JPS62192665A - Flow velocity measuring instrument for conductive fluid - Google Patents

Flow velocity measuring instrument for conductive fluid

Info

Publication number
JPS62192665A
JPS62192665A JP3548286A JP3548286A JPS62192665A JP S62192665 A JPS62192665 A JP S62192665A JP 3548286 A JP3548286 A JP 3548286A JP 3548286 A JP3548286 A JP 3548286A JP S62192665 A JPS62192665 A JP S62192665A
Authority
JP
Japan
Prior art keywords
flow velocity
electrodes
electrode
conductive current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3548286A
Other languages
Japanese (ja)
Other versions
JPH073345B2 (en
Inventor
Mitsuo Ueda
上田 三男
Kikuo Nakamura
喜久男 中村
Yoshito Abe
義人 阿部
Yoichiro Iritani
陽一郎 入谷
Yasushi Maita
舞田 靖司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP61035482A priority Critical patent/JPH073345B2/en
Publication of JPS62192665A publication Critical patent/JPS62192665A/en
Publication of JPH073345B2 publication Critical patent/JPH073345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a highly reliable measuring instrument capable of measuring the flow velocity of conductive fluid accurately by applying a magnetic field with constant intensity to the conductive fluid flowing in a tube and detecting the potential difference between two points in the fluid. CONSTITUTION:A magnet 3 is arranged at the outside of a flow passage constituent member 1 such as a tube and a duct constituting the flow passage of the conductive fluid whose flow velocity is to be measured to cover the whole with the magnetic field. The 1st and the 2nd electrodes 5 are inserted into the flow passage constituent member 1 at right angles to the magnetic field while separated in the insertion direction. The electrodes 5 have conductors 5a exposed only at tip parts and other parts insulated electrically by insulators 5b, and at least either of the electrode is allowed to move in the insertion direction. Then the potential difference between the 1st and the 2nd electrodes 5 is detected by a potentiometer 8 to measure the flow velocity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば、液体金属実験装置に適用される導電流
体の流速測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate measuring device for a conductive current applied to, for example, a liquid metal experimental device.

[従来の技術] 従来、例えば液体金属ナトリウム等の導電流体の流速の
測定は、測定対象である導電流体の流路を構成する直径
約10amのダクトまたは管の流路構成部材の内部に、
差動コイルを組込んだうず電流式流速計を所要箇所に挿
入することにより行なわれている。
[Prior Art] Conventionally, the flow velocity of a conductive fluid such as liquid metal sodium has been measured by using a duct or a pipe with a diameter of approximately 10 am, which constitutes a flow path of the conductive fluid to be measured.
This is done by inserting an eddy current current meter incorporating a differential coil into the required location.

[発明が解決しようとする問題点] しかしながら、この種の従来のうず電流式流速計を用い
た流速の測定においては、流路構成部材の内部に挿入す
る流速計プローブの直径が大きいため、流路内の境界層
付近や噴流部のせん断層部分等の速度勾配の急な領域に
ついては、正確な流速の測定を行なうことができないと
いう問題がある。
[Problems to be Solved by the Invention] However, when measuring flow velocity using this type of conventional eddy current type anemometer, the diameter of the anemometer probe inserted into the inside of the flow path component is large, so the flow rate is There is a problem in that it is not possible to accurately measure the flow velocity in areas where the velocity gradient is steep, such as near the boundary layer in the channel or in the shear layer area of the jet section.

本発明は上記のような問題を解決するために成されたも
ので、その目的は導電流体の流速を正確に測定すること
が可能な信頼性の高い導電流体の流速測定装置を提供す
ることにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a highly reliable flow rate measurement device for a conductive current that can accurately measure the flow rate of a conductive current. be.

[問題点を解決するための手段] 上記目的を達成するために本発明による導電流体の流速
測定装置は、流速の測定対象である導電流体の流路を構
成するダクト、管等の流路構成部材の外側に磁石を配置
して全体を磁場で覆い、この磁場に直交する方向から第
1.第2の電極を。
[Means for Solving the Problems] In order to achieve the above object, the current velocity measuring device for a conductive current body according to the present invention has a flow path configuration such as a duct, a pipe, etc. that constitutes a flow path for a conductive current body whose flow velocity is to be measured. A magnet is placed on the outside of the member, the whole is covered with a magnetic field, and the first magnet is placed in the direction perpendicular to the magnetic field. the second electrode.

