JPS62192640A - X-ray image processor - Google Patents

X-ray image processor

Info

Publication number
JPS62192640A
JPS62192640A JP61033878A JP3387886A JPS62192640A JP S62192640 A JPS62192640 A JP S62192640A JP 61033878 A JP61033878 A JP 61033878A JP 3387886 A JP3387886 A JP 3387886A JP S62192640 A JPS62192640 A JP S62192640A
Authority
JP
Japan
Prior art keywords
scattered
ray
filter coefficient
rays
original image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61033878A
Other languages
Japanese (ja)
Other versions
JP2509181B2 (en
Inventor
Michitaka Honda
道隆 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61033878A priority Critical patent/JP2509181B2/en
Publication of JPS62192640A publication Critical patent/JPS62192640A/en
Application granted granted Critical
Publication of JP2509181B2 publication Critical patent/JP2509181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To securely remove a scattered X-ray by calculating scattered X-ray components by an arithmetic means which filters a filter coefficient and an original image in an actual or frequency space, and subtracting the scattered X-ray components from the original image in a spot space. CONSTITUTION:A two-dimensional memory 1 stores the original image.T photographed with an X-ray and a scattered X-ray response function storage memory 2 stores the Fourier-transformed value of a scattered X-ray response function. A filter coefficient arithmetic circuit 3 inputs the output of the memory 2 and a photographic condition coefficient outputted by an X-rays rack 7 and performs arithmetic operation based on a specific expression to calculates the filter coefficient in the frequency space. A inverse Fourier transformer 4 receives the output of the circuit 3 and processes the filter coefficient in the frequency space by inverse Fourier transformer to calculate the filter coefficient F in the actual space. A filter arithmetic circuit 5 convolutes the original image T and filter coefficient in the actual space, namely, perform arithmetic operation based upon a specific expression to calculate scattered X-ray components. A subtracter 6 subtracts the scattered X-rays components from the originals image T in the actual space and outputs an image consisting of direct X-ray components.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、被写体を透過したX線量に基づき構成された
X線画像を処理する装置に係り、さらに詳しくはX線画
像に含まれる散乱X線を除去処理するX線画像処理装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an apparatus for processing an X-ray image constructed based on the amount of X-rays transmitted through an object, and more specifically, The present invention relates to an X-ray image processing device that removes scattered X-rays included in the image.

(従来の技術) 一般に、X線診断装置におけるX線検出器には、画像情
報として有効な直接X線と被写体等で散乱した散乱Xv
Aとが入射する。この散乱X線は、画像のコントラスト
、鮮鋭度を劣化させる主たる要因となっている。このた
め、散乱XL9<を除去することが、画質の向上を図る
上で極めて重要になっている。
(Prior Art) In general, an X-ray detector in an X-ray diagnostic device has two types of equipment: direct X-rays that are effective as image information, and scattered Xv scattered by a subject, etc.
A is incident. These scattered X-rays are the main cause of deteriorating the contrast and sharpness of images. For this reason, it is extremely important to remove the scattered XL9< in order to improve image quality.

従来より、散乱X線を除去したX線画像を得る手法とし
て下記の2つのものがあった。
Conventionally, there have been the following two methods for obtaining an X-ray image from which scattered X-rays have been removed.

第1の手法では、画像データ収集のための本曝射の前又
は後に、鉛小片を通してX線を曝射して被写体の撮影を
行う。そして、鉛の影のX線量を局所的な散乱線量とし
て実測する。その後、空間的にその局所値を数点求め、
これより補間法によって全空間の散乱線分布を推定する
。そして、前記本曝射で得られたX線画像より散乱線分
布を減算するごとにより、散乱X線の除去されたX線画
像を得るものである。
In the first method, the subject is photographed by irradiating X-rays through a small lead piece before or after the main irradiation for collecting image data. Then, the X-ray dose of the lead shadow is actually measured as a local scattered dose. Then, spatially find the local values at several points,
From this, the scattered radiation distribution in the entire space is estimated using the interpolation method. Then, each time the scattered ray distribution is subtracted from the X-ray image obtained by the main irradiation, an X-ray image from which scattered X-rays have been removed is obtained.

