JPS62192535A - Cooling method for steel pipe - Google Patents

Cooling method for steel pipe

Info

Publication number
JPS62192535A
JPS62192535A JP3340586A JP3340586A JPS62192535A JP S62192535 A JPS62192535 A JP S62192535A JP 3340586 A JP3340586 A JP 3340586A JP 3340586 A JP3340586 A JP 3340586A JP S62192535 A JPS62192535 A JP S62192535A
Authority
JP
Japan
Prior art keywords
cooling
steel pipe
temperature
pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3340586A
Other languages
Japanese (ja)
Inventor
Masami Kanai
金井 将己
Tadashi Makino
義 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3340586A priority Critical patent/JPS62192535A/en
Publication of JPS62192535A publication Critical patent/JPS62192535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain desired mechanical property and metallographic structure without causing quench cracking by using misting jet nozzle to cooling head, independently setting cooling capacities of plural cooling heads together with moving velocity of steel pipe to cool it. CONSTITUTION:The steel pipe 2 heated to a prescribed temp. is inserted, moved and cooled in annular cooling headers 5 plurally set in series in a roller 4 conveyer capable of varying cooling capacity and velocity formed with nozzles capable of adjusting water quantity and gas water ratio. In this time, moving velocity of the pipe 2 and cooling capacities of respective cooling headers 51-58 are respectively prescribed so that cooling rate pattern and temp. difference described below are obtd. and cooling is carried out. The pattern is that satisfying temp. hysteresis peculiar to steel kind during cooling necessary for obtaining mechanical property and metallographic structure required to the pipe 2 after cooling over the whole wall thickness direction of the pipe 2. The temp. difference is that in wall thickness direction without causing quench cracking when martensite transformation is started at the vicinity of cooling surface of the pipe 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 鋼管の冷却方法として、冷却ヘッダ一方式のものと、浸
漬方式のものがある。不発明は冷却ヘッダ一方式による
鋼管の冷却方法にib、更に詳しくは加熱鋼管に対して
厳幣な冷却速度制御を行って所望の金属組織と機械的性
質を付°与し得る鋼管の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) There are two methods for cooling steel pipes: one using a cooling header and the other using an immersion method. The invention is directed to a method of cooling steel pipes using a single type cooling header, and more specifically, a method of cooling steel pipes that can impart desired metal structure and mechanical properties to heated steel pipes by strictly controlling the cooling rate. Regarding.

(従来の技術) 従来、鋼管の焼入れ等の冷却には主としてスプレーノズ
ルを用いた冷却ヘッダーが使われているが、このスプレ
ーノズルは鋼管表面を一様なスプレー密度で冷却出来る
冷却水流量可変範囲が狭いため、鋼管寸法や冷却仕様に
応じて冷却油力を調整することが困難である。従って冷
却制御を行う場合はヘッダーの冷却能力は一定にし、撤
退速度を鋼管寸法・材質・冷却仕様等に応じて調整する
という方法を採るのが一般的であった。
(Prior technology) Conventionally, cooling headers using spray nozzles have been mainly used for cooling steel pipes during quenching, etc., but these spray nozzles have a variable flow rate range of cooling water that can cool the steel pipe surface with uniform spray density. Because the area is narrow, it is difficult to adjust the cooling oil power according to the steel pipe dimensions and cooling specifications. Therefore, when performing cooling control, it has been common practice to keep the cooling capacity of the header constant and adjust the withdrawal speed according to the steel pipe dimensions, material, cooling specifications, etc.

一方、熱延鋼板の冷却では最近、巻取温度(冷却終点温
度)の制御とともに、冷却速度パターンの制御が行われ
ているが、この場合は比較的冷却能力の小さい範囲での
制御であるので、冷却能の調整範囲も狭くてよい場合が
多く、特に新しい方法や装置を用いなくても既存手段の
小改良で対処できている。
On the other hand, recently, in cooling hot-rolled steel sheets, the cooling rate pattern has been controlled in addition to the coiling temperature (cooling end point temperature), but in this case, the control is within a relatively small range of cooling capacity. In many cases, the adjustment range of the cooling capacity can be narrow, and it is possible to deal with the problem by making small improvements to existing means without using any new methods or equipment.

(発明が解決しようとする問題点) ところが、鋼管冷却の場合は高速冷却が要求されること
が多く、特に焼入れ等では最も冷却速度の遅い部分にお
いても50°C/S以上というような要求仕様のものが
ある。このような冷却能力の絶対値が高いレベルでかつ
広範囲の冷」1能力の制御が必要とされる場合には上記
のような既存手段の改良では全く対処できない。
(Problem to be solved by the invention) However, in the case of cooling steel pipes, high-speed cooling is often required, and in particular, in quenching, etc., the required specifications such as 50°C/S or more even in the slowest cooling rate part are required. There is something. In cases where the absolute value of the cooling capacity is at a high level and control of the cooling capacity over a wide range is required, the improvement of the existing means as described above cannot be used at all.

なお、比較的厳密な冷却制御を行う方法として、冷却ヘ
ッダーを2ヶ以上連結して設置し、各ヘッダーの冷却能
力を適当に調整し、鋼管の肉厚方向の温度差を緩和する
冷却方法が公知である(特開昭55−6417号)。し
かし、この方法は焼割れを防止するための冷却制御法で
あシ、焼入れ後の品質を考慮した冷却温度履歴パターン
の制御まで行うものではない。また、鋼管の長手方向の
温度差をなくすように冷却終点温度制御を搬送速度制御
方式で行った例もあるが(特公昭58−20296号)
、これも冷却温度履歴制御まで考えているものではない
In addition, as a method for relatively strict cooling control, two or more cooling headers are connected and installed, and the cooling capacity of each header is appropriately adjusted to alleviate the temperature difference in the thickness direction of the steel pipe. It is publicly known (Japanese Unexamined Patent Publication No. 55-6417). However, this method is a cooling control method for preventing quench cracking, and does not control the cooling temperature history pattern in consideration of the quality after quenching. There is also an example of controlling the temperature at the end of cooling using a conveying speed control method to eliminate temperature differences in the longitudinal direction of steel pipes (Japanese Patent Publication No. 58-20296).
This also does not take into account cooling temperature history control.

不発明は製品としての鋼管に要求される金属組織、機械
的性質を厳密かつ安定的に与え得る高精度な鋼管の冷却
方法の提供を目的とする。
The object of the invention is to provide a highly accurate cooling method for steel pipes that can strictly and stably provide the metallographic structure and mechanical properties required for steel pipes as products.

