JPS62191854A - Bipolar photosensitive body - Google Patents

Bipolar photosensitive body

Info

Publication number
JPS62191854A
JPS62191854A JP3441786A JP3441786A JPS62191854A JP S62191854 A JPS62191854 A JP S62191854A JP 3441786 A JP3441786 A JP 3441786A JP 3441786 A JP3441786 A JP 3441786A JP S62191854 A JPS62191854 A JP S62191854A
Authority
JP
Japan
Prior art keywords
transport layer
hole transport
photoreceptor
layer
hole transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3441786A
Other languages
Japanese (ja)
Other versions
JPH0812427B2 (en
Inventor
Osamu Hiruko
蛭子 修
Mitsutoshi Sakamoto
坂本 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP61034417A priority Critical patent/JPH0812427B2/en
Publication of JPS62191854A publication Critical patent/JPS62191854A/en
Publication of JPH0812427B2 publication Critical patent/JPH0812427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Abstract

PURPOSE:To obtain a photosensitive body high in sensitivity by laminating the second positive hole transfer layer, a carrier generating layer, and the first positive hole transfer layer in succession on a conductive substrate, and setting the work function of the substrate and the ionizing energy of the second hole transfer layer in a specified relationship. CONSTITUTION:The second hole transfer layer 3, the carrier generating layer 2, and the first hole transfer layer 1 are laminated in succession on the conductive substrate 4. The relationship between the work function W (eV) possessed by a substance to be used for the conductive substrate 4, and the ionization energy Ip (eV) of a substance to be used for the second hole transfer layer 3 is set to W+0.5>=Ip, thus permitting the obtained bipolar photosensitive body to be extremely enhanced in sensitivity by the presence of the single carrier generating layer, and to be reduced in image line noises in practical uses by the protection of the hole transfer layer 3, and enhanced in printing resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は両極性感光体に関ずろ。[Detailed description of the invention] Industrial applications The present invention relates to bipolar photoreceptors.

従来技術 電子曵写においては、まず感光体表面がコロナ放電によ
り均一な電荷を与えられ帯電ずろ。
In conventional electronic photography, the surface of the photoreceptor is first given a uniform charge by corona discharge, resulting in a charging gap.

感光体は、コロナ放電によって与えられる電荷の極性に
依σして、片極性で使用されている。そのためポジ原稿
、ネガ原稿のいずれの場合にらボッ画像を得る目的の例
えばリーダープリンタの場合には、片極性の感光体を使
用して現像器を2種類用いる等で対応しているのが実状
である。
Photoreceptors are used as unipolar, depending on the polarity of the charge provided by the corona discharge. Therefore, for example, in the case of a reader printer that aims to obtain a double-sided image for both positive and negative originals, the actual situation is to use a unipolar photoreceptor and two types of developing devices. It is.

そこで、プラスあるいはマイナスいづれに帯電されても
使用できろ両極性感光体が提案されている(例えば特開
昭49−45737号公報または特開昭49−9164
6号公報)。
Therefore, bipolar photoreceptors have been proposed that can be used even if they are positively or negatively charged (for example, Japanese Patent Laid-Open No. 49-45737 or Japanese Patent Laid-Open No. 49-9164).
Publication No. 6).

特開昭49−45737号公報および特開昭49−91
646号公報に開示の技術はいずれら、第6図に示した
ごとく導電性基体(4)−ヒに第2の電荷発生層(CG
LX5)として無機光導電性物質、たとえばSe、Cd
S 、ZnOあるいはC(Is。
JP-A-49-45737 and JP-A-49-91
All of the techniques disclosed in Japanese Patent No. 646 include a second charge generation layer (CG
LX5) as an inorganic photoconductive substance, such as Se, Cd
S, ZnO or C(Is.

その上に電荷輸送層(C′rし)(6)として何機導電
性物質たとえばポリヒニルカルバゾール(PVI<)あ
るいはポリビニルアントラセン、さらにその上に第1の
CGL(7)として上記無機光導電性物質を順次積層し
てなる両極性感光体に関ずろ乙のである。
Thereon, a charge transport layer (C'r) (6) is formed of an inorganic conductive material such as polyhinylcarbazole (PVI<) or polyvinylanthracene, and the first CGL (7) is formed of an inorganic photoconductive material. This is related to bipolar photoreceptors made by sequentially laminating polar substances.