上述の第1の手法では、補間処理によって散乱線分布を
求めているため正確度に欠け、かつ、零B5.ζ射の他
に散乱線分布を求めるためのX線曝射が不可欠であるた
め被写体への被曝線量が増大する欠点があった。さらに
は、鉛小片を曝射領域に人出するための機構を要し、装
置の小型化を図る点で障害ともなる。
The first method described above lacks accuracy because it obtains the scattered radiation distribution by interpolation processing, and also has zero B5. In addition to zeta radiation, X-ray irradiation is essential to obtain the scattered ray distribution, which has the disadvantage of increasing the radiation dose to the subject. Furthermore, a mechanism is required to bring the lead pieces out into the irradiation area, which poses an obstacle in reducing the size of the device.

第2の手法として、フィルタリングにより散乱X線を除
去する手法が提案されているが、曝射領域の周辺部での
精度が充分でないため実用化に供するごとが困難であっ
た。
As a second method, a method of removing scattered X-rays by filtering has been proposed, but it has been difficult to put into practical use because the accuracy in the peripheral area of the irradiation area is insufficient.

(発明が解決しようとする問題点) 上記した如く鉛小片を通して撮影したデータより散乱X
線分布を求め、これをX線画像より減算する手法にあっ
ては、散乱X線の確実な除去、被写体への被曝線量の低
減及び装置の小型化を図る上で障害が多く、また、フィ
ルタリングにより散乱X線を除去する手法にあっても精
度上の問題で実用化が図れなかった。
(Problem to be solved by the invention) As mentioned above, the scattered X
The method of determining the line distribution and subtracting it from the X-ray image has many obstacles in ensuring the removal of scattered X-rays, reducing the exposure dose to the subject, and downsizing the device. However, even methods for removing scattered X-rays could not be put to practical use due to accuracy problems.

そこで本発明は以上の欠点を除去するもので、散乱線を
確実に除去でき、しかも被曝線■の低減と装置の小型化
とに支障のない実用性の高いX線画像処理装置の提供を
目的とする。
Therefore, the present invention aims to eliminate the above-mentioned drawbacks, and aims to provide a highly practical X-ray image processing device that can reliably remove scattered radiation and that does not impede the reduction of radiation exposure and miniaturization of the device. shall be.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明に係るX′!ffA画像処理装置では、直接X線
成分及び散乱X線成分を含む原画像を第1の記憶部に記
憶し、散乱X線の被写体入射X線に対する検出器面上で
の応答関数をフーリエ変換した形式で第2の記憶部に記
憶し、この第2の記憶部の出力と被写体の撮影条件とか
ら周波数空間上でのフィルタ係数を第1の演算手段で求
め、さらに、このフィルタ係数と前記原画像とを実空間
上又は周波数空間上でフィルタリングする第2の演算手
段で散乱X線成分を算出し、減算手段によって点空間上
で前記原画像より散乱X線成分を減するように構成して
いる。
(Means for solving the problem) X′! according to the present invention! In the ffA image processing device, an original image including a direct X-ray component and a scattered X-ray component is stored in the first storage section, and the response function of the scattered X-rays on the detector surface to the X-rays incident on the subject is Fourier-transformed. A first calculation means calculates a filter coefficient in the frequency space from the output of the second storage part and the photographing conditions of the subject, and further calculates the filter coefficient in the frequency space from the output of the second storage part and the photographing conditions of the subject. A second calculation means for filtering the image in real space or frequency space calculates a scattered X-ray component, and a subtraction means subtracts the scattered X-ray component from the original image in point space. There is.

(作 用) 本発明は、下記の■、■に示す散乱X線の実験的性質を
利用している。
(Function) The present invention utilizes the experimental properties of scattered X-rays shown in (1) and (2) below.

■ 散乱X線は被写体入射X線の応答関数PSF(x、
y)として表わすことができる。この応答関数P S 
F (x、y)は、(i)撮影管電圧、(ii)被写体
〜検出器間距離、(iii )グリッドが与えられれば
、被写体厚によらずに検出器面上でほぼ同じ広がりを有
する。そして、この広がりはディジタル画像の場合1ピ
クセルのサイズに比べて非常に大きく、多数点でサン、
プリングを行える点で便宜となる。
■ Scattered X-rays have a response function PSF(x,
y). This response function P S
F (x, y) has approximately the same spread on the detector surface regardless of the thickness of the object, given (i) the camera tube voltage, (ii) the distance between the object and the detector, and (iii) the grid. . In the case of digital images, this spread is extremely large compared to the size of 1 pixel, and it is
This is convenient in that it allows pulling.