(問題点を解決するための手段) ところで、本発明者らは上記目的に沿った新規な鋼管冷
却方法を先に開発し、不出願人より出願を行った(特願
昭60−128834号)。この方法は次の観点に笠っ
て開発されたものである。
(Means for solving the problem) By the way, the present inventors have previously developed a new steel pipe cooling method in accordance with the above-mentioned purpose, and filed an application for the same (Japanese Patent Application No. 128834/1983). . This method was developed based on the following viewpoints.

■ 鋼管の望ましい金属組織と機械的性質を得るには単
に冷却するのみでなく冷却時の温度履歴を管理すること
が最も重要である。
■ In order to obtain the desired metallographic structure and mechanical properties of steel pipes, it is most important to not only cool the pipe but also to control the temperature history during cooling.

■ この管理を行うためには、冷却能を厳密に管理でき
る新規な冷却ヘッダと冷却手法とが必要である。
■ In order to perform this management, a new cooling header and cooling method that can strictly control cooling capacity are required.

■ 冷却ヘッダとしては、もっばら緩冷却の用途に使用
されていたミスティングジェットノズルを、その気水圧
(供給される空電の水に対する比)を小さく、かつ水量
を多くした強冷用のノズルとして組込んだものを使用す
る。
■ As a cooling header, we replaced the misting jet nozzle, which was mostly used for slow cooling, with a strong cooling nozzle that has a lower air-water pressure (ratio of supplied static electricity to water) and a larger amount of water. Use the one incorporated as .

すなわち、ミスティングジェットノズルは、従来は例え
ばCC(連続鋳造)の冷却制御等といった緩冷却用に使
用され、気水比は80以上で用いられていたのを、この
方法では鋼管の強冷却用として気水比5〜10稈度で使
用するのである。つまり、気水比5未満ではミスト粒の
被冷却材への衝突エネルギーが減少し冷却能の低下をき
たし、10を超えるとミスト粒径が小さくなり十分な冷
却能が得られないのである。
In other words, misting jet nozzles were conventionally used for slow cooling, such as cooling control in CC (continuous casting), and were used at an air/water ratio of 80 or higher, but with this method, they are used for strong cooling of steel pipes. It is used at an air-water ratio of 5 to 10 culm. In other words, if the air-water ratio is less than 5, the energy of collision of the mist particles with the material to be cooled decreases, resulting in a decrease in cooling ability, and if it exceeds 10, the mist particle size becomes small and sufficient cooling ability cannot be obtained.

また、水量については従来5〜7々勢・ノズル程度であ
ったのを5〜20 V分・ノズル程度の範囲で使用する
。すなわち、517分・ノズル未満では各ノズルでの安
定した冷却能を得ることが難しく20々勢・ノズルを超
えると水量を変えた場合の冷却能に対する効果が少なく
なり水量を変える意味がない。
In addition, the amount of water used is in the range of 5 to 20 V/nozzle, whereas conventionally it was about 5 to 7 V/nozzle. That is, if it is less than 517 minutes per nozzle, it is difficult to obtain stable cooling capacity at each nozzle, and if it exceeds 20 minutes per nozzle, the effect on cooling capacity when changing the amount of water decreases, and there is no point in changing the amount of water.

■ 冷却手法としては、速度調節が可能な鋼管コンベア
フィンに複数の上記冷却ヘッダを連設し、この中に鋼管
を挿通させる際の移動速度と、個々のヘッダの冷却能と
をそれぞれ独立的に設定する。
■ As a cooling method, a plurality of the above-mentioned cooling headers are installed in series on a steel pipe conveyor fin whose speed can be adjusted, and the moving speed when the steel pipe is inserted through these headers and the cooling capacity of each header are independently adjusted. Set.

ところが、本発明者らのその後の研究によれば、この方
法は焼割れに対する゛配慮が不足していることが判明し
た。
However, subsequent research by the present inventors revealed that this method lacks consideration for quench cracking.

不発明は上記した先願方法にこの焼割れ対策を付加した
もので、その要旨とするところは、水量と気水比とが調
整可能なミスティングジェットノズルを用いて構成され
た冷却能が可変で、かつ速度可変ローラコンベア中に鋼
管移動方向に複数個連設された環状冷却ヘッダ内に、所
定温度に加熱した鋼管を挿通移動させて冷却するに際し
、その鋼管の移動速度と各冷却ヘッダの冷却能とを、下
記冷却速度パターンおよび温度差が得られるように各々
設定し、冷却することを特徴とする鋼管の冷却方法にあ
る。
The invention is the addition of this measure against quench cracking to the above-mentioned method of the prior application, and its gist is that the cooling capacity is variable using a misting jet nozzle that can adjust the amount of water and the air-water ratio. When a steel pipe heated to a predetermined temperature is passed through and cooled through a plurality of annular cooling headers arranged in a row in the direction of steel pipe movement in a variable speed roller conveyor, the speed of movement of the steel pipe and the speed of each cooling header are determined. The method of cooling a steel pipe is characterized in that the cooling capacity is set respectively so as to obtain the following cooling rate pattern and temperature difference.

冷却速度パターン:冷却後の鋼管に要求される機械的性
質および金属組織を管肉厚方向全体に得るのに必要な冷
却中の温度層M(被処理管鋼種に固有)を満足させる冷
却速度パターン。
Cooling rate pattern: Cooling rate pattern that satisfies the temperature layer M (specific to the type of pipe steel to be treated) during cooling necessary to obtain the mechanical properties and metallographic structure required for the steel pipe after cooling throughout the pipe wall thickness direction. .

温度差:鋼管冷却面付近がマルテンサイト変態開始時に
おいて焼割れを生じない肉厚方向温度差。
Temperature difference: The temperature difference in the wall thickness direction that does not cause quench cracking when martensitic transformation begins near the cooling surface of the steel pipe.

不発明の有効性を次に述べる。The effectiveness of non-invention will be discussed below.

(作 用) ○ 冷」J後の鋼管に要求される機械的性質および金属
組・織構成に対する有効性 鋼管の冷却としてその焼入れを見た場合、冷却中の温度
履歴は、要求される冷却後の鋼管の組織及び機械的性質
としての硬度(ビッカース硬度)と、鋼管材質毎に知ら
れているCCT線図とから求めることができる。
(Function) ○ Effectiveness for the mechanical properties and metallographic structure and structure required for steel pipes after cooling When looking at quenching as cooling of steel pipes, the temperature history during cooling is It can be determined from the hardness (Vickers hardness) as the structure and mechanical properties of the steel pipe, and the CCT diagram known for each steel pipe material.