上記流路構成部材内に挿入方向に沿って離間した状態で
挿入すると共に、少なくとも一方の電極を挿入方向に沿
って移動可能とし、上記第1.第2の各電極間の電位差
を検出することにより導電流体の流速を測定するように
したことを特徴とする。
The first electrode is inserted into the flow path forming member while being spaced apart along the insertion direction, and at least one electrode is movable along the insertion direction. The present invention is characterized in that the flow velocity of the conductive current is measured by detecting the potential difference between the second electrodes.

[作用コ 上述した本発明の導電流体の流速測定装置によれば、導
電流体に磁場をかけると流体の運動によって流体中に起
電力が誘起され(ファラデーの右手の法則)、この誘起
される起電力の大きさは磁場の強さと流体の速度に正比
例することから、一定の強さの磁場で流体中の2点間の
電位差を検出することによってその位置の流速を測定す
ることが可能である。
[Function] According to the above-mentioned device for measuring the flow velocity of a conductive current according to the present invention, when a magnetic field is applied to a conductive current, an electromotive force is induced in the fluid due to the movement of the fluid (Faraday's right-hand rule), and this induced electromotive force is Since the amount of electric power is directly proportional to the strength of the magnetic field and the velocity of the fluid, it is possible to measure the flow velocity at that location by detecting the potential difference between two points in the fluid with a magnetic field of constant strength. .

[実施例] 以下、図面を参照して本発明による導電流体の流速測定
装置の一実施例について説明する。
[Example] Hereinafter, an example of a flow rate measuring device for a conductive current according to the present invention will be described with reference to the drawings.

第1図(a)〜(C)は、本発明による導電流体の流速
測定装置の構成例を示すもので、第1図(a>は導電流
体の流速測定装置の鳥かん図、第1図(b)は測定部の
詳細を示す断面図、第1図(C)は電位差測定要電極の
詳細を示す断面図である。
FIGS. 1(a) to (C) show an example of the configuration of a current velocity measuring device for a conductive current according to the present invention, and FIG. b) is a cross-sectional view showing the details of the measuring section, and FIG. 1(C) is a cross-sectional view showing the details of the electrode required for potential difference measurement.

図において、流速の測定対象である液体金属ナトリウム
等の導電流体2の流路を構成するダクトまたは管の流路
構成部材1の外側には、この流路構成部材1をはさむよ
うに磁石3を配置して全体を磁場で覆っている。また、
この磁石3の長手方向の中央部には、図示の如く磁場に
直交する方向(図示上下方向)から互いに挿入長さの異
なる。
In the figure, a magnet 3 is placed on the outside of a channel forming member 1 of a duct or pipe that constitutes a flow path of a conducting current medium 2 such as liquid metal sodium whose flow velocity is to be measured so as to sandwich this channel forming member 1. The entire structure is covered with a magnetic field. Also,
As shown in the figure, the lengths of the magnets 3 inserted into the central portions of the magnets 3 in the longitudinal direction are different from each other in the direction perpendicular to the magnetic field (the vertical direction in the figure).

つまり所定距離1だけ離間された第1.第2の2本の電
極5を、上記流路構成部材1内に挿入方向に沿って離間
した状態で挿入すると共に、各電極5をネジ式等のシー
ル摺動装置6a、6bにより挿入方向(上下方向)に沿
って移動可能に構成している。さらに、上記第1.第2
の各電極5はリード線7を介して電位差計8に電気的に
接続し、各電極5間の電位差を検出するようにしている
In other words, the first . The second two electrodes 5 are inserted into the channel forming member 1 while being spaced apart along the insertion direction, and each electrode 5 is secured in the insertion direction ( It is configured to be movable along the vertical direction. Furthermore, the above 1. Second
Each electrode 5 is electrically connected to a potentiometer 8 via a lead wire 7, and the potential difference between each electrode 5 is detected.