■ 上記の応答間″j;!IP S F (x、y)の
積分値即ち散乱X線量Sは、直接透過X線量(未知量)
Pにより次の実験式で与えられる。
■ The integral value of the above response “j;! IP S F (x, y), that is, the amount of scattered X-rays S, is the amount of directly transmitted X-rays (unknown amount)
P is given by the following empirical formula.

5=A−P’ +B−P         ・・・(1
)ここで、上記(1)式のパラメータA、Bは■で述べ
た条件の他に下記の条件(iv)〜(vii )によっ
て定められる値である。
5=A-P'+B-P...(1
) Here, the parameters A and B in the above equation (1) are values determined by the following conditions (iv) to (vii) in addition to the conditions described in section (2).

(iv )撮影管電流 (v)信号変換系のゲイン(デジタルフルオログラフィ
ー(DF)システムの場合には光学絞りの開口率も含む
) (vi) FDD (焦点−検出器間距離)(vi )
照射野領域 また、指数nはほぼ1に近い値で、医用X線装置の対象
となる人体や照射管電圧値の範囲内ではn = 0.9
5で与えられる。
(iv) Shooting tube current (v) Gain of signal conversion system (including aperture ratio of optical diaphragm in case of digital fluorography (DF) system) (vi) FDD (focal point-detector distance) (vi)
Irradiation field area Also, the index n has a value close to 1, and within the range of the human body targeted by medical X-ray equipment and the irradiation tube voltage value, n = 0.9.
It is given in 5.

参考として、DFシステムにおける一撮影条件及びこの
条件下での散乱線実験式を下記に示す。
For reference, one imaging condition in the DF system and the experimental formula for scattered radiation under this condition are shown below.

く撮影条件〉 管電圧          116kVp管電流   
        60mA照射時間         
 33m5(連続X線)絞り開口率         
0.024焦点−検出器間距11iIf(FDD)  
 100 cm被写体−検出器間路iT+1!(PDD
)   l Ocmファントム          水 グリッド         401p /cm。
Photography conditions> Tube voltage 116kVp Tube current
60mA irradiation time
33m5 (continuous X-ray) aperture aperture ratio
0.024 focus-detector distance 11iIf (FDD)
100 cm object-detector path iT+1! (PDD
) l Ocm Phantom Water Grid 401p/cm.

高さ:ビソチ=IO:l スペーサ材wood、 2龍厚、平行グリッド照射野 
   23cmX 23cm (9インチl T)〈散
乱線実験式〉 ×絞り率)0・S 7 ×p 0・95−2.69XP
=5.83XP’・”−2,69XP 上記の条件■、゛■に基づき、散乱X線の重畳した画像
より散乱X線を除去し、直接X線成分のみ抽出する手法
を説明する。
Height: Bisochi = IO:l Spacer material wood, 2mm thick, parallel grid irradiation field
23cmX 23cm (9 inch l T) <Scattered radiation experimental formula>
=5.83XP'・''-2,69XP Based on the above conditions (1) and (2), a method of removing scattered X-rays from an image on which scattered X-rays are superimposed and extracting only the direct X-ray component will be described.

上記条件■、■より散乱X線分布S(x、y)を直接X
線分布P(x、y)で表わすと、 S (x、y) ユff n (A−p ’(x−x 
’ 、y−y ’ )+B ’ P(x−x’ 、y−
y’ ) )となる。ここで、Dは照射野を表わし、乱
X線の入射X線に対する応答関数であり、で与えられる
From the above conditions ■ and ■, the scattered X-ray distribution S(x, y) can be directly
When expressed as a line distribution P(x, y), S (x, y) Yff n (A-p'(x-x
',y-y')+B'P(x-x',y-
y' )). Here, D represents an irradiation field and is a response function of random X-rays to incident X-rays, which is given by:

ところで、P ’ (x、 y)はnが1に近いことか
ら線形近似が可能である。近似の手法は、戸のまわりで
テーラ−展開する方法や、次式(4)で近似する方法が
ある。
By the way, since n is close to 1, P'(x, y) can be linearly approximated. Approximation methods include a method of Taylor expansion around the door and a method of approximation using the following equation (4).