第8図はc:o、xs%、Si:0.22%、Mn:0
.82%、P:0.017%含有鋼についてのOCT線
図で、その冷却温度とACJ温度をきってからの経過時
間との関係を示している。このOCT線図において、例
えば冷却曲線■に沿った冷却を行うとベイナイト組織と
マルテンサイトの混合組織となシビツカース硬度は23
4となる。また冷却曲線Cに沿った冷却を行うとマルテ
ンサイトのみの組織となシビツカース硬度は410とな
る。
Figure 8 shows c:o, xs%, Si: 0.22%, Mn: 0
.. This is an OCT diagram for steel containing 82% P: 0.017%, showing the relationship between its cooling temperature and the elapsed time after the ACJ temperature was cut. In this OCT diagram, for example, if cooling is performed along the cooling curve (■), a mixed structure of bainite and martensite will be formed, and the Sivitkas hardness will be 23.
It becomes 4. Further, when cooling is performed along cooling curve C, a structure consisting only of martensite is obtained, and the Sivitkas hardness is 410.

したがって、焼入れ後の鋼管に要求される硬度及び鋼管
の材質を与えると、焼入れ冷却時に必要な温度履歴が決
定されることになるのである。
Therefore, if the hardness and material of the steel pipe required for the steel pipe after quenching are given, the temperature history required during quenching and cooling will be determined.

なお、ここでは機械的性質としてビッカース強度をと9
あげているが、靭性、引張強度等も冷却中の温度履歴に
支配されるので、不発明における機械的性質とはこれら
の性能全般を意味するものである。
In addition, here, Vickers strength and 9 are used as mechanical properties.
However, since toughness, tensile strength, etc. are also controlled by the temperature history during cooling, the term "mechanical properties" as used herein means all of these performances.

なお又、不発明の冷却方法における冷却中の温度履歴乃
至冷却速度パターンには、冷却終点温度も含まれるもの
で゛ある。
Furthermore, the temperature history or cooling rate pattern during cooling in the uninvented cooling method also includes the cooling end point temperature.

O焼割れに対する有効性 鋼管を冷却ヘッドにて外面冷却して焼入れする場合、鋼
管肉厚方向での温度分布偏差が生じ、肉厚方向位置によ
って温度履歴が異なる。もし焼入れ後の組織として10
0にマルテンサイト組織が要求される場合には、肉厚方
向位置で最も冷f、11速度の遅い箇所がB(ペイナイ
))flli!囲を通らすM(マルテンサイト)範囲内
のみを通るように、0曲線(破線で示す)で示す冷却曲
線よシも下側に来るような温度履歴とすることが必要に
なる。
Effectiveness against O quench cracking When a steel pipe is quenched by cooling the outer surface with a cooling head, a temperature distribution deviation occurs in the thickness direction of the steel pipe, and the temperature history differs depending on the position in the thickness direction. If the structure after quenching is 10
If a martensitic structure is required for 0, the location with the coldest f and 11 velocity in the wall thickness direction is B (pay nai))flli! It is necessary to create a temperature history such that the cooling curve indicated by the 0 curve (indicated by a broken line) is also below the M (martensite) range in which the temperature is passed.

この場合、前述の先願方法では、最も冷却速度の遅い箇
所(外面冷却の場合は管内表面)がこの要求を満足する
冷却曲線となるよう、外表面から水冷放熱させることが
考えられる。しかし、この手段だけでは、鋼管外表面の
急激な温度勾配ならびに変態による膨張に起因する熱応
力により焼割れを起こすことがある。この状況を第4図
(イ)に示す。
In this case, in the method of the prior application described above, it is conceivable to dissipate heat by water cooling from the outer surface so that the part with the slowest cooling rate (inner surface of the pipe in the case of outer surface cooling) has a cooling curve that satisfies this requirement. However, with this method alone, quench cracking may occur due to the rapid temperature gradient on the outer surface of the steel pipe and thermal stress caused by expansion due to transformation. This situation is shown in Figure 4 (a).

第4図に)は最も冷却速度の遅い箇所(管内表面)が、
焼入れ後のビッカース硬度及び組織構造を満足するOC
T線図上冷却曲線の温度履歴となるように、冷却制御を
した場合であるが、この場合は管外表面において急激な
温度勾配および変態による膨張に起因した熱応力を生じ
、焼割れの発生する可能性が大である。
In Figure 4), the part with the slowest cooling rate (inner surface of the pipe) is
OC that satisfies Vickers hardness and microstructure after quenching
This is a case where cooling is controlled so that the temperature history follows the cooling curve on the T-diagram, but in this case, a rapid temperature gradient and thermal stress due to expansion due to transformation occur on the outer surface of the tube, causing quench cracking. There is a high possibility that

また、逆に、各冷却ヘッダの冷却能を落とし、冷却時の
管内外面温度差を小さくして、熱応力の発生を抑えた場
合は、焼割れは防止されるものの、第4図(ロ)に示す
ように全体的に緩やかな/M度変化を示し、要求される
ビッカース硬度および組織溝aが得られなくなる。
On the other hand, if the cooling capacity of each cooling header is reduced and the temperature difference between the inside and outside of the tube is reduced during cooling to suppress the occurrence of thermal stress, quench cracking can be prevented, but as shown in Figure 4 (b). As shown in Figure 2, there is an overall gradual change in /M degree, and the required Vickers hardness and tissue groove a cannot be obtained.

本発明はこれらのいずれをも防止するもので、そのため
に、冷却後の鋼管に要求される機械的性質および組織構
造を得るのに必要な冷却中の温度履歴を管全体に保証し
つつ、鋼管冷却面付近のマルテンサイト変態開始時にお
ける肉厚方向温度差を焼割れが生じない範囲に抑えるの
である。
The present invention prevents both of these problems, and for this purpose, it is possible to maintain the temperature history of the steel pipe during cooling while ensuring that the entire pipe has the required temperature history during cooling to obtain the mechanical properties and microstructure required for the steel pipe after cooling. The temperature difference in the wall thickness direction near the cooling surface at the start of martensitic transformation is kept within a range that does not cause quench cracking.