なお、上記において第1.第2の各電極5は第1図(C
)に示すように、その先端部のみ導電体5aが露出し、
他の部分は絶縁体5bにより電気的に絶縁している。ま
た、磁石3としては永久磁石あるいは電磁石のいずれを
用いても良いが、流路構成部材1の全域で一様な磁束密
度となるような寸法としている。さらに、4は上記各電
極5を夫々保持するための電極保持具である。
In addition, in the above, 1. Each of the second electrodes 5 is shown in FIG.
), the conductor 5a is exposed only at its tip,
Other parts are electrically insulated by an insulator 5b. Further, as the magnet 3, either a permanent magnet or an electromagnet may be used, but the dimensions are such that the magnetic flux density is uniform throughout the entire area of the flow path forming member 1. Furthermore, 4 is an electrode holder for holding each of the electrodes 5, respectively.

かかる如く構成した導電流体の流速測定装置において、
流路構成部材1の内部を導電流体2が第1図(b)の紙
面裏側より表側に向かって流動している状態で、いま導
電流体2に磁場をかけると第2図に示すように、導電流
体2の運動によって磁束Bに直交する方向に起電力(E
)が誘起されて(ファラデーの法則)電流1が流れる。
In the device for measuring the flow velocity of a conductive current configured as described above,
When the conductive current body 2 is flowing inside the channel forming member 1 from the back side to the front side of the paper in FIG. 1(b), if a magnetic field is applied to the conductive current body 2, as shown in FIG. 2, Due to the movement of the conductive current body 2, an electromotive force (E
) is induced (Faraday's law) and a current 1 flows.

この場合、誘起される起電力(E)と導電流体2の流速
Vとの関係は v=E/ <8・1)・・・・・・(1)のように表わ
される。すなわち、この電流iの大きさは磁束Bの強さ
と導電流体2の速度Vに正比例することから、第1.第
2の各電極5間にはその離間距離1に応じた電位差が得
られる。そして、この第1.第2の各N極5間の電位差
をリード線7を介して電位差計8に導入するようにして
いることから、その位置での導電流体2の流速■に対応
した電位差(E)が検出されることになる。従って、上
記(1)式の関係から電位差計8の指示目盛(E)を流
速に換算することによって、その位置での導電流体2の
流速Vが容易に測定されることになる。また、上記第1
および第2の各電極5を磁場に直交する方向つまり図示
上下方向にトラバースすることにより、その位置毎にお
ける導電流体2の流速■を測定することが可能である。
In this case, the relationship between the induced electromotive force (E) and the flow velocity V of the conductive current body 2 is expressed as v=E/<8·1) (1). That is, since the magnitude of this current i is directly proportional to the strength of the magnetic flux B and the speed V of the conductive current body 2, the first. A potential difference corresponding to the separation distance 1 between the second electrodes 5 is obtained. And this first one. Since the potential difference between each of the second N poles 5 is introduced into the potentiometer 8 via the lead wire 7, a potential difference (E) corresponding to the flow velocity of the conductive current body 2 at that position is detected. That will happen. Therefore, by converting the indication scale (E) of the potentiometer 8 into a flow velocity from the relationship of equation (1) above, the flow velocity V of the conductive current body 2 at that position can be easily measured. In addition, the first
By traversing each second electrode 5 in a direction perpendicular to the magnetic field, that is, in the vertical direction in the drawing, it is possible to measure the flow velocity (2) of the conductive current body 2 at each position.

上述したように、本実施例による導電流体の流速測定装
置においては、前述した従来の大形のうず電流式流速計
プローブでは達成できなかったところの、流路内の境界
層付近の精密な流速や、噴流部のせん断層部分の詳細な
流速を正確に測定して把握できることになり、導電流体
2の流れの構造解明に大いに寄与することが可能である
As mentioned above, the current velocity measuring device for a conducting current according to this embodiment can measure the precise flow velocity near the boundary layer in the flow channel, which could not be achieved with the conventional large eddy current type current meter probe mentioned above. In addition, the detailed flow velocity in the shear layer portion of the jet portion can be accurately measured and understood, which can greatly contribute to elucidating the structure of the flow in the conductive current body 2.