Pn(x、y) =に−P(x、y)        
 =(4)ここで、係数には全照射野領域の濃度の最大
値T□8から、 K=T□X / T Ill M M        
   ・・・(5)で指定することができる。より高い
精度を得るためには、直接X線による全照射野領域の濃
度の最大値P waxから、 K = P 、、、”/ P IIaxとしてもよい。
Pn(x,y) = to-P(x,y)
= (4) Here, the coefficient is calculated from the maximum concentration T□8 of the entire irradiation field area, K=T□X / T Ill M M
...It can be specified by (5). In order to obtain higher accuracy, K = P, , "/ P IIax may be set from the maximum concentration P wax of the entire irradiation field area by direct X-rays.

ここでP、、、、Xは未知であるので、上述の式(1)
を利用し、 T□X=SIIIIX →−pH1,X=A −P、I
IX  +  (B + 1)  PoxよりP□8を
求め、Kを決定すればよい。
Here, P, , , X are unknown, so the above equation (1)
Using, T□X=SIIIX →-pH1,
It is sufficient to obtain P□8 from IX + (B + 1) Pox and determine K.

以下、式(4)で与えられる近似式を用いて説明すると
、先ず式(2)を式(4)で近似すれば、S(x、y)
  =(A−に十B)  ・ ffoPCx−x’  
、y−y’  )ここで、撮影で得られた画像T (x
、 y)は、散乱、X線分布S(x、y)と直接X線分
布P(x、y)との和で与えられるため、 T(x、、y) =S(x、y) 十P(x、y)・・
・(7) となる。上記式(7)を簡略化して下記の弐(8)とし
て表わす。
Below, we will explain using the approximate equation given by equation (4). First, if equation (2) is approximated by equation (4), then S(x, y)
= (A- to B) ・ffoPCx-x'
, y-y') Here, the image T (x
, y) is given by the sum of the scattered X-ray distribution S(x, y) and the direct X-ray distribution P(x, y), so T(x, y) = S(x, y) P(x, y)...
・(7) becomes. The above formula (7) is simplified and expressed as the following 2 (8).

尚、C= A K + Bであり、Xはコンボリューシ
ョンを意味する。
Note that C=AK+B, and X means convolution.

上記式(8)より直接X線分布Pを求める。The X-ray distribution P is directly determined from the above equation (8).

先ず、式(8)の両辺をフーリエ変換すると、”r’ 
(w)=C−P (w) ・P S F(w)+ P 
(w)−P (w)(C−P SF(w)+ 1)・・
・(9) となる。尚、T(w) 、  P (w) 、  P 
S F (w)わし、Wは2次元ベクトルである。
First, if we Fourier transform both sides of equation (8), we get "r'
(w)=C-P (w) ・P S F(w)+P
(w)-P (w)(C-P SF(w)+1)...
・(9) becomes. Furthermore, T(w), P(w), P
S F (w) where W is a two-dimensional vector.

上記式(9)の両辺に、C−P S F (w) / 
((1+C−PSF(w))を乗すると、 =C−P (w)  ・P SF(w)  ”・(10
)を得る。
On both sides of the above formula (9), C-P S F (w) /
(When multiplied by (1+C-PSF(w)), =C-P (w) ・P SF(w) ”・(10
).

上記式(10)は、即ちフーリエ面h(周波数空間上)
で なる値を乗算することは、実空間上でF (w)の逆変
換F(x、y)のフィルタをかけることに相当する。
The above formula (10) is, that is, the Fourier plane h (on frequency space)
Multiplying by a value equal to is equivalent to filtering the inverse transformation F(x,y) of F(w) in real space.

従って、式(10)は、 の操作を表わすことになる。この式(12)の右辺は、
式(8)より明らかなように散乱線成分を与えるもので
ある。従って、式(8)に式(12)を代入してPを求
めると、 P=T−TxF             −(13)
と表わされ、即ち、原画TよりTxFなる画像(散乱線
画像)を減することにより、直接X線画を構成すること
ができる。
Therefore, equation (10) represents the operation. The right side of this equation (12) is
As is clear from equation (8), this provides a scattered radiation component. Therefore, when calculating P by substituting equation (12) into equation (8), P = T - TxF - (13)
That is, by subtracting the image TxF (scattered radiation image) from the original image T, an X-ray image can be directly constructed.