発明か解決しようと1片4茸韮司応。Trying to invent or solve a problem, I tried to make 4 mushrooms per piece.

前記のごとく基体(4)上に第2のc c L(5)、
C’rL(6)および第1のCGL(7)を順次fs’
を層した構造の感光体は、露光光量の約[/2が第1の
CGL(7)を透過して第2のCG L (5)へ到達
しなければならないために、第1のCGL(7)を厚く
てきない制約がある。そのために、第1のCGI、(7
)は非常に薄<fねばならず、そのために光感度が充分
てなくなり、また表面にあるために、例えばクリーナと
してプレートを使用したときは削れてれ、ドラムに傷が
でき、画像ノイズが発生しやすくかつくり返し使用に耐
えない等の問題がある。さらに、削れた結果化じる粉末
物質(Se 。
A second c c L (5) on the substrate (4) as described above,
C'rL (6) and first CGL (7) sequentially fs'
In the case of a photoreceptor having a structure in which approximately [/2] of the exposure light amount has to pass through the first CGL (7) and reach the second CGL (5), the first CGL ( 7) There is a restriction that it cannot be made thicker. To that end, the first CGI, (7
) must be very thin <f, which means that the light sensitivity is not sufficient, and because it is on the surface, for example, when a plate is used as a cleaner, it will be scraped and the drum will be scratched, causing image noise. There are problems such as it is easy to make and cannot withstand repeated use. In addition, a powder substance (Se) is formed as a result of being scraped.

CdS 等)の公害性に問題も存在する。There is also a problem with the pollution potential of CdS, etc.).

まfこiK光された光の内、短波長域の光は第1のCG
I(7)で、長波長域の光は第2のCGL(5)で吸収
されるために、第1および第2のCGLは同一の感光度
で応答しないため、感光度および画質か曹くなる等の問
題らある。
Among the emitted light, the light in the short wavelength range is the first CG.
In I (7), since light in the long wavelength range is absorbed by the second CGL (5), the first and second CGLs do not respond with the same photosensitivity, so the photosensitivity and image quality decrease. There are other problems, such as:

本発明は」二足のような問題点を解消し、高感度であり
、繰り返し複写を行なっても画像の乱れが!1ミしず、
耐刷性に優れかつ公害の心配ら生じない両極性感光体を
提供することを目的とする。
The present invention solves the problem of "two feet", has high sensitivity, and does not cause image distortion even after repeated copying! 1 mi drop,
An object of the present invention is to provide a bipolar photoreceptor that has excellent printing durability and does not cause any concern about pollution.

問題点を解決するための手段 すなわら本発明は、導電性基体上に第2の正孔輸送層、
電荷発生層、第1の正孔輸送層を、順次積層してなり、
該導電性Jl(体の仕事関数W(eV)と該第2の正孔
輸送層のイオン化エネルギーIp(eV)とが式「I]
Means for solving the problem, that is, the present invention provides a second hole transport layer on a conductive substrate,
A charge generation layer and a first hole transport layer are sequentially laminated,
The conductivity Jl (work function W (eV) of the body and the ionization energy Ip (eV) of the second hole transport layer are expressed by the formula "I"
.

W+ 05 ≧ Ip   EI] の関係を何ずろことを特徴とする両極性感光体に関する
The present invention relates to a bipolar photoreceptor characterized by the following relationship: W+ 05 ≧ Ip EI].

本発明の感光体は、例えば第1図に示したように導電性
基体上報)上に第2の正孔輸送層(3)、その上に電荷
発生層(2)さらにその上に第1の正孔輸送層(+)を
vI届した構造を有する。
For example, as shown in FIG. 1, the photoreceptor of the present invention includes a second hole transport layer (3) on a conductive substrate, a charge generation layer (2) on top of the second hole transport layer (3), and a first layer on top of the second hole transport layer (3). It has a structure in which the hole transport layer (+) of VI is delivered.