尚、本発明は上述した実施例に限定されるものではなく
、次のようにしても実施することができるものである。
It should be noted that the present invention is not limited to the embodiments described above, but can also be implemented in the following manner.

まず第3図(a)〜(C)は、本発明による導電流体の
流速測定装置の他の構成例を示すもので、第1図(a)
は導電流体の流速測定装置の鳥かん図、第1図(b)は
測定部の詳細を示す断面図、第1図(C)は電位差測定
製電極の詳細を示す断面図である。なお、第3図<a>
〜(C)において第1図(a)〜(C)と同一要素には
同一符号を付して示している。
First, FIGS. 3(a) to 3(C) show other configuration examples of the current velocity measuring device for a conductive current according to the present invention, and FIG. 1(a)
1(b) is a cross-sectional view showing the details of the measuring section, and FIG. 1(C) is a cross-sectional view showing the details of the potentiometric measurement electrode. In addition, Fig. 3<a>
-(C), the same elements as in FIGS. 1(a)-(C) are designated by the same reference numerals.

図において、流速の測定対象である液体金属ナトリウム
等の導電流体2の流路を構成するダクトまたは管の流路
構成部材1の外側には、この流路構成部材1をはさむよ
うに磁石3を配置して全体を磁場で覆っている。また、
この磁石3の長手方向の中央部には、図示の如く磁場に
直交する方向に沿って上側および下側から第1の電極5
および第2の電極5を、上記流路構成部材1内に挿入方
向に沿って離間した状態で挿入すると共に、一方の電極
である下側の第2の電極5を固定し、かつ他方の電極で
ある上側の第1の電極5をネジ式等のシール開動装置6
a、6bにより挿入方向(上下方向)に沿って移動可能
に構成している。さらに、上記第1.第2の各電極5は
リード!!7を介して電位差計8に電気的に接続し、各
電極5間の電位差を検出するようにしている。
In the figure, a magnet 3 is placed on the outside of a channel forming member 1 of a duct or pipe that constitutes a flow path of a conducting current medium 2 such as liquid metal sodium whose flow velocity is to be measured so as to sandwich this channel forming member 1. The entire structure is covered with a magnetic field. Also,
At the center of the magnet 3 in the longitudinal direction, first electrodes 5 are arranged from the upper and lower sides along the direction perpendicular to the magnetic field as shown in the figure.
and the second electrodes 5 are inserted into the channel forming member 1 while being spaced apart from each other along the insertion direction, one electrode, the lower second electrode 5, is fixed, and the other electrode is The upper first electrode 5 is connected to a seal opening device 6 such as a screw type.
a and 6b, it is configured to be movable along the insertion direction (vertical direction). Furthermore, the above 1. Each second electrode 5 is a lead! ! It is electrically connected to a potentiometer 8 via 7 to detect the potential difference between each electrode 5.

なお、上記において第1.第2の各電極5は第3図(C
)に示すように、その先端部のみ導電体5aが露出し、
他の部分は絶縁体5bにより電気的に絶縁している。ま
た、磁石3としては永久磁石あるいは電磁石のいずれを
用いても良いが、前述と同様に流路構成部材1の全域で
一様な磁束密度となるような寸法としている。さらに、
4は上記各電極5を保持するための電極保持具である。
In addition, in the above, 1. Each of the second electrodes 5 is shown in FIG.
), the conductor 5a is exposed only at its tip,
Other parts are electrically insulated by an insulator 5b. Further, as the magnet 3, either a permanent magnet or an electromagnet may be used, but the dimensions are such that the magnetic flux density is uniform throughout the entire area of the channel forming member 1, as described above. moreover,
Reference numeral 4 represents an electrode holder for holding each of the electrodes 5 described above.