たちのであり、散乱線実験的性質■により被写体の厚み
によらないため、定常フィルタとして取り扱うことがで
きる。さらに、C1は撮影条件が定まれば計算できる乗
数である。
It can be treated as a stationary filter because it does not depend on the thickness of the subject due to the experimental property of scattered radiation. Furthermore, C1 is a multiplier that can be calculated once the imaging conditions are determined.

従って、原画像T、応答関数のフーリエ変換後基づき第
1の演算手段で式(11)を実行し、第2の演算手段で
式(12)を実行しく周波数空間上でも可)、さらに減
算手段で式(13)を実行することにより直接X線画像
が得られることになる。
Therefore, based on the original image T and the Fourier transform of the response function, the first calculation means executes equation (11), the second calculation means executes equation (12) (this is also possible in the frequency space), and then the subtraction means By executing equation (13), an X-ray image can be directly obtained.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

〈第1実施例〉 第1図は、第1実施例に係るX線画像処理装置のブロッ
ク図である。同図において、第1の記憶部である2次元
メモリ1はX線撮影装置で撮影された原画像T(直接X
線成分及び散乱X線成分を含む)を記憶している。第2
の記憶部である散乱変換したP S F (w)として
記憶している。第1の演算手段であるフィルタ係数演算
回路3は、前述した式(11)の演算を実行して周波数
空間上でのフィルタ係数F (w)を算出するものであ
る。このために、このフィルタ係数演算回路3は前記格
納メモリ2の出力P S F (w)と、例えばX線架
台7又はX線コントローラより出力される撮影条件係数
Cとを入力するようになっている。逆フーリエ変換器4
は、前記周波数空間上でのフィルタ係数を逆フーリエ変
換して実空間上でのフィルタ係数F(x、y)を算出す
るものである。第2の演算手段であるフィルタ演算回路
5は、前記原画像Tとフィルタ係数Fとを実空間上でコ
ンボリューションし、即ち、式(12)の演算を実行す
ることにより散乱X線成分を算出するものである。減算
手段である減算器6は、実空間上で原画像Tより散乱X
線成分子HFを減算し、直接X線成分のみによる画像P
を出力するものである。
<First Example> FIG. 1 is a block diagram of an X-ray image processing apparatus according to a first example. In the figure, a two-dimensional memory 1, which is a first storage unit, stores an original image T taken by an X-ray imaging device (directly
ray components and scattered X-ray components). Second
It is stored as scatter-transformed P S F (w), which is the storage unit of . The filter coefficient calculation circuit 3, which is the first calculation means, calculates the filter coefficient F (w) in the frequency space by calculating the above-mentioned equation (11). For this purpose, the filter coefficient calculation circuit 3 receives the output P S F (w) of the storage memory 2 and the imaging condition coefficient C output from, for example, the X-ray gantry 7 or the X-ray controller. There is. Inverse Fourier transformer 4
is to perform inverse Fourier transform on the filter coefficients in the frequency space to calculate the filter coefficients F(x, y) in the real space. The filter calculation circuit 5, which is a second calculation means, convolves the original image T and the filter coefficient F in real space, that is, calculates the scattered X-ray component by executing the calculation of equation (12). It is something to do. A subtracter 6, which is a subtracting means, calculates scattered X from the original image T in real space.
Subtracting the line component element HF creates an image P with only the direct X-ray component
This outputs the following.

