speed. N1
3, fast forward to position Z-15 at position N12 before cutting position 1. Cutting feed rate F80 at N14
Command to X-313 at 0. As a result, from the current position of N13 to the feed command value X-313, the adaptive control is turned off from the current position of N13 to the feed command value
After -5, adaptive control is entered until VD2=26 before the designated value X-313.

即ちN14で指令したX−313の手前VD2−26、
つまりX−−287迄適応制御したあとX−287から
X−313迄適応制御をオフとする。
In other words, VD2-26 in front of X-313 commanded by N14,
That is, after performing adaptive control up to X-287, the adaptive control is turned off from X-287 to X-313.

NC装置により適応制御をオフにしたとき急激にオーバ
ライドを100%に下げず、適応制御オフ前のオーバラ
イドより0.2秒毎に送り軸速度のオーバライドを10
%づつ強制的に下げ100%で送る。N15において早
送りでYlooの次の切削点に移動させる。以下同様の
切削が行われ、加工が終了する。
When the adaptive control is turned off by the NC device, the override is not suddenly reduced to 100%, and the feed axis speed override is reduced to 10% every 0.2 seconds from the override before the adaptive control was turned off.
Forcibly decrease by % and send at 100%. At N15, move to the next cutting point of Yloo by rapid traverse. Similar cutting is performed thereafter, and the machining is completed.

プログラム例2(第3図) タッチ信号を使用しない場合で回転工具径16φとする
Program example 2 (Fig. 3) When touch signals are not used, the rotary tool diameter is 16φ.

NIO5200O Nil  M3  VMPC1=#20HVD1=18 D2−26 D3−8 N12  Go  X13  Y5O Nl 3      Z−l 5 N14  GI  X−313F80ON15  Go
       YlooこのプログラムはNilにおい
てプログラム例1に対してVD3−8が入ったものであ
って、N14において切削送りF2O3で指令値X−3
13より手前VD2=26による−313+26、即ち
X−287よりVD3=8による−313+8即ちX−
305までの間の適応制御をオフとするものである点が
異なる。
NIO5200O Nil M3 VMPC1=#20HVD1=18 D2-26 D3-8 N12 Go X13 Y5O Nl 3 Z-l 5 N14 GI X-313F80ON15 Go
Yloo This program is a version of program example 1 in Nil with VD3-8 added, and in N14, the command value X-3 is set at cutting feed F2O3.
-313+26 due to VD2=26 before 13, i.e. -313+8 due to VD3=8 from X-287, i.e. X-
The difference is that the adaptive control up to 305 is turned off.

プログラム例3(第4図) 工具と加工物が接触したこと及び接触していることが確
認できる例えば工具と加工物間の導通を利用して接触信
号(タッチ信号)使用した場合で回転工具径を16φと
する。
Program example 3 (Fig. 4) When a contact signal (touch signal) is used to confirm that the tool and the workpiece are in contact and that they are in contact, for example, the conduction between the tool and the workpiece is used. is 16φ.

NIO52000G38  F120ONil  M3
  VMPCI−#20HDI−18 VD2=26 N12  GOX13  Y5O N13     Z−15 N14  GI  X−313F80ONIOで主軸回
転200Or、p、mを指令タッチ信号オフ時の送り速
度をF1200と定義、N11において主軸回転適応制
御指令工具が径の半分+5fi入り込む位置18.及び
切削指令値より手前位置26を指令、N12においてX
13.Y2Oに早送りで位置決めし、N13において更
にZ−15に早送りで位1決めする。N14においてX
−313迄送り速度F800で切削送り指令されるが、
適応制iTJ 指令とVD1=18.VD2=26が指
令されているためX13からタッチ信号がでるN8まで
送り速度F1200で送り、タッチ信号の出たN8から
X−5まで適応制御オフで送り速度F800で加工し以
後回転工具が加工物から抜ける手前VD2=26即ちX
−287迄で適応制御してX−287からタッチ信号が
切れ   □るまで適応制御オフとし回転工具が加工物
を抜けた瞬間から送り速度F1200でX−313迄早
   □送りされる。
NIO52000G38 F120ONil M3
VMPCI-#20HDI-18 VD2=26 N12 GOX13 Y5O N13 Z-15 N14 GI X-313F80ONIO commands spindle rotation 200Or, p, m Define feed speed when touch signal is off as F1200, spindle rotation adaptive control command at N11 Position where the tool enters half the diameter + 5fi 18. and command the position 26 before the cutting command value, X at N12
13. Fast forward to position at Y2O, and at N13, position to Z-15 by fast forward. X in N14
A cutting feed command is given at a feed rate of F800 up to -313, but
Adaptive system iTJ command and VD1=18. Since VD2=26 is commanded, feed from X13 to N8 where a touch signal is issued at a feed rate of F1200, and from N8 where a touch signal is issued to X-5, processing is performed at a feed rate of F800 with adaptive control off. From then on, the rotary tool will not move the workpiece. VD2 = 26, that is, X before exiting from
-287, the adaptive control is turned off until the touch signal from X-287 is cut off, and from the moment the rotary tool passes through the workpiece, it is rapidly fed to X-313 at a feed rate of F1200.