かかる如く構成した導電流体の流速測定装置において、
流路構成部材1の内部を導電流体2が第1図(b)の紙
面裏側より表側に向かって流動している状態で、いま導
電流体2に磁場をかけると前述の第2図に示すように、
導電流体2の運動によって磁束Bに直交する方向に起電
力(E)が誘起されて(ファラデーの法則)電流iが流
れる。
In the device for measuring the flow velocity of a conductive current configured as described above,
In a state where the conductive current body 2 is flowing inside the channel forming member 1 from the back side to the front side of the paper in FIG. To,
The motion of the conductive current body 2 induces an electromotive force (E) in a direction perpendicular to the magnetic flux B (Faraday's law), and a current i flows.

この場合、誘起される起電力(E)と導電流体2の流速
■との関係は V−E/ (B・Δh)・・・・・・(2)のように表
わされる。すなわち、この電流iの大きさは磁束Bの強
さと導電流体2の速度■に正比例することから、第1.
第2の各電極5間にはその離間距離Δhに応じた電位差
が得られる。そして、この第1.第2の各電極5間の電
位差をリード線7を介して電位差計8に導入することに
より、その位置での導電流体2の流速■に対応した電位
差(E)が検出されることになる。従って、上記(1)
式の関係から電位差計8の指示目盛(E)′  を流速
に換算することによって、その位置での導電流体2の流
速■が容易に測定されることになる。
In this case, the relationship between the induced electromotive force (E) and the flow velocity (2) of the conductive current body 2 is expressed as V-E/(B·Δh) (2). That is, since the magnitude of this current i is directly proportional to the strength of the magnetic flux B and the speed of the conductive current body 2, the first.
A potential difference is obtained between each of the second electrodes 5 according to the separation distance Δh. And this first one. By introducing the potential difference between each of the second electrodes 5 to the potentiometer 8 via the lead wire 7, a potential difference (E) corresponding to the flow velocity (2) of the conductive current body 2 at that position is detected. Therefore, (1) above
By converting the indicating scale (E)' of the potentiometer 8 into a flow velocity from the relationship of the equation, the flow velocity (2) of the conductive current body 2 at that position can be easily measured.

また、上記上側の第1の電極5を磁場に直交する方向つ
まり図示上下方向にトラバースして第1および第2の各
電極5間の距離Δhを変えることにより、その位置Δh
毎における導電流体2の流速Vを測定することが可能で
ある。
Further, by traversing the upper first electrode 5 in the direction perpendicular to the magnetic field, that is, in the vertical direction in the drawing, and changing the distance Δh between the first and second electrodes 5, the position Δh
It is possible to measure the flow velocity V of the conductive current body 2 at each time.

上述したように、本実施例による導電流体の流速測定装
置においても、前述と同様に流路内の境界層付近の精密
な流速や、噴流部のせん断層部分の詳細な流速を正確に
測定して把握できることになり、導電流体2の流れの構
造解明に大いに寄与することが可能である。
As mentioned above, the current velocity measuring device for a conductive current according to this embodiment can also accurately measure the precise flow velocity near the boundary layer in the flow path and the detailed flow velocity in the shear layer part of the jet section. This can greatly contribute to elucidating the structure of the flow in the conductive current body 2.

一方、上記各実施例では導電流体2の流速を測定する場
合について述べたが、導電流体2の流速分布を測定する
場合には、各実施例について夫々次のように構成すれば
よいものである。
On the other hand, in each of the above embodiments, the case where the flow velocity of the conductive current body 2 is measured has been described, but when measuring the flow velocity distribution of the conductive current body 2, each of the embodiments may be configured as follows. .

まず第4図(a)は、前記第1図(a)〜(c)に対応
した導電流体の流速分布を測定する場合の実施例構成を
示すもので、第1図(a)〜(C)と同一部分には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
First, FIG. 4(a) shows an example configuration for measuring the flow velocity distribution of a conductive current corresponding to FIGS. 1(a) to (c). ) are given the same reference numerals, and their explanation will be omitted, and only the different parts will be described here.