@4図(イ)に相当する同図(/つによシ具体的に説明
すると、最も冷却速度の遅い管内表面は第4図イの場合
と同様に焼入れ後のビッカース硬度および組織構造を満
足する温度履歴が与えられている。
@ The same figure corresponding to Figure 4 (A) (/Tsuyoshi) To explain specifically, the inner surface of the tube, which has the slowest cooling rate, satisfies the Vickers hardness and microstructure after quenching, as in the case of Figure 4 (A). A temperature history is given.

これに対し、冷却速度の最も速い管外表面はマルテンサ
イへ変態開始点近傍までは急激な冷却を受けているが、
この開始点通過の際には冷却速度を大巾に抑え、内外表
面温度差を少なくし、内外表面のマμテンサイド変態開
始タイミング差による外表面近傍での熱応力が生じない
ように配電しているのである。このときの管外表面近傍
が受ける温度履歴は当然、要求される機械的性質および
金属組織を満足させる範囲内のものである。
On the other hand, the outer surface of the tube, which has the fastest cooling rate, is rapidly cooled until it reaches the point where it begins to transform into martensai.
When passing through this starting point, the cooling rate is greatly suppressed, the temperature difference between the inner and outer surfaces is reduced, and the power is distributed so that thermal stress does not occur near the outer surface due to the difference in the timing of the start of martenside transformation between the inner and outer surfaces. There is. The temperature history near the outer surface of the tube at this time is naturally within a range that satisfies the required mechanical properties and metallographic structure.

ここで、管外表面近傍(管冷却面付近)とは、管外表面
から肉厚方向約80%程度迄の部位をさす。
Here, the term "near the tube outer surface" (near the tube cooling surface) refers to a region extending from the tube outer surface to approximately 80% in the wall thickness direction.

本発明において、このような高精度の冷却制御を行える
のは、冷却ヘッドにミスティングジェットノズルを採用
したことと、連設された複数の冷却ヘッドの冷却能を鋼
管移動速度とともに独立的に設定し得るようにしたこと
に基づくことは言うまでもない。
In the present invention, such highly accurate cooling control is possible due to the adoption of a misting jet nozzle in the cooling head, and the fact that the cooling capacity of multiple cooling heads installed in series is independently set along with the steel pipe movement speed. Needless to say, this is based on what was possible.

(実施の態様) 以下、図面を膠照しながら本発明を更に詳しく説明する
(Embodiments) Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は不発明の方法を実施するための装置の例を示し
、((イ)は平面図、(ロ)は側面図である。図によれ
ば、加熱炉(1)より出た高温の鋼管<21は矢印(3
)の方向に搬送ローラ(4)にて移動し、冷却ヘッダー
(5/)(5コ)・・・(51)を通過する。各ヘッダ
ーには鋼管<2jのパスラインに向って複数のミスティ
ングジェットノズルが求心状に設けられている。ミステ
ィングジェットノズルは前述したように従来比軸的緩冷
却な用途に使用されるのが通例であったが、本発明では
このミスティングジェットノズルを、供給される空気と
水の比(気水比)が従来にあっては通常30以上と大き
かったものを小さくして水量を多くし九強冷用のノズル
として、鋼管の冷却速度制御用に使った。具体的には、
この気水比は得られる冷却能力が高く、かつ均一なミス
ティングジェット流が得られるように調整した結果、5
〜10の範囲内で設定するのがでましいことがわかった
。しか己、これはノズルの特性に依存するため前記値は
必らずしも固定的なものではない。
Figure 1 shows an example of an apparatus for carrying out the uninvented method ((a) is a plan view and (b) is a side view. According to the figure, the high temperature emitted from the heating furnace (1) The steel pipe <21 is indicated by the arrow (3
) in the direction of conveyance rollers (4), and passes through cooling headers (5/) (5 pieces)... (51). A plurality of misting jet nozzles are provided in each header in a centripetal manner toward the pass line of the steel pipe <2j. As mentioned above, misting jet nozzles have conventionally been used for specific axial slow cooling applications, but in the present invention, misting jet nozzles are Conventionally, the nozzle had a large ratio of 30 or more, but it was made smaller to increase the amount of water and was used as a nozzle for 9-strong cooling to control the cooling rate of steel pipes. in particular,
This air/water ratio was adjusted to provide a high cooling capacity and a uniform misting jet flow.
It has been found that it is best to set the value within the range of ~10. However, since this value depends on the characteristics of the nozzle, the above value is not necessarily fixed.

第2図に各ヘッダーの冷却能力調整装置を示す。Figure 2 shows the cooling capacity adjustment device for each header.

図によれば冷却水は冷却水供給源(6)より冷却水流量
制御装置(7)を経て冷却ヘッダー(5)に送給され、
また空気はエア供給源(8)よりエア流量制御装置(9
)を経て冷却ヘッダー(5)に送給される。冷却水とエ
アは冷却ヘッダー(5)内のミステイングジェットノズ
μによシ混合されてミスティングジェット流となって、
ヘッダー内を通過する鋼管(21の表面に吹付けられる
。すなわち、各冷却ヘッダーはそれぞれ冷却水流量及び
空気供給量を各々制御して冷却能力を調整させて冷却速
度を制御できる方式を採用したのである。冷却ヘッダー
は、また、数多く設置する程全体としての冷却能力は向
上するので鋼管をより速い速度で移送できて生産性は向
上するが、設備費及び設備スペースの制約よシこの例で
は8段とした。なお各ヘッダー(5)とその制御装置(
7)(9)は分岐管αηα刀により供給源(6)(81
に対してそれぞれ並列に設けられている。
According to the figure, cooling water is supplied from a cooling water supply source (6) to a cooling header (5) via a cooling water flow rate control device (7).
In addition, air is supplied from the air supply source (8) to the air flow control device (9).
) to the cooling header (5). The cooling water and air are mixed by the misting jet nozzle μ in the cooling header (5) to form a misting jet flow.
The cooling water is sprayed onto the surface of the steel pipe (21) that passes through the header.In other words, each cooling header uses a method that allows the cooling rate to be controlled by controlling the cooling water flow rate and air supply amount respectively to adjust the cooling capacity. In addition, as more cooling headers are installed, the overall cooling capacity improves, allowing steel pipes to be transferred at a faster speed and improving productivity, but due to equipment cost and equipment space constraints, in this example 8. Each header (5) and its control device (
7) (9) is the supply source (6) (81
are provided in parallel to each other.