プログラム例4(第5図) NIO,M3,056,5180.Hl、Nl1、  
FMILR,XO,YO,Z O,1600゜J400
.  KO,2,F70.  Q5.  RIO,DI
、F40O NIOにおいて主軸回転数18Or、p、mを指定、H
lの工具長補正を使用することを定義、主軸回転を指定
、NilにおいてX方向の領域の巾(加工物長さ)16
00.Y方向の領域の巾(加工物中)J400後工程の
ための仕上代KO。
Program example 4 (Figure 5) NIO, M3,056,5180. Hl, Nl1,
FMILR, XO, YO, Z O, 1600°J400
.. KO, 2, F70. Q5. RIO, D.I.
, specify spindle rotation speed 18 Or, p, m in F40O NIO, H
Define to use tool length correction of l, specify spindle rotation, width of area in X direction (workpiece length) in Nil 16
00. Width of area in Y direction (in workpiece) J400 Finishing allowance KO for post-process.

2.1回の切削中を工具径本例では160に対して百分
率P70で指定、使用するカッタで可能な1回の切り込
み深さQ5指定、切り込みをかけるのに基点となる高さ
RIO指定、工具半径D1、本例では80指定、送り速
度F400を指定する。
2. Specify the tool diameter during one cutting as a percentage P70 for 160 in this example, specify the depth of cut Q5 possible in one cut with the cutter used, specify the height RIO which is the base point for making the cut, The tool radius D1 is specified as 80 in this example, and the feed rate F400 is specified.

この条件でFMILRを指定し切削の動きは加工物と工
具の外周との間に5fiの余裕がある様に加工方向のX
座標が第5図のように決められる0次いで本プログラム
例4にもとづく切削状況を第6図のフローチャートと及
び第5図の切削状態図にもとづき説明する。
Under these conditions, specify FMILR and cut the cutting movement in the direction of
The cutting situation based on the program example 4 in which the coordinates are determined as shown in FIG. 5 will be explained based on the flowchart in FIG. 6 and the cutting state diagram in FIG. 5.

ステップSLにおいて(J−Y)/ CP/10OX2
XD1)を演算してY軸方向の切削回数Aを求める。即
ち(400−0) / (70/100X2X80)−
3,6、ステップS2においてAの値を切り上げて整数
化するA=4、ステップS3において(J−Y)/Aの
演算をしてY軸方向の一回当たりの送り量Bを求める。
At step SL (J-Y)/CP/10OX2
XD1) is calculated to find the number of cuts A in the Y-axis direction. That is (400-0) / (70/100X2X80)-
3, 6. In step S2, the value of A is rounded up to an integer, A=4. In step S3, (J-Y)/A is calculated to obtain the feed amount B per time in the Y-axis direction.