このように、第1実施例によれば被写体厚に無関係に定
まる散乱X線の応答関数をフーリエ変換した形で格納メ
モリ2に予め記憶し、撮影条件によって変わる撮影条件
係数Cと前記格納メモリ2の出力とに基づき、フィルタ
係数演算回路3で式(11)を実行して周波数空間上で
のフィルタ係数F (w)を算出している。このフィル
タ係数F (w)の−例を第2図(A)に示す。また、
このフィルタ係数F (w)は逆フーリエ変換され、実
空間上でのフィルタ係数F(x、y)が求められる。こ
のフィルタ係数F(x、y)の−例を第2図(B)に示
す。
In this manner, according to the first embodiment, the response function of scattered X-rays, which is determined regardless of the thickness of the subject, is stored in advance in the storage memory 2 in the form of Fourier transform, and the imaging condition coefficient C, which changes depending on the imaging conditions, is stored in the storage memory 2 in advance. Based on the output of , the filter coefficient calculation circuit 3 executes equation (11) to calculate the filter coefficient F (w) in the frequency space. An example of this filter coefficient F (w) is shown in FIG. 2(A). Also,
This filter coefficient F (w) is subjected to inverse Fourier transform to obtain the filter coefficient F (x, y) in real space. An example of this filter coefficient F(x,y) is shown in FIG. 2(B).

その後、このフィルタ係数Fと原画像Tとをフィルタ演
算回路5でコンボリューションすることにより、上述し
た作用に基づき実空間上での散乱X線成分Sが求められ
、この散乱X線成分Sを原画像Tより減算すやことによ
って式(13)より明らかなように直接X線成分のみに
よるX線画像Pを得ることができる。
Thereafter, by convolving this filter coefficient F and the original image T in the filter calculation circuit 5, the scattered X-ray component S in the real space is obtained based on the above-mentioned action, and this scattered X-ray component S is converted into the original image T. By subtracting from the image T, an X-ray image P consisting only of direct X-ray components can be obtained, as is clear from equation (13).

このように、第1実施例にあっては散乱X線の実験的性
質■、■を利用して確実な散乱X線除去を行うことがで
き、実用性の高いX線処理装置として利用することがで
きる。しかも、散乱X 線除去のために、被曝線量が増
大することもなく、機構上複雑な構成を要しない。
In this way, in the first embodiment, it is possible to perform reliable removal of scattered X-rays by utilizing the experimental properties (1) and (2) of scattered X-rays, and it can be used as a highly practical X-ray processing device. I can do it. Moreover, since the scattered X-rays are removed, the exposure dose does not increase, and no complicated structure is required.

く第2実施例〉 上述したように、式(12)で示される実空間上でのコ
ンボリューションは、式(11)で示されるフィルタ係
数F (w)を周波数空間上で原画像(2次元フーリエ
変換されたもの)と乗算することと等価である。
Second Example> As mentioned above, the convolution in the real space shown by equation (12) converts the filter coefficient F (w) shown by equation (11) into the original image (two-dimensional Fourier transformed).

従って、この第2実施例では上述コンボリューションを
周波数空間上で行う構成としている。
Therefore, in this second embodiment, the above-mentioned convolution is performed in frequency space.

第2実施例装置は第3図に示すように構成され、図中の
符号のうち第1実施例の部材と同一機能を有する部材に
ついては同一符号を付しである。第1実施例との相違点
は、■原画像Tを2次元フーリエ変換するための2次元
フーリエ変換器10を設けた、■逆フーリエ変換器4を
削除した、■第2の演算手段11を周波数空間上でコン
ボリューションするものとした、■第2の演算手段11
の出力を2次元フーリエ変換するための2次元逆フーリ
エ変換器12を設けたことである。
The apparatus of the second embodiment is constructed as shown in FIG. 3, and among the reference numerals in the figure, members having the same functions as those of the first embodiment are designated by the same reference numerals. The differences from the first embodiment are: (1) a two-dimensional Fourier transformer 10 for two-dimensional Fourier transform of the original image T is provided, (2) the inverse Fourier transformer 4 is removed, and (2) the second calculation means 11 is provided. ■Second calculation means 11 that performs convolution on frequency space
A two-dimensional inverse Fourier transformer 12 is provided to perform two-dimensional Fourier transform on the output.

この第2実施例によれば、式(11)の演算を第2演算
手段11において周波数空間上で行なっていl るが、この出力を逆フーリエ変換することによって第1
実施例での第2の演算手段5と同一の出力T X−Fを
得ることができ、これを原画像Tより実空間上で減算す
れば、直接X線部分のみに基づく画像Pを得ることがで
きる。従って、この第2実施例でも第1実施例と全く同
様の効果を奏することができる。
According to this second embodiment, the calculation of equation (11) is performed in the frequency space in the second calculation means 11, and by inverse Fourier transforming this output, the first
It is possible to obtain the same output T I can do it. Therefore, this second embodiment can also achieve exactly the same effects as the first embodiment.