第4図(a)において、9は前記第1.第2の電極5の
位置(y)を検出する差動トランス等からなる位置検出
器、10は導電流体2の流速分布を描くための例えばX
−Yレコーダである。すなわち、前記電位差計8からの
出力信号(電位差E)をX−Yレコーダ10のX軸端子
に入力すると共に、位置検出器9からの出力信号(位置
信号y)をX−Yレコーダ10のY軸端子に入力するよ
うに構成している。
In FIG. 4(a), 9 is the first. A position detector consisting of a differential transformer or the like detects the position (y) of the second electrode 5;
-Y recorder. That is, the output signal (potential difference E) from the potentiometer 8 is input to the X-axis terminal of the X-Y recorder 10, and the output signal (position signal y) from the position detector 9 is input to the Y terminal of the X-Y recorder 10. It is configured to input to the shaft terminal.

かかる構成においては、離間距離1なる第1゜第2の電
極5を磁場に直交する方向つまり図示上下方向にトラバ
ースすることにより、電位差計8および位置検出器9か
らの各出力信号が第4図(b)に示すようにX−Yレコ
ーダ10上に描かれ、このようにして流路構成部材1の
液深方向の導電流体2の流速分布線図が得られることに
なる。
In such a configuration, each output signal from the potentiometer 8 and the position detector 9 is transmitted as shown in FIG. As shown in (b), it is drawn on the X-Y recorder 10, and in this way, a flow velocity distribution diagram of the conductive current body 2 in the liquid depth direction of the channel forming member 1 is obtained.

また第5図(a)は、前記第3図(a)〜(c)に対応
した導電流体の流速分布を測定する場合の実施例構成を
示すもので、第3図(a)〜(C)と同一部分には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
Furthermore, FIG. 5(a) shows an example configuration for measuring the flow velocity distribution of a conductive current corresponding to the above-mentioned FIGS. 3(a) to (c). ) are given the same reference numerals, and their explanation will be omitted, and only the different parts will be described here.

第5図(a)において、11は前記上側の第1の電極5
の位置(y)を検出する差動トランス等からなる位置検
出器、12は導電流体2の流速分布を描くための例えば
X−Yレコーダである。すなわち、前記電位差計8から
の出力信号(移動電極である上側の第1の電極5と固定
電極である下側の第2の電極5との間の電位差E)をX
−Yレコーダ12のX軸端子に入力すると共に、位置検
出器11からの出力信号(位置信号y)をX−Yレコー
ダ12のY軸端子に入力するように構成している。
In FIG. 5(a), 11 is the upper first electrode 5.
A position detector 12 is, for example, an X-Y recorder for drawing the flow velocity distribution of the conductive current body 2. That is, the output signal from the potentiometer 8 (potential difference E between the upper first electrode 5, which is a moving electrode, and the lower second electrode 5, which is a fixed electrode) is expressed as
The output signal is input to the X-axis terminal of the -Y recorder 12, and the output signal (position signal y) from the position detector 11 is input to the Y-axis terminal of the X-Y recorder 12.

かかる構成においては、上側の第1の電極5を磁場に直
交する方向つまり図示上下方向にトラバースすることに
より、電位差計8および位置検出器11からの各出力信
号が第5図(b)に示ずようにX−Yレコーダ12上に
描かれる。この第5図(1))は、電位差計8からの出
力信号と位置検出器11からの出力信号との関係を示す
ものであるが、これは E = B f:  v dv−・・−< 3 >なる
関係が表示されるものである。従って、dE/dy  
すなわち勾配が流速Vに比例したものとなる。このよう
にして、離間距離Δhの変化に応じて流路構成部材1の
液深方向の導電流体2の流速分布線図が得られることに
なる。
In this configuration, by traversing the upper first electrode 5 in a direction perpendicular to the magnetic field, that is, in the vertical direction in the drawing, each output signal from the potentiometer 8 and the position detector 11 is changed as shown in FIG. 5(b). are drawn on the X-Y recorder 12. This FIG. 5 (1)) shows the relationship between the output signal from the potentiometer 8 and the output signal from the position detector 11, which is E = B f: v dv - -< The relationship 3 > is displayed. Therefore, dE/dy
That is, the gradient becomes proportional to the flow velocity V. In this way, a flow velocity distribution diagram of the conductive current body 2 in the liquid depth direction of the channel forming member 1 is obtained according to a change in the separation distance Δh.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果コ 以上説明したように本発明によれば、流速の測定対象で
ある導電流体の流路を構成するダクト。
[Effects of the Invention] As described above, according to the present invention, there is provided a duct that constitutes a flow path for a conductive current whose flow velocity is to be measured.