即ちB−(400−0)/4−100、ステップS4に
おいて、B−DIを演算して最初の切削時にカッタ中心
経路の加工物端よりの距離C−20を求める。ステップ
S5において、Xの指令値−(DI+5)。
That is, B-(400-0)/4-100. In step S4, B-DI is calculated to determine the distance C-20 of the cutter center path from the end of the workpiece during the first cutting. In step S5, the command value of X - (DI+5).

y−cにより決まる値即ちXはO−(80+5)−一8
5、Yは20のイ点に早送りで位置決めする。ステップ
S6においてX軸方向の切り込みをかける基点RIOに
早送りで位置決めする。ステップS7においてZ指令値
十に指令値くZ現在値−Qかを比較する。即ち0+0.
2<10−5、YESであるからステップS8において
、Z現在値−Qすなわち10−5−5を2の値とする。
The value determined by y-c, that is, X is O-(80+5)--8
5. Position Y at point 20 in fast forward motion. In step S6, the base point RIO for cutting in the X-axis direction is positioned by rapid traverse. In step S7, the Z command value 0 is compared with the command value minus the Z current value -Q. That is, 0+0.
Since 2<10-5, YES, in step S8, the current Z value -Q, that is, 10-5-5, is set to the value of 2.

ステップS7においてNOであればステップS9におい
てZ指令値十に指令値即ちO+0.2をZの値とする。
If NO in step S7, the Z value is set to the Z command value 10 and the command value, that is, O+0.2.

ステップSIOにおいてステップS8の流れでは5又は
ステップS9の流れでは0゜2までオーバライド100
%のF40QでX軸方向切削送り、ステップSllにお
いてX指令値十5、即ち0+5の0点までオーバライド
50%のF200でX軸方向切削送り、ステップ312
においてI−(D1+5)即ち600−(8(1+5)
ハ点までオーバライド100%のF400でX軸方向切
削送り、ステップ313においてI+5即ち600+5
二点までオーバライド50%のF200でX軸方向切削
送り、ステップ514においてY現在値≦J−Bかを比
較しYESであればステップ315において、Y現在値
十B即ち20+100ホ点ヘオーバライド50%のF2
00でX軸方向切削送り、ステップS16において!−
5すなわち600−5へ点ヘオーバライド50%のF2
00でX軸方向切削送り、ステップS17においてX指
令値+(DI+5)即ち0+(80+5) ト点ヘオー
バライド100%のF400でX軸方向切削送り、ステ
ップ318においてX指令値−5即ちO−5チ点ヘオー
バライド50%のF200でX軸方向切削送り、ステッ
プS19においてY現在値≦J−B即ち400−100
かを比較しYESであればステップ320においてY−
Y現在値十B即ち120+100り点ヘオーバライド5
0%F200で切削送り、以後第5図のり点からヌ点迄
同様にステップを繰り返して点線の経路による切削が行
われる。ステップ321においてY現在値+B即ち22
0+100ヌ点ヘオーバライド50%のF200でX軸
方向切削送り、ステップ322においてI−5即ち60
0−5ル点ヘオーバライド50%のF200でX軸方向
切削送り、ステップ323でX指令値+5即ち0+5ヲ
点ヘオーバライド100%のF400でX軸方向送り、
ステップ324においてX指令値−5即ち0−5ワ点ヘ
オーバライド50%のF200でX軸方向切削送り、ス
テップS25でY現在値≦J−B即ち320≦300か
を比較してNOであるから、ステップ326でX指令値
−(D1+5)即ち0−(80+5)力点ヘオーバライ
ド100%のF2O3でX軸方向切削送り、ステップS
27においてZ現在値=Kかを比較しYESであれば、
ステップ528においてZ=R即ちZloへ早送りで加
工を終了する。途中のステップ514においてNoであ
ればステップS29においてT+(DI+5)即ち60
0+ (80+5)力点に対称な位置にオーバライド1
i00%のF2O3でX軸方向切削送りでぬける。その
後ステップS27に移行する。なおこの場合はAが奇数
となるときである。またステップS19においてNOで
あればステップS30においてX指令値−(DI+5)
即ち0−(80+5)オ点ヘオーバライド100%のF
2O3でX軸方向切削送り、その後ステップS27に移
行する。更にステップS27においてNoであればステ
ップ531においてZ現在値を21とする。ステップS
32においてZ−R即ちZlOにZ軸方向早送りされる
In step SIO, override 100 to 5 in the flow of step S8 or 0°2 in the flow of step S9
Cutting feed in the X-axis direction with F40Q of %, cutting feed in the X-axis direction with F200 of override 50% to the X command value 15, that is, the 0 point of 0+5 in step Sll, Step 312