前述の搬送装置は又、搬送ローラ(4)によって搬送速
度を任意に設定できるようにした。その結果、冷却装置
全体として、鋼管(2)の寸法、材質、冷却仕様に応じ
て搬送速度、各冷却ヘッダーの冷却能力の選択を自由に
行うことができる。この装置例では各冷却ヘッダーへの
冷却水量5〜20 m”/hr。
The above-mentioned conveyance device also allows the conveyance speed to be arbitrarily set using the conveyance roller (4). As a result, for the cooling device as a whole, the conveyance speed and the cooling capacity of each cooling header can be freely selected depending on the dimensions, material, and cooling specifications of the steel pipe (2). In this example, the amount of cooling water to each cooling header is 5 to 20 m''/hr.

空気供給量は50〜100 Nrrl/hr s 搬送
速度は0.05〜0.4 m/sの範囲で自由に設定で
き得るものとした。また冷却ヘッダー1段当り有効冷却
長さを6001EIとし、冷却ヘッダー2段毎に鋼管の
曲りを防止するため搬送ローフ(4)を設けた。
The air supply amount was 50 to 100 Nrrl/hr s, and the conveying speed could be freely set in the range of 0.05 to 0.4 m/s. In addition, the effective cooling length per stage of the cooling header was set to 6001EI, and a conveyor loaf (4) was provided for every two stages of the cooling header to prevent bending of the steel pipe.

上記装置例を使用すれば、鋼管にその焼割れを防止しつ
つ所望の温度履歴を与えることができる。
By using the above device example, a desired temperature history can be given to the steel pipe while preventing quench cracking.

その方法を次に述べる。 − 冷却装置としては、第1因に示した冷却能力を制御する
ことが可能の8つの冷却ヘッダーよシなる例を用いるも
のとする。限界的な温度履歴(最も冷却速度の遅い部分
(外面冷却の場合は内表面)の温度履歴)としては冷却
曲線0(第8図)を考える。冷却終点温度は220°C
(TM:マルテンサイト変態終了温゛度)を目標とする
The method is described below. - As the cooling device, an example of eight cooling headers that can control the cooling capacity shown in the first factor shall be used. Cooling curve 0 (Fig. 8) is considered as the critical temperature history (temperature history of the part with the slowest cooling rate (inner surface in case of external cooling)). Cooling end temperature is 220°C
(TM: temperature at which martensitic transformation ends).

このような条件を満足させるのに必要な各々の冷却ヘッ
ダー(51)・・・(51)における冷却に必要な鋼管
表面の熱伝達係数を先ず求めるが、これは鋼管ノ温度計
算モデルによるオフフィンシミュレーションによυ可能
である。第5図にその計算流れ図を示し、詳細は次のと
おシである(第6図膠照〕。
First, the heat transfer coefficient of the steel pipe surface necessary for cooling in each cooling header (51) (51) necessary to satisfy these conditions is determined, but this is determined by off-fin based on the steel pipe temperature calculation model. It is possible to do this by simulation. Figure 5 shows the calculation flowchart, and the details are as follows (see Figure 6).

■ 内表面のMs点到達時刻t、j−s、内表面の冷却
終点温度時刻tf、冷却開始温度時刻tB−θ、冷却開
始温pXTs(厚み方向均一)、内表面の冷却終点温度
Tf=TMf(マルテンサイト変態終了温度)等を与え
る。
■ Inner surface Ms point arrival time t, j-s, inner surface cooling end point temperature time tf, cooling start temperature time tB-θ, cooling start temperature pXTs (uniform in thickness direction), inner surface cooling end point temperature Tf = TMf (martensitic transformation end temperature) etc.

■ Nn1〜tl!o8の冷却ヘッダ全部を冷却するも
のとし、搬送速度■を次式によシ定める。
■ Nn1~tl! It is assumed that all cooling headers of o8 are to be cooled, and the conveyance speed (■) is determined by the following formula.

V −1c/cf       ・・・・・・・・・・
・・・・・(υ但し、tc:冷却ヘッダの全長 ■ 内表面のMs点位置t1sは搬送速度Vと内表面の
Ms点到達限界時刻Zj−sによシ次式の制約をうける
V-1c/cf・・・・・・・・・・・・
...(υHowever, tc: total length of the cooling header ■) The Ms point position t1s on the inner surface is subject to the following equation constraints depending on the transport speed V and the limit time Zj-s to reach the Ms point on the inner surface.

t1S≦V畳tIS     ・・・・・・・・・・・
・・・・(2)これは内表面の温度履歴が第8回OCT
線図冷却曲線■よりも下側にあればよいという条件から
くる制約式となっておシ、初期値は(2」式の等号が成
立する時を考える。
t1S≦V tIS・・・・・・・・・・・・
...(2) This is the temperature history of the inner surface of the 8th OCT
This is a constraint equation based on the condition that it should be below the cooling curve (■), and the initial value is assumed to be when the equality sign of equation (2) holds.

なお、初期値にて所定の各冷却ヘッダの熱伝達係数が得
られない場合(第5図のC/I/−プ発生時)には、1
@次適当なきざみ幅でもってtisを減らして計算を継
続する。
Note that if the predetermined heat transfer coefficient of each cooling header cannot be obtained with the initial value (at the time of occurrence of C/I/- in Fig. 5), 1
@Next, reduce tis by an appropriate step width and continue calculation.

■ 外表面のM8点位置をいかに決定するかが不法のポ
イントである。焼割れ発生の完全なメカニズムの解明は
なされていないが、鋼管外表面は冷却時の急激な温度勾
配と変態による膨張に8因する熱応力によシ焼割れが発
生しやすいことが知られている。本発明では外表面近傍
のマルテンサイト変態開始時の温度分布を小さくし熱応
力を緩和する様な冷却方法を提供するものであシ、その
為に。
■ The point of illegality is how to determine the position of M8 point on the outer surface. Although the complete mechanism of the occurrence of quenching cracks has not been elucidated, it is known that quenching cracks are likely to occur on the outer surface of steel pipes due to thermal stress caused by rapid temperature gradients during cooling and expansion due to transformation. There is. The present invention provides a cooling method that reduces the temperature distribution at the start of martensitic transformation near the outer surface and alleviates thermal stress.

は外表面がマルテンサイト変態開始タイミング直近にお
いて緩冷却を行って冷却速度を小さくし、外表面近傍で
の温度分布の均一化をはかることが必要であシ、極力緩
冷却の時間を長くする為には外表面のマルテンサイト変
態開始タイミングを遅らせることが必要となる。
It is necessary to reduce the cooling rate by slow cooling the outer surface immediately before the start of martensitic transformation, and to equalize the temperature distribution near the outer surface.In order to lengthen the slow cooling time as much as possible, it is necessary to Therefore, it is necessary to delay the start of martensitic transformation of the outer surface.