管等の流路構成部材の外側に磁石を配置して全体を磁場
で覆い、この磁場に直交する方向から第1゜第2の電極
を、上記流路構成部材内に挿入方向に沿って離間した状
態で挿入すると共に、少なくとも一方の電極を挿入方向
に沿って移動可能とし、上記第1.第2の各N極間の電
位差を検出することにより導電流体の流速を測定するよ
うにしたので、導電流体の流速を正確に測定することが
可能な極めて信頼性の高い導電流体の流速測定装置が提
供できる。
A magnet is placed on the outside of a channel-constituting member such as a pipe, the whole is covered with a magnetic field, and a first and a second electrode are spaced apart along the insertion direction into the channel-constituting member from a direction perpendicular to the magnetic field. and at least one of the electrodes is movable along the insertion direction. Since the flow velocity of the conductive current is measured by detecting the potential difference between each of the second N electrodes, it is an extremely reliable flow velocity measurement device for a conductive current that can accurately measure the flow velocity of the conductive current. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明による導電流体の流速測
定装置の一実施例を示す構成図であり、第1図(a)は
導電流体の流速測定装置の前がん図、第1図(b)は測
定部の詳細を示す断面図、第1図(C)は電位差測定要
NFiの詳細を示す断面図、第2図は同実施例の作用を
説明するための原理図、第3図(a)〜(C)は本発明
による導電流体の流速測定装置の他の実施例を示す構成
図断面図、第3図(C)は電位差測定製電極の詳細を示
す断面図、第4図(a)および(b)は本発明の他の実
施例を示す構成図および流速分布線図、第5図(a)お
よび(b)は本発明の他の実施例を示す構成図および流
速分布線図である。 1・・・流路構成部材、2・・・導電流体、3・・・磁
石、4・・・電極保持具、5・・・電極、6a、6b・
・・シール摺動装置、7・・・リード線、8・・・電位
差計、9・・・位置検出器、10・・・X−Yレコーダ
、11・・・位置検出器、12・・・X−Yレコーダ。 出願人復代理人 弁理士 鈴 江 武 彦第1図(a) 第1図(b) 第1図(c) 第211A 第3図(b) 第4図(a) 一廟(Lx 第41m(b) 第5図(a) 一涜速−X 第5図(b)
FIGS. 1(a) to 1(C) are block diagrams showing one embodiment of the current velocity measuring device for a conductive fluid according to the present invention, and FIG. 1(a) is a front view of the current velocity measuring device for a conductive fluid; FIG. 1(b) is a sectional view showing details of the measurement unit, FIG. 1(C) is a sectional view showing details of the NFi for potential difference measurement, and FIG. 2 is a principle diagram for explaining the operation of the same embodiment. , FIGS. 3(a) to 3(C) are block diagrams showing other embodiments of the current measuring device for conductive current according to the present invention, and FIG. 3(C) is a sectional view showing details of the potentiometric electrode. , FIGS. 4(a) and (b) are a configuration diagram and a flow velocity distribution diagram showing another embodiment of the present invention, and FIGS. 5(a) and (b) are a configuration showing another embodiment of the present invention. FIG. 2 is a diagram and a flow velocity distribution diagram. DESCRIPTION OF SYMBOLS 1... Channel constituting member, 2... Conductive body, 3... Magnet, 4... Electrode holder, 5... Electrode, 6a, 6b.
... Seal sliding device, 7... Lead wire, 8... Potentiometer, 9... Position detector, 10... X-Y recorder, 11... Position detector, 12... X-Y recorder. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 (a) Figure 1 (b) Figure 1 (c) Figure 211A Figure 3 (b) Figure 4 (a) Ichimyo (Lx 41m ( b) Figure 5 (a) One stroke speed-X Figure 5 (b)

Claims (1)