I-(D1+5) or 600-(8(1+5)
Cutting feed in the X-axis direction with F400 with 100% override until point C, I+5, 600+5 in step 313
Cutting feed in the X-axis direction with F200 with override 50% up to two points, compare whether Y current value ≦ J-B in step 514, and if YES in step 315, override 50% to Y current value 10B, that is 20 + 100 points. F2 of
Cutting feed in the X-axis direction at 00, in step S16! −
5 i.e. 50% F2 to point 600-5
00 is the cutting feed in the X-axis direction, step S17 is the X command value + (DI + 5), that is, 0 + (80 + 5), and F400 with 100% override to point G is the cutting feed in the X-axis direction, and in step 318, the X command value is -5, that is, O-5. Cutting feed in the X-axis direction at F200 with 50% override to point Q, and in step S19, Y current value ≦ J-B, that is, 400-100
If YES, in step 320, Y-
Y current value 10B, i.e. 120 + 100 point override 5
Cutting feed is performed at 0% F200, and thereafter steps are repeated in the same manner from the glue point to the nu point in FIG. 5, and cutting is performed along the dotted line path. In step 321, Y current value + B, that is, 22
Cutting feed in X-axis direction at F200 with 50% override to 0+100 point, I-5 or 60 in step 322
Cutting feed in the X-axis direction with F200 with 50% override to the 0-5 point, feed in the X-axis direction with F400 with 100% override to the X command value +5, that is, 0+5 point in step 323,
In step 324, cut feed in the X-axis direction with F200 with 50% override to the X command value -5, that is, 0-5 W point, and in step S25, compare whether the Y current value ≦J-B, that is, 320≦300, and the result is NO. , In step 326, cut feed in the X-axis direction with F2O3 with 100% override to the X command value - (D1 + 5), that is, 0 - (80 + 5) to the force point, and in step S
27, compare whether Z current value = K and if YES,
In step 528, processing is completed by fast forwarding to Z=R, that is, Zlo. If No in step 514 on the way, T+(DI+5), that is 60, is determined in step S29.
0+ (80+5) Override 1 in a position symmetrical to the point of force
It can be passed by cutting feed in the X-axis direction with i00% F2O3. After that, the process moves to step S27. In this case, A is an odd number. If NO in step S19, the X command value - (DI+5) is determined in step S30.
That is, 0-(80+5) F with 100% override to O point.
Cutting is fed in the X-axis direction at 2O3, and then the process moves to step S27. Further, if No in step S27, the current Z value is set to 21 in step 531. Step S
At 32, it is fast-forwarded in the Z-axis direction to Z-R, that is, to ZlO.