尚、第2実施例では2次元フーリエ変換器1o、2次元
逆フーリエ変換器12を不可欠とする点、及び上記両度
換器10.12での演算時間を要する点では、第1実施
例に比べて不利となる。
Note that the second embodiment is different from the first embodiment in that the two-dimensional Fourier transformer 1o and the two-dimensional inverse Fourier transformer 12 are essential, and in that the calculation time in the double-degree transformers 10 and 12 is required. disadvantageous in comparison.

尚、本発明は上記両実施例に限定されるものではなく、
本発明の要旨の範囲内で種々の変形実施が可能であるこ
とは言うまでもない。
It should be noted that the present invention is not limited to the above two embodiments,
It goes without saying that various modifications can be made within the scope of the invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば散乱X線の実験的
性質に基づき確実に散乱X線を除去処理することができ
、しかも、上記処理にあたって被曝線量が増大すること
がなく、かつ、機構上の複雑な構成を要することもない
As described in detail above, according to the present invention, scattered X-rays can be reliably removed based on the experimental properties of scattered X-rays, and the exposure dose does not increase during the process, and No complicated mechanical configuration is required.

従って、実用性の高いX線画像処理装置を捉供すること
ができる。
Therefore, a highly practical X-ray image processing device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例装置のブロック図、第2図
(A)、 (B)は同装置における周波数空間上でのフ
ィルタ係数F(w)、実空間上でのフィルタ係数F(x
、y)をそれぞれ示す特性図、第3図は本発明の第2実
施例装置のブロック図である。 1・・・第1の記憶部、2・・・第2の記憶部、3・・
・第1の演算手段、5.11・・・第2の演算手段、6
・・・減算手段。 代理人 弁理士 則 近 憲 佑 同     大  胡  典  夫 7(ηfン (A) 第2図
FIG. 1 is a block diagram of the device according to the first embodiment of the present invention, and FIGS. 2 (A) and (B) show the filter coefficient F(w) in the frequency space and the filter coefficient F in the real space in the same device. (x
, y), and FIG. 3 is a block diagram of an apparatus according to a second embodiment of the present invention. 1... First storage unit, 2... Second storage unit, 3...
・First calculation means, 5.11...Second calculation means, 6
...Subtraction means. Agent Patent Attorney Noriyuki Chika Yudo Daiko Norio 7 (ηfn(A) Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 直接X線成分及び散乱X線成分を含む原画像を記憶する
第1の記憶部と、散乱X線の被写体入射X線に対する検
出器面上での応答関数をフーリエ変換した形式で格納し
た第2の記憶部と、被写体の撮影条件及び前記第2の記
憶部の出力に基づき周波数空間上でのフィルタ係数を算
出する第1の演算手段と、このフィルタ係数と前記原画
像とを実空間上又は周波数空間上でフィルタリングして
散乱X線成分を算出する第2の演算手段と、実空間上で
前記原画像より前記散乱X線成分を減算して直接X線成
分のみによるX線画像を出力する減算手段とを有するこ
とを特徴とするX線画像処理装置。
a first storage section that stores an original image including a direct X-ray component and a scattered X-ray component; and a second storage section that stores a response function of the scattered X-rays on the detector surface to the subject incident X-rays in a Fourier transformed format. a storage section; a first calculation means for calculating a filter coefficient in frequency space based on the photographing conditions of the subject and the output of the second storage section; a second calculation means for calculating scattered X-ray components by filtering in frequency space; and subtracting the scattered X-ray components from the original image in real space to output an X-ray image with only direct X-ray components. 1. An X-ray image processing device comprising: subtraction means.
JP61033878A 1986-02-20 1986-02-20 X-ray image processing device Expired - Fee Related JP2509181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033878A JP2509181B2 (en) 1986-02-20 1986-02-20 X-ray image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033878A JP2509181B2 (en) 1986-02-20 1986-02-20 X-ray image processing device

Publications (2)

Publication Number Publication Date
JPS62192640A true JPS62192640A (en) 1987-08-24
JP2509181B2 JP2509181B2 (en) 1996-06-19