本発明において重要な点は、導電性基体(4)に使用す
る物質のaする仕事関数をW(eV)とし、第2の正孔
輸送!rJ(3)に使用する物質の打ずろイオン化エネ
ルギーをIp(eV)とした場合、川音が式[I]  
W +  0.5  ≧ 1p の関係を存することで
ある。W+ 05 ≦ Ip  の関係を灯した物質で
感光体が形成されると、導電性7Iri体(4)から正
孔輸送層(3)への正電荷の注入が困itとなり、光感
度が減少するとともに、両極性の感光体として機能しな
くなる。
An important point in the present invention is that the work function a of the substance used for the conductive substrate (4) is W (eV), and the second hole transport! If the strike ionization energy of the substance used for rJ (3) is Ip (eV), then Kawane is expressed by the formula [I]
The relationship W + 0.5 ≧ 1p exists. When a photoreceptor is formed of a material that satisfies the relationship W+ 05 ≦ Ip, it becomes difficult to inject positive charges from the conductive 7Iri body (4) to the hole transport layer (3), resulting in a decrease in photosensitivity. At the same time, it no longer functions as a bipolar photoreceptor.

本発明について仕事関数は外部光電効果法を用い実測し
た光電子仕事関数を言い、eV小単位用いて表わす。
Regarding the present invention, the work function refers to a photoelectronic work function actually measured using an external photoelectric effect method, and is expressed in eV small units.

本発明にいうイオン化エネルギーは、正孔輸送層につい
て外部光電効果法で測定した値、っまり正孔輸送層の価
電子帯と真空学位とのエネルギー差を言い、eV小単位
用いて表した値をいう。
The ionization energy referred to in the present invention is the value measured by the external photoelectric effect method for the hole transport layer, which refers to the energy difference between the valence band of the hole transport layer and the vacuum degree, and is expressed in eV small units. means.

導電性基体(4)に使用できる金属は、第■族元累たと
えば金、銀、銅あるいは第1it族元素、たとえばアル
ミニウム、または第Vlll族元素、たとえば鉄、コバ
ルト、ニッケル等をントげろことができろが、その選択
は後述する正孔輸送層(3)に使用する物質に依(i−
1,、式[I]の関係を満足するように行なう。
Metals that can be used for the conductive substrate (4) include Group I elements, such as gold, silver, copper, or Group I elements, such as aluminum, or Group V elements, such as iron, cobalt, nickel, etc. However, the selection depends on the material used for the hole transport layer (3), which will be described later.
1, so as to satisfy the relationship of formula [I].

導電性基体(4)に使用4−る金属は、その金層自体で
使用してらよいし、柔軟性のあるフィルム、たとえばポ
リエステルフィルム、ポリエヂレンテレフクールフイル
ム等の表面にスパッタリングあるいは蒸着等の手段を用
いて被覆して使用してらよい。その被覆の程度は特に制
限されるらのでない。 第2の正孔輸送層(3)に使用
する物質は、″正孔輸送性の何機物質を使用する。正孔
輸送性の何機物質としては、ヒドラゾン類、たとえばン
エヂルアミノベンズアルデヒドジフェニルヒドラゾン(
DEH)に限らず、1−フェニル−3−(p−ジエヂル
アミノスチリル)−5−(p−ジエチルアミノフェニル
)−ピラゾリン(ASPP)のようなピラゾリン類、オ
キサジアゾール類、たとえば112.3−オキサジアゾ
ール、1.2.4−オキサジアゾール、オキザゾール類
、トリフェニルアミン類、アノン類、!・リフェニルメ
タン類等を挙げろことかできる。
The metal used for the conductive substrate (4) may be used as the gold layer itself, or may be applied to the surface of a flexible film, such as a polyester film or a polyethylene telefoil film, by sputtering or vapor deposition. It may be used by covering it using some means. The degree of coverage is not particularly limited. The substance used for the second hole transport layer (3) is a hole-transporting substance. Examples of the hole-transporting substance include hydrazones, such as eddylaminobenzaldehyde diphenyl. Hydrazone (
DEH), pyrazolines such as 1-phenyl-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)-pyrazoline (ASPP), and oxadiazoles, such as 112.3- Oxadiazole, 1.2.4-oxadiazole, oxazoles, triphenylamines, anones,!・You can list examples such as liphenylmethanes.