ステップS33でX指令値−(DI+5)、Y−C即ち
xはo−<8o +5)、Yは20. イ点へ早送りさ
れ、ステップS34においてzlのデータがZになリオ
ーバライド100%のF2O3でX軸方向切削送り、そ
の後ステップS7に移行するものである。
In step S33, X command value -(DI+5), Y-C, that is, x is o-<8o +5), and Y is 20. The data of zl becomes Z in step S34, and cutting feed in the X-axis direction is performed using F2O3 with 100% reoverride, and then the process moves to step S7.

効果 以上詳述したように本発明は工具の切削のかかり始め及
び工具の抜け際において切削中の送り速度を途中の送り
速度寄り低くするようになしたので、作業者の手動操作
に一層近い形の適応制御が可能となり、工具の振動及び
工具摩耗を押さえることができ、又折損し易い小径或い
は細長い工具の場合も安定した切削が可能となり工具の
寿命。
Effects As detailed above, in the present invention, the feed rate during cutting is lowered at the beginning of cutting and when the tool is coming out, which is closer to the feed rate in the middle of the cut, so it is more similar to manual operation by the operator. This enables adaptive control of tool vibration and tool wear, and enables stable cutting of small diameter or long tools that are prone to breakage, extending tool life.

加工精度を良くする効果を存する。It has the effect of improving machining accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する制御のブロック図、第
2図はエンドミルの切削における本発明の実施例第1の
工具位置と送り軸速度の関係を示す図、第3図はプログ
ラム例2における切削かかり始めと工具波は際の状態図
、第4図はプログラム例3における送り軸速度の関係を
示す図、第5図みエンドミルの切削におけるプログラム
例4の工具位置と送り軸速度の関係を示す図、第6図は
プログラム例4におけるフローチャートを示す図、第7
図は従来の工具位置と送り速度との関係図である。 2・・・NC装置  3・・・駆動装置6・・・A/D
変換器  7・・・無負荷電流記憶回路  8・・・減
算器 9・・・実切削負荷11流平均値演算回路IO・・・制
御値記憶回路 11・・・比較回路  12・・オーバライド速度指令
回路
Fig. 1 is a block diagram of control for implementing the method of the present invention, Fig. 2 is a diagram showing the relationship between the first tool position and feed axis speed of the embodiment of the present invention in end mill cutting, and Fig. 3 is a program example. Figure 4 shows the relationship between the start of cutting and the tool wave in Program Example 3. Figure 5 shows the relationship between the tool position and the feed axis speed in Program Example 4 when cutting an end mill. Figure 6 shows the flowchart in program example 4, Figure 7 shows the relationship.
The figure is a conventional relationship diagram between tool position and feed rate. 2...NC device 3...Drive device 6...A/D
Converter 7...No-load current memory circuit 8...Subtractor 9...Actual cutting load 11 current average value calculation circuit IO...Control value memory circuit 11...Comparison circuit 12...Override speed command circuit

Claims (5)

【特許請求の範囲】[Claims] (1)回転工具による平面切削時の制御において、回転
工具の刃の入り始め及び刃の抜け際の領域の切削送り速
度を切削送り速度指令値に対して低い値となるように制
御することを特徴とする回転工具による平面切削時の制
御方法。
(1) In controlling flat surface cutting with a rotary tool, the cutting feed rate in the area where the rotary tool blade begins to enter and the blade exits is controlled to a value lower than the cutting feed rate command value. A control method for plane cutting using a rotating tool.
(2)途中の切削送り速度制御が適応制御である特許請
求の範囲第1項記載の回転工具による平面切削時の制御
方法。
(2) A control method during plane cutting with a rotary tool according to claim 1, wherein the midway cutting feed rate control is adaptive control.
(3)刃の入り始め領域がプログラム指令により決めら
れる位置から回転工具径の半分+数mm入った位置であ
り、刃の抜け際領域が工具の一部が加工物から抜け始め
る手前のプログラム指令により決められる回転工具半径
または回転工具半径+数mmから工具が抜け切ってプロ
グラム指令で決められる位置迄である特許請求の範囲第
2項記載の回転工具による平面切削時の制御方法。
(3) The program command indicates that the area where the blade begins to enter is a position that is half the rotary tool diameter + several mm from the position determined by the program command, and the area where the blade exits is just before a part of the tool begins to come out of the workpiece. 3. The method of controlling plane cutting using a rotary tool according to claim 2, wherein the cutting distance is from a rotary tool radius determined by a rotary tool radius or a rotary tool radius + several mm to a position determined by a program command after the tool has completely pulled out.
(4)刃の入り始めの領域が回転工具が加工物と接触し
た位置から回転工具径の半分+数mm入った位置であり
、刃の抜け際領域がプログラム指令によって決められる
回転工具が加工物から抜け始める手前の工具径の半分+
数mmの位置から回転工具が加工物より離れる位置まで
の間である特許請求の範囲第2項記載の回転工具による
平面切削時の制御方法。
(4) The area where the blade begins to enter is a position that is half the diameter of the rotary tool + several mm from the position where the rotary tool contacts the workpiece, and the area where the blade exits is determined by the program command. Half the diameter of the tool before it starts to come out +
3. The method of controlling plane cutting using a rotary tool according to claim 2, wherein the cutting time is from a position of several mm to a position where the rotary tool is separated from the workpiece.
(5)刃の入り始めの領域が使用者が指令した加工プロ
グラムにもとづき回転工具の加工物へのかかり具合を制
御装置で自己演算して決めた切削送り開始点から回転工
具径の半分+数mm迄回転工具中心が入った位置であり
、刃の抜け際の領域が使用者が指令した加工プログラム
にもとづき回転工具の加工物への抜け具合を制御装置で
自己演算して決めた回転工具の抜け始める位置の手前回
転工具径の半分+数mmの位置から回転工具中心が数m
m通り過ぎる位置迄である特許請求の範囲第1項記載の
回転工具による平面切削時の制御方法。
(5) The area where the blade begins to enter is half the diameter of the rotary tool + number from the cutting feed start point determined by self-calculating the degree of engagement of the rotary tool on the workpiece by the control device based on the machining program commanded by the user. This is the position where the center of the rotary tool is located up to mm, and the area where the blade is about to come out is determined by the control device self-calculating the degree to which the rotary tool will come out of the workpiece based on the machining program commanded by the user. The center of the rotary tool is several meters from the position that is half the diameter of the rotary tool + several mm in front of the position where it starts to come out.
A method of controlling flat surface cutting using a rotary tool according to claim 1, wherein the rotating tool is up to a position where the rotating tool passes by m.
JP15669685A 1985-07-16 1985-07-16 Control method when surface is cut by rotary toll Pending JPS6219347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669685A JPS6219347A (en) 1985-07-16 1985-07-16 Control method when surface is cut by rotary toll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15669685A JPS6219347A (en) 1985-07-16 1985-07-16 Control method when surface is cut by rotary toll