【特許請求の範囲】[Claims] 流速の測定対象である導電流体の流路を構成するダクト
、管等の流路構成部材の外側に磁石を配置して全体を磁
場で覆い、この磁場に直交する方向から第1、第2の電
極を、前記流路構成部材内に挿入方向に沿って離間した
状態で挿入すると共に、少なくとも一方の電極を挿入方
向に沿って移動可能とし、前記第1、第2の各電極間の
電位差を検出することにより流速を測定するようにした
ことを特徴とする導電流体の流速測定装置。
A magnet is placed on the outside of a flow path component such as a duct or pipe that constitutes the flow path of a conductive current whose flow velocity is to be measured, and the whole is covered with a magnetic field. The electrodes are inserted into the channel forming member in a state where they are spaced apart along the insertion direction, and at least one electrode is movable along the insertion direction, and the potential difference between the first and second electrodes is reduced. 1. A flow velocity measuring device for a conductive current, characterized in that the flow velocity is measured by detection.
JP61035482A 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid Expired - Lifetime JPH073345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035482A JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035482A JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Publications (2)

Publication Number Publication Date
JPS62192665A true JPS62192665A (en) 1987-08-24
JPH073345B2 JPH073345B2 (en) 1995-01-18

Family

ID=12442972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035482A Expired - Lifetime JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Country Status (1)

Country Link
JP (1) JPH073345B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690053B1 (en) * 2004-12-27 2007-03-08 한국항공우주연구원 Electromagnetic type velocity profile measurement device of conductive fluid
US8434371B2 (en) 2010-10-14 2013-05-07 Brickhouse Innovations, Llc Electromagnetic fluid velocity sensor with adjustable electrodes
DE102017125593A1 (en) * 2017-11-02 2019-05-02 Finetek Co., Ltd. Electromagnetic flowmeter with adjustable electrode structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53150252U (en) * 1977-04-30 1978-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53150252U (en) * 1977-04-30 1978-11-27

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690053B1 (en) * 2004-12-27 2007-03-08 한국항공우주연구원 Electromagnetic type velocity profile measurement device of conductive fluid
US8434371B2 (en) 2010-10-14 2013-05-07 Brickhouse Innovations, Llc Electromagnetic fluid velocity sensor with adjustable electrodes
DE102017125593A1 (en) * 2017-11-02 2019-05-02 Finetek Co., Ltd. Electromagnetic flowmeter with adjustable electrode structures
DE102017125593B4 (en) * 2017-11-02 2021-03-18 Finetek Co., Ltd. Electromagnetic flow meter with adjustable electrode structures

Also Published As

Publication number Publication date
JPH073345B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US4625166A (en) Method for measuring magnetic potentials using hall probes
JPH05501916A (en) Electromagnetic flowmeters and related improvements
US2607223A (en) Apparatus for measuring rate of fluid flow
JPH07198433A (en) Area type flowmeter
US3696674A (en) Electromagentic flowmeter apparatus
JPS62192665A (en) Flow velocity measuring instrument for conductive fluid
KR860000558A (en) Apparatus and method for detecting and measuring suspended particulates in molten metal
EP0197100A1 (en) Apparatus for magnetic position determination
US3138022A (en) Induction controlled flowmeters for conductive liquids
US11796364B2 (en) Coriolis measuring sensor of a Coriolis measuring instrument and a Coriolis measuring instrument
DE3734912C2 (en)
US3522531A (en) Electric field intensity indicator employing a vibratory conductor sensor
RU2338207C1 (en) Velocity converter with electric jamming compensation
KR100545728B1 (en) 5 sensor conductive probe
CN105571662B (en) A kind of electromagnetic flowmeter signal processing method and processing device
SU905864A2 (en) Speed sensor
Cowley Flowmetering by a motion-induced magnetic field
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
KR100467314B1 (en) Electromagnetic Flowmeter
SU723457A1 (en) Device for measuring electroconductive liquid flow rate
JPH0428063Y2 (en)
US20220397590A1 (en) Current Sensor Comprising a Magnetic Field Sensor in a V-Shaped Arrangement
JPH0613450Y2 (en) Electromagnetic flow meter
JPH022544B2 (en)
Kolin Mercury jet magnetometer