従って、外表面のM8点到達位置tO8の初期値は、内
表面のMs点到達位置tiSとし、もし所定の各冷却ヘ
ッダの熱伝達係数が得られない場合(第5図の1)/l
/−デ発生時)には順次適当なきざみ幅でもってlos
を減らして計算を継続する。
Therefore, the initial value of the M8 point arrival position tO8 on the outer surface is the Ms point arrival position tiS on the inner surface, and if the predetermined heat transfer coefficient of each cooling header cannot be obtained (1 in Fig. 5)/l
/- when a loss occurs), the loss is
Continue calculation by decreasing .

■〜■の温度計算ステップは次の8ケースに分けて考え
る必要があシ、まずそれぞれの温度計算のポイントを示
し、■〜■の計算方法を説明する。
It is necessary to consider the temperature calculation steps (1) to (2) in the following 8 cases. First, we will show the points of temperature calculation in each case and explain the calculation methods for (1) to (2).

! 冷却開始よシ外表面のMs点迄の温度計算イ、外表
面のMs点到達時刻を内表面到達時刻に近づける。
! When cooling starts, calculate the temperature up to the Ms point on the outer surface.B) Bring the time when the outer surface reaches the Ms point closer to the inner surface arrival time.

口、外表面温度がTMS+αの時点では強冷却を行って
内外面温度差をつけ、内表面の温度降下を促す。
When the outer surface temperature reaches TMS+α, strong cooling is performed to create a temperature difference between the inner and outer surfaces, thereby promoting a temperature drop on the inner surface.

ハ、外表面温度がTM8近傍になれば緩冷却を行い内外
面の温度差を少なくし、外表面近傍の温度分布を小さく
する。
C. When the outer surface temperature approaches TM8, slow cooling is performed to reduce the temperature difference between the inner and outer surfaces and to reduce the temperature distribution near the outer surface.

■ 外表面のMs点より内表面M8点迄の/lt計算イ
、内表面Ms点到達位置での内表面温度をTM8になる
様にする。
■ Calculate /lt from the Ms point on the outer surface to the M8 point on the inner surface. Set the inner surface temperature at the position where the inner surface Ms point is reached to TM8.

口、外表面温度がTuf+βの時点では強冷却を行って
、内外面温度差をつけ、内表面温度降下を促す。
When the outer surface temperature reaches Tuf+β, strong cooling is performed to create a temperature difference between the inner and outer surfaces and to promote a decrease in the inner surface temperature.

ハ、外表面温度がTMf近傍になれば緩冷却を行い、内
外面の温度差を小さくし、同表面のMs点到達時刻の調
整を行う。
C. When the outer surface temperature approaches TMf, slow cooling is performed to reduce the temperature difference between the inner and outer surfaces, and the time when the surface reaches the Ms point is adjusted.

■ 内表面Ms点よシ内表面Mf点迄の温度計算イ、内
表面温度が冷却終点温度になる様にする。
■ Temperature calculation from point Ms on the inner surface to point Mf on the inner surface A. Make sure that the inner surface temperature becomes the cooling end point temperature.

■ この熱伝達係数の仮定は、上記工〜mの冷却終温度
計算の考え方に沿って適当に決め、計算温度と目標温度
とが一致する迄続けられる(第5図aI〜am/L/−
デ)。  ゛ ■ 伝熱モデルとして厚み方向の1次元伝熱モデルを考
える。
■ The assumption of this heat transfer coefficient is determined appropriately according to the concept of calculating the final cooling temperature in Steps to m above, and is continued until the calculated temperature and target temperature match (Fig. 5 aI to am/L/-
De).゛■ As a heat transfer model, consider a one-dimensional heat transfer model in the thickness direction.

く基礎式〉 但し C:鋼管の比熱 p:、#  密度 χ: ・ 熱伝導率 く境界条件式〉 鋼管外表面 χ−ニーh(Tw−Ts)  ・・・・・
・(4)但し h:冷却水と鋼管表面との熱伝達係数T
w:冷却水温度 TS:鋼管外表面温度 鋼管内表面 λ−ニー〇 〇断熱)・・・・・・(5)
(3)、(4)、(5)式をもとに数値計算によシ厚み
方向の温度分布の経時変化を求める。数値計算は差分法
により微少時間△を毎の逐時前進計算を行う方法を採用
しているが、これについては周知技術であるので省田各
する。
Basic formula〉 However, C: Specific heat of steel pipe p:, # Density χ: ・ Boundary condition formula for thermal conductivity〉 Steel pipe outer surface χ-knee h (Tw-Ts) ...
・(4) However, h: Heat transfer coefficient T between cooling water and steel pipe surface
w: Cooling water temperature TS: Steel pipe outer surface temperature Steel pipe inner surface λ-knee〇〇insulation)・・・・・・(5)
Based on equations (3), (4), and (5), numerical calculations are performed to determine the temporal change in temperature distribution in the thickness direction. Numerical calculations employ a method of performing forward calculations every minute time Δ using the difference method, but since this is a well-known technique, it will be omitted here.

■ 計X温度と目標温度との比較を行い極端に違ってい
るときには、該当冷却ヘッダの熱伝達係数仮定ステップ
に戻る@ 以上のようにして各冷却ヘッダに必要な熱伝達係数が求
まると、次にこれを基にして各冷却ヘッダにおける冷却
水供給量および気水比を求める。
■Compare the total Based on this, the cooling water supply amount and air-water ratio for each cooling header are determined.

各冷却ヘッダにおける冷却水料f1と熱伝達係数hiと
気水比でとの関係は第7図の如きであシ、しだがって所
要の熱伝達係数が決まれば、必要な冷却水供給量、気水
比が決まる。
The relationship between the cooling water charge f1, the heat transfer coefficient hi, and the air/water ratio in each cooling header is as shown in Fig. 7. Therefore, once the required heat transfer coefficient is determined, the required cooling water supply amount can be determined. , the air-water ratio is determined.

(実施例) 外径が150m$、肉厚が8mt、で、成分組成が第3
図に示された鋼管に対し、第1図に示す8段構成の冷却
ヘッダで、管内面の目標ビッカース硬度を234、搬送
速度を0.4 m/sとして、上述の計算を行ったとこ
ろ、第1表に示す結果が得られた。
(Example) The outer diameter is 150 m$, the wall thickness is 8 mt, and the component composition is 3rd.
When the above calculation was performed on the steel pipe shown in the figure using the 8-stage cooling header shown in Fig. 1, the target Vickers hardness of the inner surface of the pipe was 234, and the conveyance speed was 0.4 m/s. The results shown in Table 1 were obtained.

