JPS62192276A - Method and device for resistance welding of damping steel plate - Google Patents

Method and device for resistance welding of damping steel plate

Info

Publication number
JPS62192276A
JPS62192276A JP3225686A JP3225686A JPS62192276A JP S62192276 A JPS62192276 A JP S62192276A JP 3225686 A JP3225686 A JP 3225686A JP 3225686 A JP3225686 A JP 3225686A JP S62192276 A JPS62192276 A JP S62192276A
Authority
JP
Japan
Prior art keywords
current
welding
resistance welding
physical quantity
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3225686A
Other languages
Japanese (ja)
Inventor
Mitsuo Namiki
三夫 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Electronic Co
Original Assignee
Miyachi Electronic Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Electronic Co filed Critical Miyachi Electronic Co
Priority to JP3225686A priority Critical patent/JPS62192276A/en
Publication of JPS62192276A publication Critical patent/JPS62192276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PURPOSE:To obtain the stabilized welding quality equivalent to an ordinary steel plate by supervising the prescribed physical quantity relating to the 1st current passing a short circuit conductor part and by passing the prescribed 2nd current between a pair of electrode chips by shifting to the preset welding conditions based on the result thereof. CONSTITUTION:A small welding current (i) is passed on the shunt path of a short circuit lead wire 18 when the 1st electrification mode is started with the prescribed pressure force being impressed between electrode chips 10, 12 by the signal transmitted from a sequence control part 50. The 1st electrification mode is forcibly stopped by transmitting a shifting instruction signal QS from a comparison part 48 in case of the current (i) exceeding the reference level, when the welding current (i) is abruptly increased with the direct short circuit of the steel plate part of steel plates 14, 16 by the pressure force between this welding current (i) and chips 10, 12. The 2nd electrification mode is then started and the resistance welding equivalent to the ordinary steel plate is performed under the welding conditions as scheduled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は制振鋼板の抵抗溶接に関し、特に普通鋼板と同
等な安定した溶接品質が得られるように工夫したもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to resistance welding of damping steel plates, and is particularly designed to provide stable welding quality equivalent to ordinary steel plates.

(従来の技術) 制振鋼板は、(2枚の)鋼板の間に樹脂層等の絶縁物を
介在させたサンドイッチ状の鋼板て、絶縁物によって振
動を減衰させる作用を有し、防音材や自動車外板等の各
種構造体として用途が拡大しつつある。
(Prior art) A damping steel plate is a sandwich-like steel plate with an insulator such as a resin layer interposed between (two) steel plates, and has the effect of damping vibrations with the insulator. Applications are expanding for various structures such as automobile exterior panels.

このような制振鋼板に対する抵抗溶接は、一般に第3図
および第4図に示すような分流予熱法によって行われる
。これらの図において、電極チップ10.12間には、
矢印Fl、F2の方向に所定の加圧力を印加されなから
所定の時間たけ溶接電流が流される。被溶接材14.1
6はいずれも樹脂複合型(ラミネート型)の制振鋼板で
、それぞれ2枚の鋼板14a、14a (16a、16
a)の間に有機樹脂等の粘弾性材料14b (16b)
が挿入されている。工8は短絡導線で、図示のように制
振鋼板14.18の両外側面を短絡するように取り付け
られ、最初の溶接点に対する短絡導体部を与える。
Resistance welding of such damping steel plates is generally performed by a split flow preheating method as shown in FIGS. 3 and 4. In these figures, between the electrode tips 10 and 12,
A welding current is applied for a predetermined period of time without applying a predetermined pressing force in the direction of arrows Fl and F2. Material to be welded 14.1
6 are resin composite type (laminate type) vibration damping steel plates, and two steel plates 14a, 14a (16a, 16
A viscoelastic material 14b (16b) such as organic resin is placed between a)
is inserted. A shorting conductor 8 is attached to short-circuit both outer surfaces of the damping steel plates 14 and 18 as shown, and provides a short-circuiting conductor for the first welding point.

さて、第3図の通電初期においては、矢印りで示すよう
な分流経路を通って電流が電極チップ10.12間に流
れる。そうすると、電流チップ10.12に接する側(
外側)の鋼板14a、16aでジュール熱が発生し、有
機樹脂14b、16bはその熱で軟化し、さらに電極加
圧力により圧潰して周囲に排除される。その結果、第4
図に示すように電極チップ10.12間で鋼板部分14
a、14a、、tea、IC3aが直接短絡し、これに
よって電流はこの主経路Wの方を流れ、本来の抵抗溶接
が行われる。
Now, in the initial stage of energization in FIG. 3, current flows between the electrode tips 10 and 12 through the branch path as indicated by the arrow. Then, the side in contact with the current chip 10.12 (
Joule heat is generated in the outer steel plates 14a, 16a, and the organic resins 14b, 16b are softened by the heat, and further crushed by the electrode pressure and expelled to the surroundings. As a result, the fourth
The steel plate portion 14 between the electrode tips 10 and 12 as shown in the figure
a, 14a, , tea, and IC3a are directly short-circuited, so that the current flows along this main path W, and the original resistance welding is performed.