第2の正孔輸送層(3)に使用する物質は、そのイオン
化エネルギー1111((4V)が前記の導電性シ1(
体(・1)に使Jllされる金属の仕事関数W(eV)
と式[+]の関係になるように選択して使用A゛ろ。
The substance used for the second hole transport layer (3) has an ionization energy of 1111 ((4V)) as described above for the conductive layer (3).
Work function W (eV) of the metal used in the body (・1)
Select and use so that the relationship between and the expression [+] is satisfied.

導電性基体(4)および第2の正孔輸送層(3)に使用
する物質の好ましい組み合せとしては、金とDE’l−
1、ニッケルとDErl、銅とD El(、銀とAS 
I) P等を挙げることができるが、この組み合わけに
限られる乙のではなく、両者の物質が式[r]の関係を
満たすものであればよい。
A preferred combination of substances used for the conductive substrate (4) and the second hole transport layer (3) is gold and DE'l-
1. Nickel and DErl, copper and DEl(, silver and AS
I) P, etc. can be mentioned, but B is not limited to this combination, and it is sufficient if both substances satisfy the relationship of formula [r].

第2の正孔輸送層(3)は、面記正孔輸送性の有機材料
を透明性の樹脂、たとえばポリカーボネート、アクリル
樹脂等と共に適当な溶媒、たとえばテトラヒドロフラ(
T 11 F )等に溶解させた溶液を導電性基体(4
)上に、ディッピイング法、スピナコート法等を使用し
て塗布し、溶媒を乾燥させることによって得られる。
The second hole transport layer (3) is composed of an organic material having surface hole transport properties, a transparent resin such as polycarbonate, acrylic resin, etc., and a suitable solvent such as tetrahydrofuran (
A conductive substrate (4
) by dipping, spinner coating, etc., and drying the solvent.

正孔輸送性の有機材料は、樹脂に対してIO重爪形〜9
0重量%、好ましくは20重量%〜60重量%含有させ
る。60重量%より多いと層としての膜を形成し得なく
なるし、20重量%より少ないと正孔輸送層として機能
しなくなる。
The hole-transporting organic material has an IO heavy claw shape to the resin.
The content is 0% by weight, preferably 20% to 60% by weight. If it is more than 60% by weight, it will not be possible to form a film as a layer, and if it is less than 20% by weight, it will not function as a hole transport layer.

第2の正孔輸送層(3)は3μm〜30μm、好ましく
は5μm〜25μmの膜厚に積層する。3μmより薄い
と帯電能が悪くなり、30μmより厚いと電子写真感度
が悪くなる。
The second hole transport layer (3) is laminated to a thickness of 3 μm to 30 μm, preferably 5 μm to 25 μm. If it is thinner than 3 μm, the charging ability will be poor, and if it is thicker than 30 μm, the electrophotographic sensitivity will be poor.

電荷発生層(2)は、無機光導電性物質、たとえばセレ
ン(Se)、硫化カドミウム(CdS)、酸化亜鉛(Z
nO)を真空蒸着法、スパッタリング等の方法を11目
Aで、白色光透過率がlO%程度以下の膜厚に積層する
The charge generating layer (2) is made of an inorganic photoconductive material such as selenium (Se), cadmium sulfide (CdS), zinc oxide (Z
(nO) is laminated using a method such as vacuum evaporation or sputtering in step 11 A to a film thickness having a white light transmittance of about 10% or less.

電荷発生層(2)は、有機光導電性物質としてアゾ系顔
料、フタロシアニン系、ペリレン系、トリフェニルメタ
ン系、シアニン系等の顔料を使用してもよい。
The charge generation layer (2) may use an azo pigment, a phthalocyanine pigment, a perylene pigment, a triphenylmethane pigment, a cyanine pigment, or the like as an organic photoconductive substance.