Publications (1)

Publication Number Publication Date
JPS6219347A true JPS6219347A (en) 1987-01-28

Family

ID=15633339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669685A Pending JPS6219347A (en) 1985-07-16 1985-07-16 Control method when surface is cut by rotary toll

Country Status (1)

Country Link
JP (1) JPS6219347A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285614A (en) * 1987-05-19 1988-11-22 Fanuc Ltd Programming device
JPH0453649A (en) * 1990-06-18 1992-02-21 Okuma Mach Works Ltd Irregular revolution speed cutting method
CN102320018A (en) * 2011-07-29 2012-01-18 上海先德机械工程有限公司 Control device of milling feed speed curve and control method thereof
CN108931959A (en) * 2017-05-26 2018-12-04 发那科株式会社 Control device and rote learning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205013A (en) * 1981-06-11 1982-12-16 Nippei Toyama Corp Feed controller for cutting tool
JPS59166446A (en) * 1983-02-08 1984-09-19 Honda Motor Co Ltd Method of controlling speed of tool feed in numerical-controlled processing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205013A (en) * 1981-06-11 1982-12-16 Nippei Toyama Corp Feed controller for cutting tool
JPS59166446A (en) * 1983-02-08 1984-09-19 Honda Motor Co Ltd Method of controlling speed of tool feed in numerical-controlled processing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285614A (en) * 1987-05-19 1988-11-22 Fanuc Ltd Programming device
JPH0453649A (en) * 1990-06-18 1992-02-21 Okuma Mach Works Ltd Irregular revolution speed cutting method
CN102320018A (en) * 2011-07-29 2012-01-18 上海先德机械工程有限公司 Control device of milling feed speed curve and control method thereof
CN108931959A (en) * 2017-05-26 2018-12-04 发那科株式会社 Control device and rote learning device
JP2018199189A (en) * 2017-05-26 2018-12-20 ファナック株式会社 Control device and mechanical learning device

Similar Documents

Publication Publication Date Title
JP6426662B2 (en) Numerical control device for skiving control
JPH0716854B2 (en) Numerically controlled feeder
US5021622A (en) Wire cut electrical discharge machine
US4947015A (en) Process for the control of the feed motion and touch-on motion of a grinding wheel
JPS6219347A (en) Control method when surface is cut by rotary toll
US4698573A (en) Numerically controlled working process
JP6487490B2 (en) Numerical controller
JP3838199B2 (en) Wire electrical discharge machine
JPH11327624A (en) Numerical controller with feed speed controlling function
JP3827922B2 (en) Automatic lathe control device
JP2004202594A (en) Numerical control device
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JP6408040B2 (en) Numerical controller
JP2607717B2 (en) Numerically controlled grinding machine
JP2574674B2 (en) Grinding machine cutting device
JP2612364B2 (en) Numerical control unit
JP2019000969A (en) Numerical control device
JPS60263644A (en) Numeric control machine
JPS55150007A (en) Control system for machine tool
JPH06262484A (en) Feed control device for numerically controlled machine tool
JP2553227B2 (en) Tool damage detection method for machine tools
JPH08300223A (en) Electric discharge machining device
JPH04289072A (en) Control of dress for grindwheel
JP3376650B2 (en) Grinding equipment
JPH1165635A (en) Numerical controller with teaching playback function