第5図は、」二連のような制振鋼板の抵抗溶接における
電流の変化を示す。期間TCは予設定の通電期間、期間
TAは電流が分流経路(L)を流れる期間、期間TBは
電流が主経路(W)を流れる期間である。期間TAの電
流は、分流経路(L)の抵抗が大きいため、期間TBの
電流よりも小さい。また、第3図および第4図からも理
解されるように、ナゲツト形成(金属接合)に寄与する
のは期間TBの電流であり、期間TAの電流はほとんど
寄与しない。
FIG. 5 shows the change in current during resistance welding of damping steel plates such as "double series". Period TC is a preset energization period, period TA is a period during which current flows through the branch path (L), and period TB is a period during which current flows through the main path (W). The current in period TA is smaller than the current in period TB because the resistance of the shunt path (L) is large. Furthermore, as can be understood from FIGS. 3 and 4, it is the current during period TB that contributes to nugget formation (metallic bonding), and the current during period TA hardly contributes.

第6図は溶接点Piの分布例を示す。最初の溶接点Pa
では、−1−述のように短絡導線18が短絡導体部を与
えるが、2黒目PI以降の溶接では、隣接する既溶接点
が短絡導体部を与える。
FIG. 6 shows an example of the distribution of welding points Pi. First welding point Pa
In this case, the short-circuit conductor 18 provides a short-circuit conductor portion as described in -1-, but in welding after the second black eye PI, adjacent already welded points provide a short-circuit conductor portion.

(発明が解決しようとする問題点) ところで、従来の制振鋼板の抵抗溶接では、普通鋼板の
場合と同様にタイマ制御により予設定の 4一 時間Tcだけ電流を流しているが、安定した溶接品質か
得られなかった。すなわち、制振鋼板の場合には、適正
溶接条件を見出すための条件因子の種類、およびその影
響には不明な点が多(、特に問題となるのは分流通電で
、各溶接点Piにつき分流経路の距離(Di)が変動し
、さらには樹脂層の軟化、圧潰時間にバラツキがあるた
め、分流通電期間TAを正確に予測することが不可能で
ありしたがって主通電にもバラツキを来し、不安定な溶
接結果を招いている。
(Problem to be solved by the invention) By the way, in conventional resistance welding of damping steel plates, current is applied for a preset time Tc by timer control as in the case of ordinary steel plates, but stable welding cannot be achieved. I couldn't get the quality. In other words, in the case of damping steel plates, there are many unknown points regarding the types of condition factors used to find the appropriate welding conditions and their effects (particularly problematic is the distribution of current, and the Because the distance (Di) of the diversion path varies, and furthermore, the softening and crushing time of the resin layer varies, it is impossible to accurately predict the diversion energization period TA, and therefore the main energization also varies. This results in unstable welding results.

本発明は、上述の問題点に鑑みてなされたもので、制振
鋼板の抵抗溶接において普通鋼板と同等な安定した溶接
品質を可能とする方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method that enables stable welding quality equivalent to that of ordinary steel plates in resistance welding of damping steel plates.

本発明の別の目的は、上記方法を実施するのに好適な装
置を提供することにある。
Another object of the invention is to provide a device suitable for carrying out the above method.

(問題点を解決するための手段) 上記最初の目的を達成する本発明の方法は、被溶接材の
少なくとも一方が鋼板間に絶縁物を介在した制振鋼板で
ある抵抗溶接において、一対の電極チップに隣接する短
絡導体部を通して一対の電極チップ間に第1の電流を流
すステップと;第1の溶接電流に関連した所定の物理量
を監視し、該物理量が予設定値に達したタイミングを検
出するステップと;その検出されたタイミングに基づい
て予設定の溶接条件に切り替え所定の第2の電流を一対
の電極チップ間に流すステップとを含むことを特徴とす
る。
(Means for Solving the Problems) The method of the present invention for achieving the above-mentioned first object uses a pair of electrodes in resistance welding where at least one of the materials to be welded is a damping steel plate with an insulator interposed between the steel plates. passing a first current between the pair of electrode tips through a short-circuited conductor portion adjacent to the tips; monitoring a predetermined physical quantity related to the first welding current, and detecting the timing when the physical quantity reaches a preset value; and a step of switching to preset welding conditions based on the detected timing and flowing a predetermined second current between the pair of electrode tips.

また、上記別の目的を達成する本発明の構成は少なくと
も一方が鋼板間に絶縁物を介在させた制振鋼板である2
つの被溶接材の両側に一対の電極チップを接触させてそ
れら電極チップ間に加圧力を加えながら電流を流して抵
抗溶接を行う装置において、被溶接材の接合面と対抗す
る外側面の間に接続されて選択的に短絡導体部を与える
短絡導線と;該電流に関連した所定の物理量を計測して
そのレベルを表す計測値信号を発生する電流計測手段と
;該電流の予設定値を与える手段と;電極チップに隣接
する短絡導体部を通して電極チップ間に第1の電流を流
す第1の通電モード中に計測値信号と予設定値とを比較
し、前者か後者より高くなったときに切替指示信号を発
生する比較手段と;切替指示信号に応答して強制的に第
1通電モードを停止させ、予設定の溶接条件による第2
の通電モードに切り替えるシーケンス制御手段とを具備
することを特徴とする。
Moreover, the structure of the present invention to achieve the above-mentioned other object is that at least one of the steel plates is a vibration damping steel plate with an insulator interposed between the steel plates.
In a device that performs resistance welding by placing a pair of electrode tips in contact with both sides of two materials to be welded and applying pressure between the electrode tips while passing a current, there is a a shorting conductor connected to selectively provide a shorting conductor portion; current measuring means for measuring a predetermined physical quantity related to the current and generating a measured value signal representative of its level; providing a preset value of the current; means; comparing the measured value signal with a preset value during a first energization mode in which a first current is passed between the electrode tips through a short-circuited conductor portion adjacent to the electrode tips; and when the measured value signal is higher than the latter; a comparison means for generating a switching instruction signal; forcibly stopping the first energization mode in response to the switching instruction signal;
The present invention is characterized by comprising a sequence control means for switching to the energization mode.

(作用) 短絡導体を通して第1の電流が流れると、その分流経路
の鋼板部でジュール熱が発生し、絶縁物はその熱で軟化
し、さらに加圧力によって圧潰し周囲に除去される。そ
うすると、電極チップ間の鋼板部が直接短絡し、電流が
急激に増大する。
(Function) When the first current flows through the short-circuited conductor, Joule heat is generated in the steel plate portion of the shunt path, the insulator is softened by the heat, and further crushed by the pressing force and removed to the surrounding area. In this case, the steel plate portion between the electrode tips is directly short-circuited, and the current increases rapidly.

本発明によれば、そのように電流が急激に変化するタイ
ミングが検出されて予設定の溶接条件に切り替えられる
ので、種々の要因により分流通電期間にバラツキがあっ
ても、主通電(第2の電流)は設定通りに行われるため
、均一で安定した溶接結果が得られる。
According to the present invention, the timing at which the current suddenly changes is detected and the welding conditions are switched to the preset welding conditions. Since the welding current (current) is carried out according to the settings, uniform and stable welding results can be obtained.

また、本発明による装置では、上記タイミングが検出さ
れると、第1の通電モード(分流通電)が強制的に停止
されて、第2の通電モード(主通電)に切り替えられる
ので、第1の通電期間が変動しても第2通電モードには
影響しない。
Furthermore, in the device according to the present invention, when the above-mentioned timing is detected, the first energization mode (separate energization) is forcibly stopped and switched to the second energization mode (main energization). Even if the energization period changes, the second energization mode is not affected.

(実施例) 以下、第1図および第2図を参照して本発明の一実施例
を説明する。この実施例において、電極チップ10,1
2、被溶接材14.18および短絡導線18は第3図お
よび第4図に示されるものに相当する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, the electrode tip 10,1
2. The materials to be welded 14, 18 and the shorting conductor 18 correspond to those shown in FIGS. 3 and 4.

入力端子20.22間には交流電圧Eoが印加され、こ
の交流電圧EOはサイリスタ24.26からなるコンタ
クタを介して溶接トランス28に供給され、溶接トラン
ス28の二次側コイルから溶接電流iが電極チップ10
.12に供給されるようになっている。さらに、交流電
圧Eoは同期信号発生回路30にも与えられ、同期信号
発生回路30は交流電圧Eoのゼロクロス点を検出する
ことによって電源周波数またはその2倍の周波数の同期
信号SY1.SY2をそれぞれ電圧−位相変換部32.
サイクルカウンタ38に供給する。
An alternating current voltage Eo is applied between the input terminals 20 and 22, and this alternating voltage EO is supplied to the welding transformer 28 via a contactor consisting of a thyristor 24 and 26, and a welding current i is applied from the secondary coil of the welding transformer 28. Electrode tip 10
.. 12. Furthermore, the AC voltage Eo is also applied to a synchronization signal generation circuit 30, and the synchronization signal generation circuit 30 detects the zero-crossing point of the AC voltage Eo to generate a synchronization signal SY1. SY2 are respectively connected to voltage-phase converters 32.
A cycle counter 38 is supplied.

電圧一位相変換部32は、後述する実効値演算部42か
らの電流値表示電圧MVと基準電圧発生部44からの設
定基準電圧Svとの誤差電圧が零になるようにサイリス
タ24.26の点弧角を制御するもので、例えば誤差電
圧に応じて変化する比較基準電圧と一定の調波電圧とが
交差するタイミングで点弧角を制御するようなアナログ
式の回路構成、あるいは誤差電圧に対応した点弧角をメ
モリから得るようなマイクロコンピュータ機能でであっ
てもよい。
The voltage one-phase conversion section 32 adjusts the points of the thyristors 24 and 26 so that the error voltage between the current value display voltage MV from the effective value calculation section 42 and the set reference voltage Sv from the reference voltage generation section 44, which will be described later, becomes zero. It controls the firing angle, for example, an analog circuit configuration that controls the firing angle at the timing when a comparison reference voltage that changes according to the error voltage intersects with a fixed harmonic voltage, or corresponds to the error voltage. A microcomputer function may be used to obtain the firing angle from memory.

サイクルカウンタ38は、同期信号SY2をカウントす
ることによって時間情報をシーケンス制御部50に与え
る。シーケンス制御部50は、各溶接ステップが設定時
間通りに順次実行されるようサイクルカウンタ38から
の時間情報に基づいて各部に制御信号GSjを送るもの
であるが、本実施例によれば、後述する比較部48から
の切替指示信号QSを受けると、強制的に第1の通電モ
ード(分流通電)を終了させて、第2の通電モード(主
通電)に切り替えるようになっている。この第2の通電
モードにおける溶接条件(溶接電流1通電時間、加圧力
等)は、制振鋼板14.IF5と等価な板厚の光通鋼板
に対する適正な溶接条イ/1と略同じものに選ばれてい
る。
The cycle counter 38 provides time information to the sequence control unit 50 by counting the synchronization signal SY2. The sequence control section 50 sends a control signal GSj to each section based on the time information from the cycle counter 38 so that each welding step is executed sequentially according to the set time, but according to this embodiment, the control signal GSj is as described below. When receiving the switching instruction signal QS from the comparator 48, the first energization mode (separate energization) is forcibly terminated and switched to the second energization mode (main energization). The welding conditions in this second energization mode (one welding current energization time, pressing force, etc.) are the vibration damping steel plate 14. It is selected to be approximately the same as the appropriate welding strip I/1 for a translucent steel plate with a thickness equivalent to IF5.

トロイダルコイル36は、溶接トランス28の二次側回
路に取り付けられ、溶接電流iが流れるたときその微分
波形に相当する電流検出信号Diを発生する。この電流
検出信号Diは積分回路からなる波形復元回路40によ
り溶接電流iに対応する波形の電圧信号Fvに変換され
る。そして、実効値演算部42は、その電圧信号Fvに
基づいて溶接電流iの実効値を1サイクルまたは1/2
ザイクル毎に計測し、その実効値を表す電圧信号MVを
逐次電圧−位相変換部32と比較部48とに与える。
The toroidal coil 36 is attached to the secondary circuit of the welding transformer 28, and generates a current detection signal Di corresponding to the differential waveform of the welding current i when it flows. This current detection signal Di is converted into a voltage signal Fv having a waveform corresponding to the welding current i by a waveform restoration circuit 40 consisting of an integrating circuit. Then, the effective value calculation unit 42 calculates the effective value of the welding current i for one cycle or 1/2 based on the voltage signal Fv.
The measurement is performed for each cycle, and a voltage signal MV representing the effective value thereof is sequentially provided to the voltage-phase converter 32 and the comparator 48.

一方、基準電圧発生部44は、ディジタルスイッチ等か
らなる設定スイッチ46によって設定された基準電流レ
ベルISに対応した基準電圧Svを発生し、この基準電
圧S■は電圧−位相変換部32と比較部48とに与えら
れる。基準電流レベルISは、分流通電から主通電に移
行する際に溶接電流iが急激に上昇するタイミングを検
出するためのもので、主通電の電流レベルイ附近の値に
設定される。
On the other hand, the reference voltage generation section 44 generates a reference voltage Sv corresponding to the reference current level IS set by a setting switch 46 consisting of a digital switch etc., and this reference voltage S■ is generated by the voltage-phase conversion section 32 and the comparison section. 48. The reference current level IS is used to detect the timing at which the welding current i suddenly increases when shifting from the branch current to the main current, and is set to a value close to the current level I of the main current.

比較部48は、電流表示電圧信号SVと基準電圧SVと
をレベル比較し、前者が後者を超えたときに“1”の出
力信号を切替指示信号QSとして発生する。上述したよ
うに、この切替指示信号QSか発生されると、シーケン
ス制御部5oは強制的に第1通電モードから第2通電モ
ードに移行させる。
The comparison unit 48 compares the levels of the current display voltage signal SV and the reference voltage SV, and generates an output signal of "1" as the switching instruction signal QS when the former exceeds the latter. As described above, when this switching instruction signal QS is generated, the sequence control unit 5o forcibly shifts from the first energization mode to the second energization mode.

次に、第2図のタイミング図につき本実施例の動作を説
明する。
Next, the operation of this embodiment will be explained with reference to the timing diagram of FIG.

先ず、時点toでシーケンス制御部5oから加圧手段(
図示せず)に加圧・ON信号GS3が送られ、これによ
って電極チップ10.12間に所定の加圧力が印加され
る(第2図g)。
First, at time to, the sequence control unit 5o starts pressurizing means (
A pressurization/ON signal GS3 is sent to the terminal (not shown), thereby applying a predetermined pressurizing force between the electrode tips 10 and 12 (FIG. 2g).

そして、スフイス時間THが経過すると、時点tlてシ
ーケンス制御部50から点弧パルス発生回路34に通電
・ON信号GSIが送られ、これによってサイリスタ2
4.26にゲートドライブ信号Ga、Gbがそれぞれ供
給され、第1通電モードがスタートする(第2図b)。
Then, when the second time TH has elapsed, an energization/ON signal GSI is sent from the sequence control section 50 to the ignition pulse generation circuit 34 at time tl, thereby causing the thyristor 2
At 4.26, gate drive signals Ga and Gb are supplied, respectively, and the first energization mode starts (FIG. 2b).

シーケンス制御部50は、比較部48からの切替指示信
号QSを受は取るまでは設定時間TKたけ第1通電モー
ドを継続するように動作する。
The sequence control section 50 operates to continue the first energization mode for a set time TK until it receives the switching instruction signal QS from the comparison section 48.

この第1通電モードでは、第3図に示すように比較的長
い距離で大きな抵抗の分流経路(L)を小さな溶接電流
iが流れる(第2図e)。したがって、溶接電流iの実
効値を表す実効値演算部42からの電圧MVは基準電圧
発生部44がらの基準電圧SVよりも低く(第2図g)
、比較部48の出力電圧は“0″である。
In this first energization mode, as shown in FIG. 3, a small welding current i flows through a branch path (L) of large resistance over a relatively long distance (FIG. 2e). Therefore, the voltage MV from the effective value calculation section 42 representing the effective value of the welding current i is lower than the reference voltage SV from the reference voltage generation section 44 (Fig. 2g).
, the output voltage of the comparator 48 is "0".

しかし、電流チップ10.12に接する側(外側)の鋼
板14 a、  16aで発生するジュール熱と電極加
圧力によって有機樹脂14b、IEtbが圧潰して周囲
に排除されると、第4図に示すように電極チップ10.
12間で鋼板部分14a、14a、16a+  16a
が直接短絡し、それによって電流iは急激に増大しく第
2図e)、その実効値も急上昇する。
However, when the organic resins 14b and IEtb are crushed by the Joule heat generated in the steel plates 14a and 16a on the side (outside) in contact with the current chips 10 and 12 and the electrode pressurizing force and are removed to the surroundings, as shown in FIG. Electrode tip 10.
Steel plate parts 14a, 14a, 16a+16a between 12
is directly short-circuited, and as a result, the current i increases rapidly (Fig. 2e), and its effective value also increases rapidly.

その結果、電流値表示電圧M Vは基準電圧S■を超え
、比較部48から切替指示信号QSが発生される。これ
により、時点t2てシーケンス制御部50は点弧パルス
発生回路34への通電・ON信号GSIを断ち第1通電
モードを強制的に停止させる(第2図す、e)。そして
、シーケンス制御部48は、所定の冷却期間TRを置い
たのち時点t3で再び点弧パルス発生回路34へ通電・
ON信号GSIを与え、第2の通電モードをスタートさ
せる(第2図d、f)。
As a result, the current value display voltage MV exceeds the reference voltage S■, and the comparison section 48 generates the switching instruction signal QS. As a result, at time t2, the sequence control unit 50 cuts off the energization/ON signal GSI to the ignition pulse generation circuit 34 and forcibly stops the first energization mode (FIG. 2, e). Then, after a predetermined cooling period TR, the sequence control unit 48 energizes the ignition pulse generation circuit 34 again at time t3.
The ON signal GSI is applied to start the second energization mode (Fig. 2 d, f).

この第2の通電モードにおける溶接条件(溶接電流5通
電時間、加圧力等)は、上述のように制振鋼板14.1
6と等価な板厚の普通鋼板に対する適正な溶接条件と略
同じものに選ばれている。
The welding conditions in this second energization mode (welding current 5 energization time, pressing force, etc.) are as described above for the damping steel plate 14.1.
The welding conditions were selected to be approximately the same as the appropriate welding conditions for a normal steel plate with a thickness equivalent to 6.

本実施例では、電圧−位相変換部32によって定電流制
御が行われ、溶接電流iは設定値IDに維持されるよう
にサイリスタ点弧角が制御される。
In this embodiment, constant current control is performed by the voltage-phase converter 32, and the thyristor firing angle is controlled so that the welding current i is maintained at the set value ID.

そして、予設定の通電時間Tbが経過した時点t4でシ
ーケンス制御部50は点弧パルス発生回路34への通電
・ON信号GSIを断ち第2通電モードを停止させる(
第2図d、f)。なお、第2図(a)では加圧力が一定
なものとして示されているが、第2通電モードでは必要
に応じて設定値に変更される。また、冷却(第2図C)
も必要に応じて省かれることもある。
Then, at time t4 when the preset energization time Tb has elapsed, the sequence control unit 50 cuts off the energization/ON signal GSI to the ignition pulse generation circuit 34 and stops the second energization mode (
Figure 2 d, f). Although the pressing force is shown as being constant in FIG. 2(a), it is changed to a set value as necessary in the second energization mode. Also, cooling (Fig. 2C)
may also be omitted if necessary.

上述のように、本実施例では、第1通電モード(分流通
電)において溶接電流iか計測されて基準レベルと比較
され、その溶接電流iが急激に増大して基準レベルを超
えたときのタイミングが検出され、第1通電モードは強
制的に停止される。
As described above, in this embodiment, the welding current i is measured in the first energization mode (divided energization) and compared with the reference level, and when the welding current i suddenly increases and exceeds the reference level, The timing is detected and the first energization mode is forcibly stopped.

そして、第2通電モードでは、設定通りの溶接条件の下
で普通鋼板と同等な抵抗溶接が行われる。
In the second energization mode, resistance welding equivalent to that of ordinary steel sheets is performed under the set welding conditions.

したがって、第6図のような各溶接点PI毎の分流経路
の距離(D+)の変化(すなわち、分流経路の抵抗値の
変化)、さらには樹脂層14b、16bの軟化、圧潰時
間のバラツキ等により分流通電期間子Aが変動しても、
主通電は常に予設定の溶接条件通りに行われ、安定した
所期の溶接結果が得られることとなる。
Therefore, changes in the distance (D+) of the diversion path for each welding point PI as shown in FIG. 6 (that is, changes in the resistance value of the diversion path), softening of the resin layers 14b and 16b, variations in crushing time, etc. Even if the distribution current period A changes due to
Main energization is always carried out according to preset welding conditions, and a stable and desired welding result can be obtained.

なお、本実施例では、被溶接材14.16がいずれも制
振鋼板であったが、一方が普通鋼板その他の金属材でも
適用可能である。また、本実施例は電流iを監視してそ
のレベルが急激に変化するタイミングを検出するもので
あったか、電極チップ10.12間の電圧レベルまたは
抵抗値を監視するようにしてもよく、その場合には分流
通電から主通電に移行する際に電圧レベル(または抵抗
値)は急激に低下するので設定レベルを割ったときのタ
イミングが検出されて第2通電モードに切り替えられる
。また、電圧−位相変換部32だけでなく、点弧パルス
発生回路34.波形復元回路40、実効値演算部42.
基準電圧発生部44゜比較部48.およびシーケンス制
御部50等もマイクロコンピュータ機能で構成すること
も可能である。また、トロイダルコイル36を溶接トラ
ンス28の一次側回路に取り付けて間接的に電流iを計
測することも可能である。
In this embodiment, the materials to be welded 14 and 16 are both damping steel plates, but one of them may be a normal steel plate or other metal material. Furthermore, in this embodiment, the current i is monitored to detect the timing at which the level changes suddenly, or the voltage level or resistance value between the electrode tips 10 and 12 may be monitored. Since the voltage level (or resistance value) rapidly decreases when switching from branch energization to main energization, the timing when the voltage level falls below the set level is detected and the mode is switched to the second energization mode. In addition to the voltage-phase conversion section 32, the ignition pulse generation circuit 34. Waveform restoration circuit 40, effective value calculation section 42.
Reference voltage generation section 44° comparison section 48. It is also possible to configure the sequence control section 50 and the like with microcomputer functions. It is also possible to indirectly measure the current i by attaching the toroidal coil 36 to the primary circuit of the welding transformer 28.

(発明の効果) 以上のように、本発明によれば、分流通電から主通電に
移行するタイミングが適格に検出されて予設定の溶接条
件による主通電に切り替えられるので、溶接点の位置や
絶縁物の軟化・圧潰特性等の要因によって分流通電にバ
ラツキがあっても、安定した抵抗溶接が行われ、普通鋼
板の場合と同等に一定の溶接品質を得ることができる。
(Effects of the Invention) As described above, according to the present invention, the timing of transition from branch energization to main energization is properly detected and the switch is made to main energization according to preset welding conditions. Even if there are variations in the distribution current due to factors such as the softening and crushing characteristics of the insulator, stable resistance welding can be performed and a constant welding quality equivalent to that of ordinary steel plates can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による溶接抵抗装置の構成
を示すブロック図、 第2図は、上記溶接抵抗装置の動作を説明するためのタ
イミング図、 第3図および第4図は、分流予熱法による制振鋼板の抵
抗溶接を示すための断面斜視図、第5図は、制振鋼板の
抵抗溶接で流れる電流の変化を概略的に示す信号波形図
、および第6図は、制振鋼板の抵抗溶接における溶接点
の配置例を示す平面図である。 10.12・・・・電極チップ、  14.IF5・・
・・被溶接材、  18・・・・短絡導線、 24.2
6・・・・サイリスタ、 28・・・・溶接トランス、
 30・・・・同期信号発生回路、 32・・・・電圧
−位相変換部、 34・・・・点弧パルス発生部、 3
6 (36’ )・・・・トロイダルコイル、  38
・・・・サイクルカウンタ、  40・・・・波形復元
回路、 42・・・・実効値算出部、 44・・・・基
準電圧発生部、 46・・・・設定スイッチ、48・・
・・比較部、 50・・・・シーケンス制御部。 特許出願人 宮 地 電 子 株 式 会 社代理人 
弁理士 佐々木 を 孝 第3図 第乍図 第5図 c 第6図 1午(11)) 手続補正書(自発) 昭和61年4月9日 1、事件の表示 昭和61年特許願第32258号 2、発明の名称 制振鋼板の抵抗溶接方法及び装置 3、補正をする者 事件との関係 特許出願人 住所     千葉県野田市ニッ塚95番地の3氏名(
名称)宮地電子株式会社 代表者西澤敬次 4、代理人 住所〒101東京都千代田区神田駿河台2−11−16
駿河台さいかち坂ビル302号 に補正する。 (2)明細書第12頁5行のrsVJをrMVJに補正
する。 (3)明細書第14頁8行の「48」を「50」に補正
する。 (4)明細書第14頁17行のrIDJをrls Jに
補正する。 (5)図面を別紙の通り浄書する(内容に変更なし)。 −以上一 第3図 第4図 特開昭62−19227G (11) 第5図 第6図 +4(IG)
FIG. 1 is a block diagram showing the configuration of a welding resistance device according to an embodiment of the present invention, FIG. 2 is a timing diagram for explaining the operation of the welding resistance device, and FIGS. 3 and 4 are: FIG. 5 is a cross-sectional perspective view showing resistance welding of vibration damping steel plates by the shunt preheating method, and FIG. It is a top view which shows the example of arrangement|positioning of the welding point in resistance welding of a shaken steel plate. 10.12... Electrode tip, 14. IF5...
... Material to be welded, 18 ... Short circuit conductor, 24.2
6... Thyristor, 28... Welding transformer,
30... Synchronization signal generation circuit, 32... Voltage-phase conversion section, 34... Firing pulse generation section, 3
6 (36')...Toroidal coil, 38
... Cycle counter, 40 ... Waveform restoration circuit, 42 ... Effective value calculation section, 44 ... Reference voltage generation section, 46 ... Setting switch, 48 ...
... Comparison section, 50... Sequence control section. Patent applicant Miyaji Denshi Co., Ltd. Company agent
Patent Attorney Takashi Sasaki (Figure 3, Figure 5, Figure 6, Figure 5, c, Figure 6, 1 (11)) Procedural Amendment (Spontaneous) April 9, 1985 1, Case Description 1985 Patent Application No. 32258 2. Name of the invention Method and device for resistance welding of damping steel plates 3. Relationship with the case of the person making the amendment Patent applicant address: 3 names, 95 Nitzuka, Noda City, Chiba Prefecture (
Name) Miyaji Electronics Co., Ltd. Representative Keiji Nishizawa 4, Agent address 2-11-16 Kanda Surugadai, Chiyoda-ku, Tokyo 101
Corrected to Surugadai Saikachizaka Building No. 302. (2) Correct rsVJ on page 12, line 5 of the specification to rMVJ. (3) "48" on page 14, line 8 of the specification is corrected to "50". (4) Correct rIDJ on page 14, line 17 of the specification to rls J. (5) Print the drawing as shown on the attached sheet (no changes to the content). - Above Figure 3 Figure 4 JP-A-62-19227G (11) Figure 5 Figure 6 +4 (IG)

Claims (5)