そして、この結果に基づいて実際に冷勾Jを行ったとこ
ろ、肉厚方向のビッカース硬度分布が240以上、32
5以内の所定範囲に収まり、焼割れも生じなかった。
When we actually performed cold gradient J based on this result, the Vickers hardness distribution in the wall thickness direction was 240 or more, 32
It was within a predetermined range of 5, and no quench cracking occurred.

また、比較のため、同一′種類の鋼管に対し、同じ装置
を用い、目標硬度、搬送速度を同一として、前述の先願
方法により冷却を行った。各ヘッダにおける冷却水供給
量および気水比の計算結果を第2表に示す。その結果、
肉厚方向のビッカース硬度分布は240〜375の所定
範囲に収まったが、約67Xの割合で焼割れを生じた。
For comparison, the same type of steel pipe was cooled using the same equipment, the same target hardness, and the same conveyance speed, according to the method of the prior application described above. Table 2 shows the calculation results of the cooling water supply amount and air/water ratio for each header. the result,
Although the Vickers hardness distribution in the wall thickness direction was within a predetermined range of 240 to 375, quench cracking occurred at a rate of about 67X.

第    2    表 第6図は上述の不発明例と比較例とにおける鋼管内外面
の温度履歴を示したものである。同図から明らかなよう
に、焼割れ対策をしていない比較例では管外表面がマル
テンサイト変態点に到達するのが陥2ヘッド通過後、管
内表面の到達時期がN1)5ヘッド通過後であシ、両者
のマルテンサイト変態点到達時間差は8ヘッド通過時間
分となる。
Table 2, FIG. 6 shows the temperature history of the inner and outer surfaces of the steel pipes in the above-mentioned non-inventive example and comparative example. As is clear from the figure, in the comparative example in which no countermeasures against quench cracking were taken, the outer surface of the tube reached the martensitic transformation point after passing through the 2nd head, and the inner surface of the tube reached the point after passing through the 5th head. The difference in time between the two to reach the martensitic transformation point is 8 head passage times.

その結果、管外表面のマルテンサイト変態開始における
管外表面近傍の管肉方向温度は△Tで示すものとなる。
As a result, the temperature in the direction of the tube wall near the outer surface of the tube at the start of martensitic transformation of the outer surface of the tube is represented by ΔT.

これに対し、焼割れ対策を施した不発明例では管内表面
の温度履歴は比較例と変らず、マルテンサイト変態開始
時も隔5スタンド通過後で、所定のビッカース硬度が付
与さ”れることになる。一方、管外面は内面の温度履歴
を必要限確保したまま、マルテンサイト変態開始が1ヘ
ッド通過分遅れ、NQ8ヘッド通過後となっている。こ
の遅れによシ管外表面のマルテンサイト開始点における
管外表面近傍の管肉方向温度差はΔゲとなシ、比較例の
場合のΔTと比べて大巾に減縮され、これがために焼割
れが防止きれるのである。
On the other hand, in the non-inventive example in which quench cracking measures were taken, the temperature history of the inner surface of the tube was the same as in the comparative example, and the specified Vickers hardness was achieved even after passing through the fifth stand when martensitic transformation started. On the other hand, the start of martensite transformation on the outer surface of the tube is delayed by one head passage, while maintaining the necessary temperature history on the inner surface.This delay causes the start of martensite transformation on the outer surface of the tube after passing through the NQ8 head. The temperature difference in the direction of the tube wall near the outer surface of the tube at the point ΔG is greatly reduced compared to ΔT in the case of the comparative example, and therefore quench cracking can be prevented.

また鋼管の焼入れ以外にも熱延鋼板や厚板の急速冷却な
どに本発明は有効である。
In addition to quenching steel pipes, the present invention is also effective for rapid cooling of hot rolled steel plates and thick plates.

(発明の効果) 以上の説明から明らかなように、本発明の方法はその厳
密冷却制御によシ所望の機械的性質および金属組織を焼
割れを生じることなく確保できることは勿論のこと、更
に次のような効果も奏するものである。
(Effects of the Invention) As is clear from the above description, the method of the present invention not only can ensure desired mechanical properties and metal structure without causing quench cracking through strict cooling control, but also: It also has the following effects.

現在所定の製品品質を得るために完全マルテンサイト組
織を必要とする様な焼入れをする場合、焼割れ発生を起
こす危険があるため高価な合金元素を添加して行ったシ
、油を使った浸漬方式での焼入れを行ったりしている為
に高級鋼管の製造コストが高くなってしまっている。し
かるに、本発明の方法によれば、これらの焼割れ対策が
一切不用になシ、製造コストの低減を図ることができる
Currently, when quenching that requires a completely martensitic structure to obtain a specified product quality, there is a risk of quench cracking, so expensive alloying elements are added and immersion using oil is used. The manufacturing cost of high-grade steel pipes has increased because of the quenching method. However, according to the method of the present invention, these countermeasures against quench cracking are completely unnecessary, and manufacturing costs can be reduced.

焼入れプロセスとテンパープロセスが連続している場合
には、焼入れ終点温度を必要最小限の温度とすることに
よシ、テンパー炉への装入温度を高くすることができ、
省エネルギーが可能となる。
When the quenching process and tempering process are continuous, by setting the quenching end point temperature to the minimum necessary temperature, the charging temperature to the tempering furnace can be increased.
Energy saving becomes possible.

従来溶入完了時の鋼管温度の平均値は80〜100°C
であったが、本発明の冷却制御方法により150°Cに
上げることができた。
Conventionally, the average temperature of the steel pipe at the completion of penetration is 80 to 100°C.
However, by using the cooling control method of the present invention, it was possible to raise the temperature to 150°C.

CCT線図に基づいた最低冷却速度制御を訂うことかで
き、製品組織の安定化、即ち機械的性質の安定化が図れ
るようになった。例えば引張強度について言えば、従来
、同一製造条件下において生じていた強度偏差σ−11
が0.5”fiになる等、全体的に強度偏差を晃〜捧に
減少させることができた。
It has become possible to correct the minimum cooling rate control based on the CCT diagram, and it has become possible to stabilize the product structure, that is, to stabilize the mechanical properties. For example, regarding tensile strength, the strength deviation σ-11 that previously occurred under the same manufacturing conditions
was reduced to 0.5"fi, and the overall strength deviation could be reduced to a minimum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施に適した装置の例を示す説
明図で(イ)は平面図゛、゛(ロ)は側面図、第2図は
前記装置に使う冷却能力調整装置の説明図、第8図は特
定鋼についてのOCT線図、第4図は冷却中の温度履歴
の模式説明図で(イ)は従来例、((ロ)は比較例、(
ハ)は本発明例の場合、第5図は本発明の方法における
計算流れ図の一例、第6図は冷却中の温度履歴を比較例
と本発明例について詳細に例示した線図、第7図は熱伝
達係数りと冷却水供給量fとの関係を気水比γをバラメ
ータとして示した線図である。 図中、l:加熱炉、2:w4管、3:進行方向矢印、4
:搬送ローラ、51〜5t:冷却ヘッダ、6:冷却水供
給源、7:冷却水流量制御装置、8:エア供給源、9:
エア流量制御装置、lO:冷却ヘッダ全長tc、11:
分岐管。 第1図 第 2 因 第 3 図 第 7 同 ttogp   xogI
Fig. 1 is an explanatory diagram showing an example of a device suitable for carrying out the method of the present invention, (a) is a plan view, (b) is a side view, and Fig. 2 is a cooling capacity adjustment device used in the device. An explanatory diagram, Fig. 8 is an OCT diagram of a specific steel, and Fig. 4 is a schematic explanatory diagram of the temperature history during cooling, where (a) is a conventional example, ((b) is a comparative example, (
c) is the case of the present invention example, FIG. 5 is an example of a calculation flow chart in the method of the present invention, FIG. 6 is a diagram illustrating the temperature history during cooling in detail for the comparative example and the present invention example, and FIG. 7 is is a diagram showing the relationship between the heat transfer coefficient and the cooling water supply amount f using the air-water ratio γ as a parameter. In the figure, l: heating furnace, 2: w4 tube, 3: traveling direction arrow, 4
: Conveyance roller, 51-5t: Cooling header, 6: Cooling water supply source, 7: Cooling water flow rate control device, 8: Air supply source, 9:
Air flow control device, lO: Cooling header total length tc, 11:
Branch pipe. Figure 1 Figure 2 Cause 3 Figure 7 Same ttogp xogI

Claims (1)

【特許請求の範囲】[Claims] (1)水量と気水比とが調整可能なミステイングジエッ
トノズルを用いて構成された冷却能が可変で、かつ速度
可変ローラコンベア中に鋼管移動方向に複数個連設され
た環状冷却ヘッダ内に、所定温度に加熱した鋼管を挿通
移動させて冷却するに際し、その鋼管の移動速度と各冷
却ヘッダの冷却能とを、下記冷却速度パターンおよび温
度差が得られるように各々設定し、冷却することを特徴
とする鋼管の冷却方法。 冷却速度パターン:冷却後の鋼管に要求される機械的性
質および金属組織を管肉厚方向全体に得るのに必要な冷
却中の温度履歴(被処理管鋼種に固有)を満足させる冷
却速度パターン。 温度差:鋼管冷却面付近がマルテンサイト変態開始時に
おいて焼割れを生じない肉厚方向温度差。
(1) Inside an annular cooling header with variable cooling capacity configured using misting jet nozzles with adjustable water volume and air-water ratio, and with multiple units installed in series in the steel pipe movement direction on a variable speed roller conveyor. When a steel pipe heated to a predetermined temperature is passed through and cooled, the moving speed of the steel pipe and the cooling capacity of each cooling header are set so as to obtain the following cooling speed pattern and temperature difference. A method for cooling steel pipes. Cooling rate pattern: A cooling rate pattern that satisfies the temperature history during cooling (specific to the type of pipe steel to be treated) necessary to obtain the required mechanical properties and metallographic structure of the steel pipe throughout the thickness of the pipe after cooling. Temperature difference: The temperature difference in the wall thickness direction that does not cause quench cracking when martensitic transformation begins near the cooling surface of the steel pipe.
JP3340586A 1986-02-17 1986-02-17 Cooling method for steel pipe Pending JPS62192535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340586A JPS62192535A (en) 1986-02-17 1986-02-17 Cooling method for steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340586A JPS62192535A (en) 1986-02-17 1986-02-17 Cooling method for steel pipe

Publications (1)

Publication Number Publication Date
JPS62192535A true JPS62192535A (en) 1987-08-24

Family

ID=12385687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340586A Pending JPS62192535A (en) 1986-02-17 1986-02-17 Cooling method for steel pipe

Country Status (1)

Country Link
JP (1) JPS62192535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045441A (en) * 2017-09-07 2019-03-22 新日鐵住金株式会社 Method for determining cooling rate of steel pipe and manufacturing method of steel pipe using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045441A (en) * 2017-09-07 2019-03-22 新日鐵住金株式会社 Method for determining cooling rate of steel pipe and manufacturing method of steel pipe using the same

Similar Documents

Publication Publication Date Title
EP0098492B1 (en) Method for the production of railway rails by accelerated cooling in line with the production rolling mill
TWI382888B (en) Method and means of continuous casting
KR100206504B1 (en) Equipment for manufacturing stainless steel strip
US8522586B2 (en) Method for flexibly rolling coated steel strips
CN101611159B (en) Continuous annealing equipment
AU2006310840B2 (en) Method and finishing train for hot-rolling starting material
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
WO2010122847A1 (en) Method of producing seamless pipe and apparatus for performing the same
EP1359230B1 (en) Production method for steel plate and equipment therefor
RU2272080C2 (en) Method of the thermal treatment of the rails
US4142923A (en) Method of induction heat treating, quenching and tempering, of structural members
JPS6314052B2 (en)
CA1265421A (en) Method and apparatus for cooling rolled steels
UA120184C2 (en) Multipurpose processing line for heat treating and hot dip coating a steel strip
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JPS62192535A (en) Cooling method for steel pipe
JPS6254373B2 (en)
JP6060927B2 (en) Steel plate manufacturing method
JP6295387B1 (en) Controlled cooling method for hot-rolled steel bars
JP2001300633A (en) Low temperature coiling method of high strength hot rolled steel strip
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JPS63134633A (en) Cooling method for steel pipe
JP4228654B2 (en) Steel plate heat treatment method and apparatus
WO2019059105A1 (en) Device and method for cooling steel material
JP2003253343A (en) Process for continuously heat treating metal strip