Family

ID=12398775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033878A Expired - Fee Related JP2509181B2 (en) 1986-02-20 1986-02-20 X-ray image processing device

Country Status (1)

Country Link
JP (1) JP2509181B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194618A (en) * 2005-01-11 2006-07-27 Jeol Ltd Evaluation method and scanning method of charged particle beam, and charged particle beam device
JP2008073208A (en) * 2006-09-21 2008-04-03 Konica Minolta Medical & Graphic Inc Image processing device and image processing method
WO2015015745A1 (en) * 2013-07-31 2015-02-05 富士フイルム株式会社 Radiographic image analysis device and method, and program
JP2015100361A (en) * 2013-11-20 2015-06-04 株式会社東芝 X-ray diagnostic apparatus
WO2015146011A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Radiographic image processing device, method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151940A (en) * 1983-02-18 1984-08-30 株式会社東芝 X-ray diagnostic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151940A (en) * 1983-02-18 1984-08-30 株式会社東芝 X-ray diagnostic apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194618A (en) * 2005-01-11 2006-07-27 Jeol Ltd Evaluation method and scanning method of charged particle beam, and charged particle beam device
JP4522267B2 (en) * 2005-01-11 2010-08-11 日本電子株式会社 Charged particle beam evaluation method, scanning method, and charged particle beam apparatus
JP2008073208A (en) * 2006-09-21 2008-04-03 Konica Minolta Medical & Graphic Inc Image processing device and image processing method
WO2015015745A1 (en) * 2013-07-31 2015-02-05 富士フイルム株式会社 Radiographic image analysis device and method, and program
JP2015043959A (en) * 2013-07-31 2015-03-12 富士フイルム株式会社 Radiographic image analysis apparatus and method, and program
US9886765B2 (en) 2013-07-31 2018-02-06 Fujifilm Corporation Radiographic image analysis device and method, and storage medium having stored therein program
US10235766B2 (en) 2013-07-31 2019-03-19 Fujifilm Corporation Radiographic image analysis device and method, and storage medium having stored therein program
JP2015100361A (en) * 2013-11-20 2015-06-04 株式会社東芝 X-ray diagnostic apparatus
WO2015146011A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Radiographic image processing device, method, and program
JP2015181649A (en) * 2014-03-24 2015-10-22 富士フイルム株式会社 Radiographic image processing apparatus, method, and program
US10136873B2 (en) 2014-03-24 2018-11-27 Fujifilm Corporation Radiographic image processing device, method, and recording medium
US10292672B2 (en) 2014-03-24 2019-05-21 Fujifilm Corporation Radiographic image processing device, method, and recording medium

Also Published As

Publication number Publication date
JP2509181B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JPS62191972A (en) X-ray image processor
JP3423828B2 (en) X-ray image creating method and apparatus
Seibert et al. Removal of image intensifier veiling glare by mathematical deconvolution techniques
EP0116941B2 (en) An x-ray diagnostic apparatus
JP3540914B2 (en) X-ray equipment
JP2010104517A (en) Radiation image processing apparatus, image processing method, x-ray fluoroscopic apparatus and control method thereof
JPH0531871B2 (en)
JPS59118135A (en) X-ray photographing apparatus
JPS62192640A (en) X-ray image processor
JPH0448453B2 (en)
JPH01259842A (en) Radiation diagnostic apparatus
KR100650380B1 (en) Radiographic apparatus and radiation detection signal processing method
US6900453B2 (en) Image sensing apparatus
WO2021157403A1 (en) Image processing device, method, and program
JP3793039B2 (en) Image processing method, image processing apparatus, radiation image processing apparatus, image processing system, and program
Aach et al. Spectral Estimation Filters for Noise Reduction
JP4612754B2 (en) Image acquisition apparatus and image acquisition method
JPH09270004A (en) X-ray image digital processor
JP2871054B2 (en) Image processing device
JPH0332276B2 (en)
JP2001212139A (en) Image capture device and image acquisition method
JP4306021B2 (en) X-ray equipment
KR20190043046A (en) Scatter-correction system and method for a single radiographic projection
JPS6329624A (en) X-ray image processor
JPH0740293B2 (en) X-ray image processing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees