JPH0716758A - Monitoring device of resistance welding - Google Patents

Monitoring device of resistance welding

Info

Publication number
JPH0716758A
JPH0716758A JP5192081A JP19208193A JPH0716758A JP H0716758 A JPH0716758 A JP H0716758A JP 5192081 A JP5192081 A JP 5192081A JP 19208193 A JP19208193 A JP 19208193A JP H0716758 A JPH0716758 A JP H0716758A
Authority
JP
Japan
Prior art keywords
resistance
welding
inter
value
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5192081A
Other languages
Japanese (ja)
Inventor
Sunao Sofue
直 祖父江
Yasuo Kotetsu
泰生 小鉄
Hiroaki Yoshihara
裕彰 葭原
Touichi Watanabe
統市 渡辺
Sakae Ishikawa
栄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Miyachi Technos Corp
Japan Science and Technology Agency
Original Assignee
Miyachi Technos Corp
Research Development Corp of Japan
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Technos Corp, Research Development Corp of Japan, Toyoda Automatic Loom Works Ltd filed Critical Miyachi Technos Corp
Priority to JP5192081A priority Critical patent/JPH0716758A/en
Publication of JPH0716758A publication Critical patent/JPH0716758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Resistance Welding (AREA)

Abstract

PURPOSE:To improve welding efficiency and welding quality in the resistance welding by resistance between electrodes increasing method. CONSTITUTION:CPU100 is provided function-wise with a timing control part 102, resistance value arithmetic part 104, resistance value memory part 106, DELTAr arithmetic part 108, setting value memory part 110, decision part 112 and output part 114. Based on the resistance between electrodes measured values r1, r2, r3 obtained by the resistance value arithmetic part 104 at every half cycle or one cycle, DELTAr (rMAX-rMIN) is operated by DELTAr arithmetic part 108, DELTAr from DELTAr arithmetic part 108 is compared to a base value DELTAR from the setting value memory part 110 by the decision part 112, making decision on a normal or defective of welding result. The decision obtained from the decision part 112 is delivered to a display part and other outside devices from the output part 114 as the prescribed signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被溶接材の間に電気抵
抗増大物質を介在させて行われる抵抗溶接を監視する装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for monitoring resistance welding performed by interposing an electric resistance increasing substance between materials to be welded.

【0002】[0002]

【従来の技術】本発明者等は、先に、接合されるべき亜
鉛めっき鋼鈑の間に電気抵抗増大物質を介在させて抵抗
溶接を行う方法を提案している。亜鉛めっき鋼鈑におい
ては、鋼鈑表面の亜鉛めっき層が比較的高い導電性を有
する比較的軟性の材質であるため、溶接時に加圧力が加
えられると鋼鈑同士のなじみが良く、また通電初期に亜
鉛が溶融し、合わせ面の電気抵抗が低く、十分な抵抗発
熱が得られないという問題がある。そこで、以前は、亜
鉛めっき鋼鈑に対しては、めっき層を有しない通常の裸
鋼鈑の場合よりも、溶接電流を25〜50%、通電時間
を50〜100%ほど大きな値に設定していたが、必然
的に電力消費量が増えるだけでなく、溶接電極が損耗し
やすくなり、頻繁に溶接電極のドレッシングないし交換
を行わなくてはならず、メンテナンスが大変であった。
2. Description of the Related Art The present inventors have previously proposed a method of resistance welding by interposing an electric resistance increasing substance between galvanized steel sheets to be joined. In galvanized steel sheet, the galvanized layer on the surface of the steel sheet is a relatively soft material with relatively high conductivity, so if the applied pressure is applied during welding, the steel sheets will become familiar with each other In addition, there is a problem that zinc melts, the electric resistance of the mating surfaces is low, and sufficient resistance heat generation cannot be obtained. Therefore, in the past, for galvanized steel sheet, the welding current was set to 25 to 50% and the energization time was set to 50 to 100% larger values than in the case of a normal bare steel sheet having no plating layer. However, not only the power consumption is inevitably increased, but also the welding electrode is easily worn, and the welding electrode must be frequently dressed or replaced, which makes maintenance difficult.

【0003】上記の抵抗溶接方法はこの問題を解決した
ものである。この方法によれば、亜鉛めっき鋼鈑の間に
抵抗増大物質が介在することにより、合わせ面の電気抵
抗が高くなって接合部位での抵抗発熱量が増大し、小電
流または短時間でナゲットが形成されるので、電力消費
量が少なく、溶接電極も損耗しにくくなり、また抵抗発
熱が接合部位に集中するために溶接に伴うへこみや変形
が少なくなり、さらには圧痕部における亜鉛層の損失が
少ないため防錆性能の低下が回避される。
The above resistance welding method solves this problem. According to this method, the resistance-increasing substance is present between the galvanized steel sheets, so that the electrical resistance of the mating surfaces increases and the resistance heat generation amount at the bonding site increases. Since it is formed, the power consumption is low, the welding electrode is less likely to wear, and the resistance heat is concentrated on the joining site, so that the dents and deformations associated with welding are reduced, and further, the loss of the zinc layer in the indented part is reduced. Since the amount is small, deterioration of rust prevention performance is avoided.

【0004】[0004]

【発明が解決しようとする課題】上記の電極間抵抗増大
方式によると、通常は2〜3サイクルの通電時間で適正
なナゲットが形成されるのであるが、鋼鈑の材質および
厚み、抵抗増大物質の板間介在状態、溶接加圧力、溶接
電流等の諸条件に依存するバラツキのために、必ずしも
設定通電時間で適正なナゲットが形成されるとは限らな
い。一般にこの種の抵抗溶接では定電流制御方式を用い
て溶接電流を一定に制御しているが、通電開始直後に溶
接電流が不安定に立ち上がると、2〜3サイクルの設定
通電時間ではナゲットが十分に成長せず、溶接不良にな
ることがある。
According to the above-mentioned method of increasing the resistance between electrodes, a proper nugget is usually formed in a current-flowing time of 2 to 3 cycles. Due to the variation depending on various conditions such as the inter-plate interposition state, welding pressure, welding current, etc., an appropriate nugget is not always formed in the set energization time. Generally, in this type of resistance welding, the constant current control method is used to control the welding current to a constant value. It may not grow well, resulting in poor welding.

【0005】本発明は、かかる問題点に鑑みてなされた
もので、被溶接材の間に抵抗増大物質を介在させて行わ
れる抵抗溶接におけるナゲットの成長具合ないし溶接結
果を監視し、溶接効率および溶接品質の信頼性を向上さ
せるようにした抵抗溶接監視装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and monitors the growth condition of the nugget or the welding result in resistance welding performed by interposing a resistance-increasing substance between the materials to be welded. An object of the present invention is to provide a resistance welding monitoring device that improves the reliability of welding quality.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の抵抗溶接監視装置は、接合されるべき被溶
接材の間に電気抵抗増大物質を介在させて行われる抵抗
溶接の溶接結果を監視する抵抗溶接監視装置において、
通電時間中に前記被溶接材を挟む溶接電極間の抵抗を所
定時間毎に測定する電極間抵抗測定手段と、前記電極間
抵抗測定手段より得られる抵抗測定値を基に通電開始直
後の所定の監視期間における前記溶接電極間抵抗の変化
を検出する電極間抵抗変化検出手段と、前記電極間抵抗
変化検出手段より得られる前記溶接電極間抵抗の変化の
特性に基づいて溶接結果の良否を判定する判定手段と、
前記判定手段より得られた判定結果を出力する判定出力
手段とを具備する構成とした。
In order to achieve the above object, the resistance welding monitoring apparatus of the present invention is a welding for resistance welding performed by interposing an electric resistance increasing substance between the materials to be welded. In the resistance welding monitoring device that monitors the results,
Inter-electrode resistance measuring means for measuring the resistance between the welding electrodes sandwiching the material to be welded during the energizing time at predetermined intervals, and a predetermined value immediately after the start of energization based on the resistance measurement value obtained from the inter-electrode resistance measuring means. Inter-electrode resistance change detection means for detecting a change in the welding inter-electrode resistance during the monitoring period, and determining the quality of the welding result based on the characteristics of the change in the welding inter-electrode resistance obtained by the inter-electrode resistance change detection means Determination means,
It is configured to include a determination output unit that outputs the determination result obtained from the determination unit.

【0007】[0007]

【作用】被溶接材の間に抵抗増大物質を介在させて行わ
れる抵抗溶接では、抵抗増大物質の作用によって通電開
始直後からナゲットが生成されるのが通常であり、ナゲ
ットの成長具合が通電開始直後の溶接電極間の抵抗値に
反映する。
[Function] In resistance welding in which a resistance-increasing substance is interposed between the materials to be welded, a nugget is usually generated immediately after the start of energization due to the action of the resistance-increasing substance. It is reflected in the resistance value between the welding electrodes immediately after.

【0008】本発明では、電極間抵抗値測定手段より所
定時間毎に得られる電極間抵抗測定値を基に、電極間抵
抗変化検出手段で通電開始直後の所定の監視期間におけ
る溶接電極間抵抗の変化が検出され、判定手段でその溶
接電極間抵抗の変化の特性からナゲットの成長具合が認
識され、溶接結果の良・不良が判定される。この判定結
果は判定出力手段によって出力され、たとえば表示装置
で表示される。
According to the present invention, based on the inter-electrode resistance measurement value obtained by the inter-electrode resistance value measuring means at predetermined intervals, the inter-electrode resistance change detecting means detects the welding inter-electrode resistance in a predetermined monitoring period immediately after the start of energization. The change is detected, the judging means recognizes the growth condition of the nugget from the characteristic of the change in the resistance between the welding electrodes, and judges whether the welding result is good or bad. The result of this determination is output by the determination output means and displayed on, for example, a display device.

【0009】[0009]

【実施例】以下、添付図を参照して本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、本発明の一実施例による抵抗溶接
監視装置の回路構成を示す。図2は図1の各部の信号波
形を示す。
FIG. 1 shows a circuit configuration of a resistance welding monitoring apparatus according to an embodiment of the present invention. FIG. 2 shows the signal waveform of each part of FIG.

【0011】まず、抵抗溶接機において、通電時間中、
入力端子10,12に入力された商用周波数の交流電源
電圧E(図2の(A) )が、一対のサイリスタ14,16
からなるコンタクタを介して溶接トランス18の一次コ
イルに供給される。溶接トランス18の二次コイルに発
生した交流の誘導起電力(二次電圧)は二次導体および
一対の溶接電極20,22を介して被溶接材24,26
に印加され、二次回路に溶接電流i(図2の(B) )が流
れる。この溶接電流iは、抵抗溶接制御装置28により
一対のサイリスタ14,16の点弧タイミングを調整す
ることによって制御されている。
First, in the resistance welding machine, during energization,
The commercial frequency AC power supply voltage E ((A) in FIG. 2) input to the input terminals 10 and 12 is applied to the pair of thyristors 14 and 16.
Is supplied to the primary coil of the welding transformer 18 via a contactor composed of. The AC induced electromotive force (secondary voltage) generated in the secondary coil of the welding transformer 18 is passed through the secondary conductor and the pair of welding electrodes 20 and 22 to be welded materials 24 and 26.
And a welding current i ((B) in FIG. 2) flows through the secondary circuit. The welding current i is controlled by adjusting the firing timing of the pair of thyristors 14 and 16 by the resistance welding control device 28.

【0012】被溶接材24,26はそれぞれ亜鉛めっき
鋼鈑であり、それらの合わせ面には予めたとえばセラミ
ックス粉末からなる抵抗増大物質30が散布、塗布ある
いは貼付されている。溶接時に加圧装置(図示せず)に
よって被溶接材24,26が互いに押し付けられると、
抵抗増大物質30が両被溶接材24,26の合わせ面の
密着またはなじみを妨げ、電極間抵抗を増大させる。そ
こに溶接電流iが流れると、接合部位で集中的・効率的
に抵抗発熱が発生し、小電流または短時間でナゲットが
形成される。
The materials 24 and 26 to be welded are galvanized steel sheets, respectively, and the resistance increasing substance 30 made of, for example, ceramic powder is previously sprayed, applied or attached to their mating surfaces. When the materials to be welded 24 and 26 are pressed against each other by a pressure device (not shown) during welding,
The resistance-increasing substance 30 prevents the mating surfaces of the materials to be welded 24 and 26 from adhering to each other or getting familiar with them, thereby increasing the resistance between electrodes. When the welding current i flows there, resistance heat is generated intensively and efficiently at the joint, and a small current or a nugget is formed in a short time.

【0013】このような抵抗溶接機に用いられる本実施
例の抵抗溶接監視装置は、溶接電流iを検出するために
トロイダルコイル32を溶接機の二次回路に取り付け
る。トロイダルコイル32より溶接電流iの微分波形を
表す信号diが出力される。このトロイダルコイル出力
信号diは積分回路からなる波形復元回路34に入力さ
れ、波形復元回路34の出力端子より溶接電流iの波形
または瞬時値を表す溶接電流検出信号qi(図2の(B)
)が得られる。この溶接電流検出信号qiに基づいて
ゼロ電流検出回路36よりCPU100とタイミング制
御回路38とにタイミング信号Tz (図2の(D) )が与
えられる。
In the resistance welding monitoring apparatus of this embodiment used in such a resistance welding machine, the toroidal coil 32 is attached to the secondary circuit of the welding machine in order to detect the welding current i. The toroidal coil 32 outputs a signal di representing a differential waveform of the welding current i. The toroidal coil output signal di is input to the waveform restoring circuit 34 including an integrating circuit, and the welding current detection signal qi ((B) in FIG. 2) representing the waveform or the instantaneous value of the welding current i is output from the output terminal of the waveform restoring circuit 34.
) Is obtained. Based on the welding current detection signal qi, the zero current detection circuit 36 gives the timing signal Tz ((D) in FIG. 2) to the CPU 100 and the timing control circuit 38.

【0014】ゼロ電流検出回路36は、電流が流れると
サイリスタ電圧が下がり、電流が止まるとサイリスタ電
圧が上がるという現象に基づいて、サイリスタ電圧の変
化から各半サイクル毎の溶接電流の導通開始時点および
終了時点を検出する。ゼロ電流検出回路36からのタイ
ミング信号Tz に応動してタイミング制御回路38よ
り、後述する通電時間制御部に対してサンプリングホー
ルド用のタイミング信号TSH(図2の(G) )および積分
リセット用のタイミング信号TR (図2の(H) )が発生
される。
The zero current detection circuit 36 is based on the phenomenon that when the current flows, the thyristor voltage drops, and when the current stops, the thyristor voltage rises. Detect the end point. In response to the timing signal Tz from the zero current detection circuit 36, the timing control circuit 38 causes a timing signal TSH for sampling and holding ((G) in FIG. 2) and a timing for integration reset to The signal TR ((H) in FIG. 2) is generated.

【0015】また、波形復元回路34より得られた溶接
電流検出信号qiは、電流積分回路40にも入力され
る。電流積分回路40は、タイミング制御回路38から
のタイミング信号TR に応動して1サイクル毎に正極性
の溶接電流検出信号qiを時間積分し、その時間積分値
を表す電流積分値信号Siを出力する(図2の(E) )。
サンプルホールド回路44は、タイミング制御回路38
からのタイミング信号TSHに応動して各サイクル毎に正
極性の溶接電流iが止まった時の電流積分値信号Siの
値[Sin](n=1,2,…)をサンプリングしてホー
ルドする(図2の(E) )。この電流サンプリングホール
ド値[Sin ]は、A/D変換器46でディジタル信号
[DSin ]に変換されたうえでCPU100に入力さ
れる。
The welding current detection signal qi obtained from the waveform restoration circuit 34 is also input to the current integration circuit 40. The current integration circuit 40 responds to the timing signal TR from the timing control circuit 38 to time-integrate the positive welding current detection signal qi for each cycle, and outputs a current integration value signal Si representing the time integration value. ((E) in Figure 2).
The sample hold circuit 44 includes a timing control circuit 38.
The value [Sin] (n = 1, 2, ...) Of the current integration value signal Si when the positive welding current i stops in each cycle in response to the timing signal TSH from (E) in Fig. 2). The current sampling hold value [Sin] is converted into a digital signal [DSin] by the A / D converter 46 and then input to the CPU 100.

【0016】溶接電極20,22は電圧検出線45,4
7を介して電圧積分回路46の入力端子に接続されてい
る。これにより、通電中は、溶接電極20,22間の電
圧v(図2の(C) )が電圧積分回路46に入力される。
電圧積分回路46は、タイミング制御回路38からのタ
イミング信号TR に応動して、1サイクル毎に正極性の
溶接電流検出信号qiが流れている時間にわたって溶接
電極間電圧vを時間積分し、その時間積分値を表す電圧
積分値信号Svを出力する(図2の(F) )。サンプルホ
ールド回路48は、タイミング制御回路38からのタイ
ミング信号TSHに応動して、各サイクル毎に正極性の溶
接電流iが止まった時の電流積分値信号Svの値[Sv
n ](n=1,2,…)をサンプリングし、かつホール
ドする(図2の(F) )。この電圧サンプリングホールド
値[Svn ]は、A/D変換器50でディジタル信号
[DSvn ]に変換されてからCPU100に入力され
る。
The welding electrodes 20 and 22 are voltage detection lines 45 and 4, respectively.
It is connected to the input terminal of the voltage integration circuit 46 via 7. As a result, the voltage v ((C) in FIG. 2) between the welding electrodes 20 and 22 is input to the voltage integrating circuit 46 during energization.
The voltage integration circuit 46 responds to the timing signal TR from the timing control circuit 38 to time-integrate the welding electrode voltage v over the time during which the positive welding current detection signal qi is flowing for each cycle, and at that time. The voltage integrated value signal Sv representing the integrated value is output ((F) in FIG. 2). The sample hold circuit 48 responds to the timing signal TSH from the timing control circuit 38, and the value [Sv] of the current integral value signal Sv when the positive welding current i stops in each cycle.
n] (n = 1, 2, ...) Is sampled and held ((F) in FIG. 2). The voltage sampling hold value [Svn] is converted into a digital signal [DSvn] by the A / D converter 50 and then input to the CPU 100.

【0017】なお、各半波の通電サイクルの後半で電極
間電圧vの極性が反転するのは、抵抗溶接機のインダク
タンスによる誘導起電力である。この誘導起電力は両極
性でほぼ均等に発生している。したがって、逆極性の分
も積分されることによって、結果的には両極性で誘導成
分がキャンセルされ、電圧サンプリングホールド値[S
vn ]は正味の電極間電圧に対応した値となっている。
The polarity of the inter-electrode voltage v is reversed in the latter half of each half-wave energization cycle due to the induced electromotive force due to the inductance of the resistance welding machine. This induced electromotive force is almost evenly generated in both polarities. Therefore, by integrating the components of opposite polarities, as a result, the inductive component is canceled in both polarities, and the voltage sampling hold value [S
vn] is a value corresponding to the net voltage between the electrodes.

【0018】CPU100は、メモリ52に格納されて
いる制御プログラムにしたがって所要の演算および制御
を行うもので、機能的には図3に示すように、タイミン
グ制御部102、抵抗値演算部104、抵抗値記憶部1
06、Δr演算部108、設定値記憶部110、判定部
112および出力部114からなる。図4は、本実施例
の抵抗溶接監視装置におけるCPU100の処理動作を
示すフローチャートである。
The CPU 100 performs necessary calculations and controls in accordance with a control program stored in the memory 52. Functionally, as shown in FIG. 3, the timing control section 102, the resistance value calculation section 104, and the resistance are calculated. Value storage unit 1
06, a Δr calculation unit 108, a set value storage unit 110, a determination unit 112, and an output unit 114. FIG. 4 is a flowchart showing the processing operation of the CPU 100 in the resistance welding monitoring apparatus of this embodiment.

【0019】図3において、タイミング制御部102
は、タイミング制御回路38からのタイミング信号Tz
に応動して、それに同期した内部タイミング信号T0 ,
T1 を各部に与える(図4のステップ200)。設定値
記憶部110は、設定部54より入力された通電時間設
定値SCおよび抵抗変化設定値ΔRを保持し、Δr演算
部108に通電時間設定値SCを与え、判定部112に
抵抗変化設定値ΔRを与える。
In FIG. 3, the timing control unit 102
Is a timing signal Tz from the timing control circuit 38.
In response to the internal timing signal T0,
T1 is given to each part (step 200 in FIG. 4). The set value storage unit 110 holds the energization time set value SC and the resistance change set value ΔR input from the setting unit 54, gives the energization time set value SC to the Δr calculation unit 108, and the determination unit 112 to the resistance change set value. Give ΔR.

【0020】抵抗値演算部104は、A/D変換器44
より電流サンプリングホールド値[DSin ]を受け取
るとともに、A/D変換器50より電圧サンプリングホ
ールド値[DSvn ]を受け取り、[DSvn ]を[D
Sin ]で割算して、1サイクル毎の電極間抵抗値(測
定値)rn を求める(ステップ202)。抵抗値演算部
104より得られた1サイクル毎の電極間抵抗値rn
は、抵抗値記憶部106に格納される(ステップ20
4)。
The resistance value calculation unit 104 includes an A / D converter 44.
The current sampling hold value [DSin] is received from the A / D converter 50, and the voltage sampling hold value [DSvn] is received from the A / D converter 50.
Sin] to obtain the interelectrode resistance value (measured value) rn for each cycle (step 202). Inter-electrode resistance value rn for each cycle obtained from the resistance value calculation unit 104
Is stored in the resistance value storage unit 106 (step 20).
4).

【0021】本実施例では、被溶接材24,26の間に
抵抗増大物質30を介在させて抵抗溶接が行われるた
め、通電時間設定値ECは短い通電サイクル、たとえば
3サイクルに選ばれる。
In the present embodiment, resistance welding is performed with the resistance increasing substance 30 interposed between the materials to be welded 24, 26, so the energization time set value EC is selected to be a short energization cycle, for example, 3 cycles.

【0022】この場合、第3サイクルの前半サイクルが
終了した時点が判断され(ステップ206)、第3サイ
クル分の電極間抵抗測定値r3 が得られた直後に、Δr
演算部108が第1サイクル分の電極間抵抗測定値r1
と第3サイクル分の電極間抵抗測定値r3 との差を演算
し(ステップ208)、両者の大小関係を検査する(ス
テップ210)。その結果、r1 >r3 のときは、一応
正常と判断して次にΔrを演算し(ステップ212)、
r1 ≦r3 のときは異常と判断して出力部114に異常
検知信号ARを与える(ステップ216)。後者の場
合、つまり異常検知信号ARがΔr演算部108より発
生された場合、出力部114はその異常事態を知らせる
表示信号を表示部56に送る。その結果、表示部56の
ランプまたは画面で異常報知の表示が行われる。さら
に、必要に応じて、出力部114からの異常報知信号が
外部の警報装置(図示せず)へ送られ、該警報装置から
警報音または音声メッセージが出されるようにしてもよ
い。また、記録のため、出力部114からの異常報知信
号が外部の記録装置(図示せず)へ送られてもよい。
In this case, the time point when the first half cycle of the third cycle is finished is judged (step 206), and immediately after the inter-electrode resistance measurement value r3 for the third cycle is obtained, Δr
The calculation unit 108 measures the inter-electrode resistance value r1 for the first cycle.
And the inter-electrode resistance measurement value r3 for the third cycle are calculated (step 208), and the magnitude relationship between the two is checked (step 210). As a result, when r1> r3, it is temporarily judged to be normal, and then Δr is calculated (step 212).
When r1≤r3, it is determined that an abnormality has occurred and an abnormality detection signal AR is given to the output section 114 (step 216). In the latter case, that is, when the abnormality detection signal AR is generated by the Δr calculation unit 108, the output unit 114 sends a display signal notifying the abnormal state to the display unit 56. As a result, the abnormality notification is displayed on the lamp or screen of the display unit 56. Further, if necessary, an abnormality notification signal from the output unit 114 may be sent to an external alarm device (not shown), and the alarm device may output an alarm sound or a voice message. Further, for recording, an abnormality notification signal from the output unit 114 may be sent to an external recording device (not shown).

【0023】ここで、図5および図6に、通電開始直後
の3サイクルにおける電極間抵抗変化の種々のパターン
(特性)を示す。図5は正常な場合(r1 >r3 )、図
6は異常な場合(r1 ≦r3 )である。抵抗溶接では、
溶接部位でナゲットが成長するにつれて電極間抵抗が低
下するのが通常であり、本実施例のように電極間抵抗増
大方式で行われる抵抗溶接では、抵抗増大物質の作用に
よって通電開始直後からナゲットが生成されるのが通常
である。したがって、r1 >r3 のときは一応ナゲット
が成長しているものと判定し、r1 ≦r3 のときはナゲ
ットが実質的に成長していないと判定してよい。
Here, FIGS. 5 and 6 show various patterns (characteristics) of inter-electrode resistance change in three cycles immediately after the start of energization. FIG. 5 shows a normal case (r1> r3), and FIG. 6 shows an abnormal case (r1≤r3). In resistance welding,
The resistance between electrodes generally decreases as the nugget grows at the welding site, and in resistance welding performed by the resistance increasing method between electrodes as in the present embodiment, the nugget is formed immediately after the start of energization due to the action of the resistance increasing substance. It is usually generated. Therefore, when r1> r3, it may be determined that the nugget has grown for the time being, and when r1≤r3, it may be determined that the nugget has not grown substantially.

【0024】正常な場合(r1 >r3 )と判定された後
にステップ212で演算されるΔrは、次の式で求めら
れる。 Δr=rMAX −rMIN ここで、rMAX ,rMIN はr1 ,r2 ,r3 の中の最大
値、最小値である。つまり、Δrは、監視期間において
電極間抵抗が最大値rMAX から最小値rMIN まで変化し
た量(落差)であり、ナゲットの成長具合を表すパラメ
ータである。たとえば、図5の(a)のパターンでは、
r1 がrMAX 、r3 がrMIN であり、Δr=r1 −r3
である。この場合は、第1〜第3サイクルにわたってナ
ゲットが成長し、その成長具合が(r1 −r3 )の大き
さに反映する。また、図5の(c)のパターンでは、r
2 がrMAX で、r3 がrMIN であり、Δr=r2 −r3
である。この場合は、第2〜第3サイクルにわたってナ
ゲットが成長し、その成長具合が(r2 −r3 )の大き
さに反映する。したがって、ナゲットの成長具合が大き
いほどΔrは大きな値になり、ナゲットの成長が十分で
ないときΔrは小さな値になる。
The Δr calculated in step 212 after it is determined that it is normal (r1> r3) is obtained by the following equation. Δr = rMAX −rMIN Here, rMAX and rMIN are the maximum and minimum values of r1, r2 and r3. That is, Δr is the amount (drop) that the inter-electrode resistance changes from the maximum value rMAX to the minimum value rMIN during the monitoring period, and is a parameter indicating the growth condition of the nugget. For example, in the pattern of (a) of FIG.
r1 is rMAX, r3 is rMIN, and Δr = r1-r3
Is. In this case, the nugget grows over the first to third cycles, and the growth condition is reflected in the size of (r1-r3). In the pattern of FIG. 5C, r
2 is rMAX, r3 is rMIN, and Δr = r2-r3
Is. In this case, the nugget grows over the second to third cycles, and the growth condition is reflected in the size of (r2-r3). Therefore, the larger the growth of the nugget, the larger the value of Δr, and the smaller the growth of the nugget, the smaller the value of Δr.

【0025】Δr演算部108で演算されたΔrは判定
部112に与えられる。判定部112には、設定部11
0より適正なナゲットが形成されるための電極間抵抗変
化(落差)の下限値に対応した設定値または基準値ΔR
が与えられている。判定部112は、Δr演算部108
より受けたΔrを基準値ΔRと比較し(ステップ21
4)、Δr≧ΔRのときは設定通電時間(3サイクル)
内で適正なナゲットが形成されたもの(溶接良好)と判
定し(ステップ218)、Δr<ΔRのときは設定通電
時間(3サイクル)では未だナゲットの成長が十分では
ない(通電不足)と判定する(ステップ220)。
The Δr calculated by the Δr calculation unit 108 is given to the determination unit 112. The determination unit 112 includes a setting unit 11
A set value or reference value ΔR corresponding to the lower limit value of the interelectrode resistance change (drop) for forming a nugget more appropriate than 0
Is given. The determination unit 112 includes the Δr calculation unit 108.
The received Δr is compared with the reference value ΔR (step 21
4), when Δr ≧ ΔR, set energization time (3 cycles)
It was determined that a proper nugget was formed (welding was good) (step 218), and when Δr <ΔR, it was determined that the nugget growth was not sufficient for the set energizing time (3 cycles) (insufficient energizing). (Step 220).

【0026】上記のような判定部112の判定は、判定
結果信号OK/SHとして出力部114に与えられる。
出力部114は、溶接良好との判定結果(OK)、通電
不足との判定結果(SH)にそれぞれ応じた所定の表示
信号を表示部56へ送出し、表示部56に判定結果を表
示させる。また、記録のため、出力部114からの判定
結果出力信号またはデータが記録装置へ送られてもよ
い。
The determination by the determination unit 112 as described above is given to the output unit 114 as a determination result signal OK / SH.
The output unit 114 sends a predetermined display signal to the display unit 56 according to the result of the determination that welding is good (OK) and the result of determination that the current is insufficient (SH), and causes the display unit 56 to display the determination result. Further, for recording, the determination result output signal or data from the output unit 114 may be sent to the recording device.

【0027】このように、本実施例では、短時間通電の
抵抗溶接におけるナゲットの成長具合が通電時間中に監
視され、設定通電時間(3サイクル)内で適正なナゲッ
トが形成されたか否かの判定結果が通電終了直後に出さ
れて、各溶接点における溶接結果の良・不良が直ちに判
明するので、良品と不良品との選別、不良品に対する処
置、作業の継続・中止等を適切に行わせることができ
る。したがって、極間抵抗増大方式による抵抗溶接の信
頼性を向上させ、その実用的価値を一層高めることがで
きる。
As described above, in this embodiment, the growth condition of the nugget in the resistance welding of the short-time energization is monitored during the energization time, and whether or not the proper nugget is formed within the set energization time (3 cycles). The judgment result is issued immediately after the end of energization, and the goodness / defectiveness of the welding result at each welding point is immediately found, so it is appropriate to sort good products and defective products, take measures for defective products, and continue / stop the work properly. Can be made. Therefore, it is possible to improve the reliability of resistance welding by the inter-electrode resistance increasing method and further increase its practical value.

【0028】上記した実施例では、設定通電時間を3サ
イクルとして説明したが、これは一例であり、被溶接材
24,26の材質その他の溶接条件に合わせて任意のサ
イクル数を設定することができる。
In the above-mentioned embodiment, the set energization time is explained as 3 cycles, but this is an example, and an arbitrary number of cycles can be set according to the welding conditions of the materials 24 and 26 to be welded and other welding conditions. it can.

【0029】また、上記した実施例では、設定通電時間
を3サイクルとした場合、通電開始時点から第3サイク
ルの前半サイクルが終了した時点までの時間が監視期間
に設定されていた。このように、監視期間が設定通電時
間の直前まで及ぶほうが、一般的にはより高い精度でナ
ゲットの成長具合を判定することができる。しかし、設
定通電時間に対する監視期間の時間的位置および範囲
は、任意の値に設定することが可能であり、上記した例
に限られるものではない。
Further, in the above-described embodiment, when the set energization time is set to 3 cycles, the time from the start of energization to the end of the first half cycle of the third cycle is set as the monitoring period. As described above, when the monitoring period extends to immediately before the set energization time, it is generally possible to determine the degree of growth of the nugget with higher accuracy. However, the temporal position and range of the monitoring period with respect to the set energization time can be set to arbitrary values, and are not limited to the above examples.

【0030】さらに、積分回路40,46等をディジタ
ル回路で構成したり、ソフトウェアで構成することも可
能である。
Further, the integrating circuits 40, 46 and the like can be configured by digital circuits or software.

【0031】また、通電開始直後の最初(第1サイクル
の前半サイクル)に流れる電流が非常に小さくて抵抗発
熱に寄与しない場合には、監視期間を第2サイクルから
開始させるようにしてもよい。
If the current flowing immediately after the start of energization (first half cycle of the first cycle) is so small that it does not contribute to resistance heating, the monitoring period may be started from the second cycle.

【0032】また、上記した実施例では、各サイクルの
前半サイクルの電極間抵抗を1サイクル周期で検出した
が、図7に示すように、各サイクルの前半サイクルおよ
び後半サイクルの電極間抵抗を半サイクル周期で検出す
ることも可能である。半サイクル周期のほうが、電極間
抵抗の変化をより精確に監視することができ、設定通電
時間をたとえば2サイクルに設定した場合でも第1サイ
クルの前半および後半サイクルと第2サイクルの前半サ
イクルとで計3個の電極間抵抗値が得られるので、信頼
性の高い判定を行うことができる。
Further, in the above-mentioned embodiment, the inter-electrode resistance in the first half cycle of each cycle is detected in one cycle period. However, as shown in FIG. 7, the inter-electrode resistance in the first half cycle and the second half cycle of each cycle is reduced to half. It is also possible to detect the cycle period. The half cycle period can more accurately monitor the change in the interelectrode resistance, and even when the set energization time is set to 2 cycles, for example, the first half and second half cycles of the first cycle and the first half cycle of the second cycle can be Since a total of three inter-electrode resistance values can be obtained, highly reliable determination can be performed.

【0033】また、上記実施例は単相交流式抵抗溶接機
用の抵抗溶接監視装置に係るものであったが、本発明は
3相整流式抵抗溶接機やインバータ式抵抗溶接機用の抵
抗溶接監視装置にも適用可能である。
Further, although the above embodiment relates to the resistance welding monitoring device for the single-phase AC resistance welding machine, the present invention is the resistance welding for the three-phase rectification resistance welding machine and the inverter resistance welding machine. It is also applicable to monitoring devices.

【0034】[0034]

【発明の効果】以上説明したように、本発明の抵抗溶接
監視装置によれば、接合されるべき被溶接材の間に抵抗
増大物質を介在させて行われる電極間抵抗増大方式の抵
抗溶接において、ナゲットの成長具合を反映する通電開
始直後の溶接電極間抵抗の変化を監視して、溶接結果の
良・不良について信頼性の高い監視結果を得るようにし
たので、良品と不良品との選別、不良品に対する処置、
作業の継続・中止等を適切に行わせることが可能とな
り、溶接効率および溶接品質の信頼性を向上させること
ができる。したがって、電極間抵抗増大方式の利用価値
を高め、その実用化および普及をはかることができる。
As described above, according to the resistance welding monitoring apparatus of the present invention, in the resistance welding of the inter-electrode resistance increasing method performed by interposing the resistance increasing substance between the materials to be welded to be joined. , The change in the resistance between the welding electrodes immediately after the start of energization, which reflects the growth of the nugget, is monitored to obtain reliable monitoring results for good and defective welding results. , Measures for defective products,
It is possible to appropriately continue or stop the work, and improve the welding efficiency and the reliability of welding quality. Therefore, the utility value of the inter-electrode resistance increasing method can be increased, and its practical application and spread can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による抵抗溶接監視装置の回
路構成およびこの監視装置を適用した単相交流式抵抗溶
接機の回路構成を示すブロック図である。
FIG. 1 is a block diagram showing a circuit configuration of a resistance welding monitoring apparatus according to an embodiment of the present invention and a circuit configuration of a single-phase AC resistance welding machine to which the monitoring apparatus is applied.

【図2】実施例の抵抗溶接機および抵抗溶接監視装置に
おける各部の信号の波形を示すタイミング図である。
FIG. 2 is a timing diagram showing waveforms of signals at various parts in the resistance welding machine and the resistance welding monitoring apparatus of the embodiment.

【図3】実施例の抵抗溶接監視装置におけるCPU内の
機能的構成を示すブロック図である。
FIG. 3 is a block diagram showing a functional configuration in a CPU in the resistance welding monitoring apparatus of the embodiment.

【図4】実施例の抵抗溶接監視装置における通電時間制
御に関するCPUの処理動作を示すフローチャートであ
る。
FIG. 4 is a flowchart showing a processing operation of a CPU relating to energization time control in the resistance welding monitoring apparatus of the embodiment.

【図5】正常時の電極間抵抗値のパターン(特性)の例
を示す図である。
FIG. 5 is a diagram showing an example of a pattern (characteristic) of inter-electrode resistance value under normal conditions.

【図6】異常時の電極間抵抗値のパターン(特性)の例
を示す図である。
FIG. 6 is a diagram showing an example of a pattern (characteristic) of inter-electrode resistance value at the time of abnormality.

【図7】変形例の抵抗溶接機および抵抗溶接監視装置に
おける各部の信号の波形を示すタイミング図である。
FIG. 7 is a timing diagram showing waveforms of signals of respective portions in the resistance welding machine and the resistance welding monitoring device of the modified example.

【符号の説明】[Explanation of symbols]

14,16 サイリスタ(コンタクタ) 20,22 溶接電極 24,26 被溶接材 28 抵抗増大物質 30 トロイダルコイル 32 波形復元回路 38 設定部 44 電流積分回路 46 電圧積分回路 48,50 サンプルホールド回路 52,54 A/D変換器 56 メモリ 58 表示部 100 CPU 104 抵抗値演算部 106 抵抗値記憶部 108 Δr演算部 110 設定値記憶部 112 判定部 114 出力部 14,16 Thyristor (contactor) 20,22 Welding electrode 24,26 Welding material 28 Resistance increasing substance 30 Toroidal coil 32 Waveform restoration circuit 38 Setting part 44 Current integration circuit 46 Voltage integration circuit 48,50 Sample hold circuit 52,54 A / D converter 56 memory 58 display unit 100 CPU 104 resistance value calculation unit 106 resistance value storage unit 108 Δr calculation unit 110 set value storage unit 112 determination unit 114 output unit

フロントページの続き (72)発明者 祖父江 直 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 小鉄 泰生 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 葭原 裕彰 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 渡辺 統市 大阪府吹田市青山台4丁目10番1号 (72)発明者 石川 栄 千葉県野田市二ツ塚95番地の3 ミヤチテ クノス株式会社内Front page continuation (72) Inventor Sobue Nao 2-chome, Toyota-cho, Kariya city, Aichi stock company Toyota Industries Corporation (72) Inventor Yasushi Kotetsu 2-chome, Toyota-cho, Kariya city, Aichi stock company Toyota Inside the automatic loom mill (72) Inventor Hiroaki Yoshihara 2-chome Toyota-cho, Kariya city, Aichi Stock company Toyota automatic loom mill (72) Inventor Toruichi Watanabe 4-chome Aoyamadai, Suita-shi, Osaka (72) ) Inventor Sakae Ishikawa, 3 Miyachi Technos Co., Ltd., 95-3 Futatsuka, Noda City, Chiba Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 接合されるべき被溶接材の間に抵抗増大
物質を介在させて行われる抵抗溶接の溶接結果を監視す
る抵抗溶接監視装置において、 通電時間中に前記被溶接材を挟む溶接電極間の抵抗を所
定時間毎に測定する電極間抵抗測定手段と、 前記電極間抵抗測定手段より得られる抵抗測定値を基に
通電開始直後の所定の監視期間における前記溶接電極間
抵抗の変化を検出する電極間抵抗変化検出手段と、 前記電極間抵抗変化検出手段より得られる前記溶接電極
間抵抗の変化の特性に基づいて溶接結果の良否を判定す
る判定手段と、 前記判定手段より得られた判定結果を出力する判定出力
手段と、を具備することを特徴とする抵抗溶接監視装
置。
1. A resistance welding monitoring apparatus for monitoring a welding result of resistance welding performed by interposing a resistance increasing substance between the materials to be welded, wherein a welding electrode sandwiching the materials to be welded during energization time. Inter-electrode resistance measuring means for measuring the resistance between the electrodes every predetermined time, and based on the resistance measurement value obtained by the inter-electrode resistance measuring means, detects a change in the welding inter-electrode resistance in a predetermined monitoring period immediately after the start of energization. Inter-electrode resistance change detection means, a determination means for determining the quality of the welding result based on the characteristics of the change in the welding inter-electrode resistance obtained by the inter-electrode resistance change detection means, and the determination obtained by the determination means A resistance welding monitoring device, comprising: a determination output unit that outputs a result.
JP5192081A 1993-07-06 1993-07-06 Monitoring device of resistance welding Pending JPH0716758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5192081A JPH0716758A (en) 1993-07-06 1993-07-06 Monitoring device of resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5192081A JPH0716758A (en) 1993-07-06 1993-07-06 Monitoring device of resistance welding

Publications (1)

Publication Number Publication Date
JPH0716758A true JPH0716758A (en) 1995-01-20

Family

ID=16285331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5192081A Pending JPH0716758A (en) 1993-07-06 1993-07-06 Monitoring device of resistance welding

Country Status (1)

Country Link
JP (1) JPH0716758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793011A (en) * 1994-11-08 1998-08-11 Toichi Watanabe Automatic assembling system of galvanized steel sheet by spot welding
KR100327892B1 (en) * 1999-06-14 2002-03-09 이준웅 Method for detecting expulsion generating state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793011A (en) * 1994-11-08 1998-08-11 Toichi Watanabe Automatic assembling system of galvanized steel sheet by spot welding
USRE37799E1 (en) * 1994-11-08 2002-07-23 Toichi Watanabe Automatic assembling system of galvanized steel sheet by spot welding
KR100327892B1 (en) * 1999-06-14 2002-03-09 이준웅 Method for detecting expulsion generating state

Similar Documents

Publication Publication Date Title
US4434351A (en) Method and system for determining weld quality in resistance welding
JP2742545B2 (en) Resistance welding control method
EP0059279B1 (en) Power factor monitoring and control system for resistance welding
EP0878264A1 (en) Method and apparatus for evaluating quality of resistance welds
EP0277467B1 (en) Method and apparatus for the non-destructive checking of spotwelds between metal sheets,produced by electric welding
CN109702307A (en) Welding parameter and quality online monitoring system and method based on wireless transmission
US5081338A (en) Apparatus and method for monitoring weld quality
JPH11104848A (en) Spot welding electrode inspecting method, its device and spot welding equipment
US5021625A (en) Pre-resistance-welding resistance check
JPH0716759A (en) Resistance welding control device
JPH0716758A (en) Monitoring device of resistance welding
JPH05288706A (en) Monitoring system of defect of metal member
JP2767328B2 (en) Resistance welding control device and resistance welding measuring device
JPH0644542Y2 (en) Inverter resistance welding machine control or measuring device
JP3396602B2 (en) Method and apparatus for monitoring welding quality
JPH0947883A (en) Controller for inverter type resistance welding
JPS6024748B2 (en) High frequency electric resistance welding phenomenon monitoring and monitoring control device
JPS5940550B2 (en) Spot welding strength monitoring device
JP3294142B2 (en) Resistance welding control device
US4463244A (en) Air core type current pulse and power factor monitoring and control system for a resistance welding apparatus
JPS63137586A (en) Device for controlling resistance welding
RU2164846C1 (en) Resistance welding process control method
JPH0127392B2 (en)
JPS6171189A (en) Method of monitoring weld zone of spot welding
JPS6150708B2 (en)