【特許請求の範囲】[Claims] (1)被溶接材の少なくとも一方が鋼板間に絶縁物を介
在させた制振鋼板である抵抗溶接において、一対の電極
チップに隣接する短絡導体部を通して前記一対の電極チ
ップ間に第1の電流を流すステップと、 前記第1の電流に関連した所定の物理量を監視し、前記
物理量が予設定値に達したタイミングを検出するステッ
プと、 前記検出されたタイミングに基づいて予設定の溶接条件
に切り替え所定の第2の電流を前記一対の電極チップ間
に流すステップと、 を含む制振鋼板の抵抗溶接方法。
(1) In resistance welding where at least one of the materials to be welded is a damping steel plate with an insulator interposed between the steel plates, a first current is applied between the pair of electrode tips through a short-circuit conductor portion adjacent to the pair of electrode tips. monitoring a predetermined physical quantity related to the first current and detecting the timing when the physical quantity reaches a preset value; and adjusting the welding conditions to the preset welding condition based on the detected timing. A method for resistance welding vibration-damping steel plates, comprising: flowing a predetermined switching current between the pair of electrode tips.
(2)前記所定の物理量は前記第1の電流のレベルであ
る特許請求の範囲第1項に記載の抵抗溶接方法。
(2) The resistance welding method according to claim 1, wherein the predetermined physical quantity is the level of the first current.
(3)前記所定の物理量は前記一対の電極チップ間の電
圧レベルである特許請求の範囲第1項に記載の抵抗溶接
方法。
(3) The resistance welding method according to claim 1, wherein the predetermined physical quantity is a voltage level between the pair of electrode tips.
(4)前記所定の物理量は前記一対の電極チップ間の抵
抗値である特許請求の範囲第1項に記載の抵抗溶接方法
(4) The resistance welding method according to claim 1, wherein the predetermined physical quantity is a resistance value between the pair of electrode tips.
(5)少なくとも一方が鋼板間に絶縁物を介在させた制
振鋼板である2つの被溶接材の両側に一対の電極チップ
を接触させてそれら電極チップ間に加圧力を加えながら
電流を流して抵抗溶接を行う装置において、 前記被溶接材の接合面と対抗する外側面の間に接続され
て選択的に短絡導体部を与える短絡導線と、 前記電流に関連した所定の物理量を計測してそのレベル
を表す計測値信号を発生する電流計測手段と、 前記物理量の予設定値を与える手段と、 前記一対の電極チップに隣接する短絡導体部を通してそ
れら電極チップ間に第1の溶接電流を流す第1の通電モ
ード中に前記計測値信号と前記予設定値とを比較し、前
者が後者より高くなったときに切替指示信号を発生する
比較手段と、 前記切替指示信号に応答して強制的に前記第1の通電モ
ードを停止させ、予設定の溶接条件による第2の通電モ
ードに切り替えるシーケンス制御手段と、 を具備することを特徴とする制振鋼板の抵抗溶接装置。
(5) A pair of electrode tips are brought into contact with both sides of two materials to be welded, at least one of which is a damping steel plate with an insulator interposed between the steel plates, and a current is applied while applying pressure between the electrode tips. A device for performing resistance welding, comprising: a shorting conductor connected between a joint surface and an opposing outer surface of the welded material to selectively provide a shorting conductor; and a shorting conductor that measures a predetermined physical quantity related to the electric current and current measuring means for generating a measured value signal representing a level; means for providing a preset value of the physical quantity; Comparing means for comparing the measured value signal and the preset value during the energization mode of No. 1 and generating a switching instruction signal when the former becomes higher than the latter; A resistance welding apparatus for vibration-damping steel plates, comprising: sequence control means for stopping the first energization mode and switching to a second energization mode according to preset welding conditions.
JP3225686A 1986-02-17 1986-02-17 Method and device for resistance welding of damping steel plate Pending JPS62192276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225686A JPS62192276A (en) 1986-02-17 1986-02-17 Method and device for resistance welding of damping steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225686A JPS62192276A (en) 1986-02-17 1986-02-17 Method and device for resistance welding of damping steel plate

Publications (1)

Publication Number Publication Date
JPS62192276A true JPS62192276A (en) 1987-08-22

Family

ID=12353931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225686A Pending JPS62192276A (en) 1986-02-17 1986-02-17 Method and device for resistance welding of damping steel plate

Country Status (1)

Country Link
JP (1) JPS62192276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114568A (en) * 1992-10-07 1994-04-26 Honda Motor Co Ltd Welding current controller for dc resistance welding equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209490A (en) * 1982-05-31 1983-12-06 Dengensha Mfg Co Ltd Method and device for controlling spot welding
JPS6021185A (en) * 1983-07-18 1985-02-02 Nippon Kokan Kk <Nkk> Resistance spot welding method of laminated metallic plate having electrical insulating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209490A (en) * 1982-05-31 1983-12-06 Dengensha Mfg Co Ltd Method and device for controlling spot welding
JPS6021185A (en) * 1983-07-18 1985-02-02 Nippon Kokan Kk <Nkk> Resistance spot welding method of laminated metallic plate having electrical insulating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114568A (en) * 1992-10-07 1994-04-26 Honda Motor Co Ltd Welding current controller for dc resistance welding equipment

Similar Documents

Publication Publication Date Title
EP1219379A2 (en) Method and apparatus for controlling resistance welding
US3462577A (en) Welding method and apparatus
JPS58500315A (en) Power factor monitoring and control device for resistance welding
US5786558A (en) Method and apparatus for controlling inverter resistance welding
JP2000301352A (en) Resistance welding electric source apparatus
US6552293B2 (en) Metallic members joining method and reflow soldering method
US3585347A (en) Quality control in resistance welding
US4745255A (en) Method and apparatus for welding current regulation for a resistance welding machine
US5081338A (en) Apparatus and method for monitoring weld quality
US5021625A (en) Pre-resistance-welding resistance check
JPS62192276A (en) Method and device for resistance welding of damping steel plate
JP3037657B2 (en) Resistance spot welding quality control device
US4639569A (en) Weld resistance measuring apparatus for a spot welder
JPS62192277A (en) Method and device for resistance welding of damping steel plate
JPH1085947A (en) Method and device for controlling resistance welding
US3515842A (en) Bond testing apparatus
US2577163A (en) Resistance welding and resistance weld testing
SU870035A1 (en) Resistance welding method
JPH071156A (en) Method and welder for adjusting electric current in electric resistance welding
SU725842A1 (en) Welding pulse generator
JPS63264279A (en) Spot welding method for resin laminated metal plate
JPH01321078A (en) Pulse arc welding power source
JPH0755381B2 (en) Resistance welding control device and resistance welding monitoring device
JPH0716758A (en) Monitoring device of resistance welding
JPH05185242A (en) Cladding device by welding