本発明の特徴は、電荷発生層(2)が一層でよいために
十分な光感度が得られる程度に+y<積層できることに
あり、さらに電荷発生層(2)が後述4−る第1の正孔
輸送層の下部にあることから、繰り返し複写をおこなっ
てもその表面は摩耗損傷を受けることがない。
The present invention is characterized by the fact that the charge generation layer (2) can be stacked with +y<y to the extent that sufficient photosensitivity is obtained because the charge generation layer (2) only needs to be one layer, and furthermore, the charge generation layer (2) can be stacked to the extent that sufficient photosensitivity is obtained. Since it is located below the hole transport layer, its surface will not suffer wear damage even after repeated copying.

第1の正孔輸送層(1)は、前述した正孔輸送性の有機
物質を使用して、第2の正孔輸送層(3)と同様に形成
すればよい。第1および第2の正孔輸送層に使用する有
機物質は同一であっても異なりていでもよいが、同一で
あることが好ましい。
The first hole transport layer (1) may be formed in the same manner as the second hole transport layer (3) using the hole transporting organic substance described above. The organic materials used in the first and second hole transport layers may be the same or different, but are preferably the same.

第1の正孔輸送層(1)は3μm〜30μm1好ましく
は5μm〜25μmの厚さに積層する。3μmより薄い
と帯電能が悪くなり、30μmより厚いと電子写真感度
が悪くなる。
The first hole transport layer (1) is laminated to a thickness of 3 μm to 30 μm, preferably 5 μm to 25 μm. If it is thinner than 3 μm, the charging ability will be poor, and if it is thicker than 30 μm, the electrophotographic sensitivity will be poor.

また、第1の電荷輸送層(1)と第2の電荷輸送層(3
)は、略同じ厚さであることが好ましい。電荷輸送層(
1)と電荷輸送層(3)の厚さに大きな差かあると両極
性での静電特性に差が出ろため、同一現像器を用いて現
像バイアスの変更だけでポジ・ポジーポジ・ネガが画像
を得るのが目的のリーダープリンタ等では両極性で画像
特性に差が出る等の支障が生じる。
In addition, the first charge transport layer (1) and the second charge transport layer (3
) preferably have substantially the same thickness. Charge transport layer (
If there is a large difference in the thickness of the charge transport layer (1) and the charge transport layer (3), there will be a difference in the electrostatic properties in both polarities, so by using the same developer and changing the development bias, you can produce positive, positive, and negative images. In reader printers and the like whose purpose is to obtain the same, problems arise such as differences in image characteristics due to bipolar polarity.

本発明による感光体の作像原理を第2−a−f図、第3
−a−e図に示す。
The image forming principle of the photoreceptor according to the present invention is illustrated in Figures 2-a-f and 3.
-a-e.

帯電工程で感光体表面を(+)に帯電するとベース金属
側では電子が誘起され、第2−a図で示す電荷分布にな
り、この状態で露光を行なうと電荷発生層中で発生した
電子、正孔対の内、正孔は第2の正孔輸送層(3)中を
走行しベースの電子を中和しく第2−b図)、電子は電
荷発生層中にとどまり、第2−e図で示す電荷分布にな
る。第1の正孔輸送層(1)と第2の正孔輸送層(3)
が同一材料で同じ厚みの時には露光部電位は、未露光部
電位の約1/2になり1象が形成されることになる。
When the surface of the photoreceptor is charged (+) in the charging process, electrons are induced on the base metal side, resulting in the charge distribution shown in Figure 2-a. When exposure is performed in this state, the electrons generated in the charge generation layer, Among the hole pairs, the holes travel through the second hole transport layer (3) and neutralize the base electrons (Fig. 2-b), while the electrons remain in the charge generation layer and pass through the second hole transport layer (3). The charge distribution becomes as shown in the figure. First hole transport layer (1) and second hole transport layer (3)
When they are made of the same material and have the same thickness, the potential of the exposed part becomes approximately 1/2 of the potential of the unexposed part, and one quadrant is formed.

次に光イレース工程で感光体内部の電荷分布を第2−d
図の状態にした後に(−)帯電を行なうと(第2−e図
)、ベースに正孔が誘起されるが、ベースの仕事関数が
第2の正孔輸送層(3)のイオン化エネルギーより大き
い場合には、ベースから第2の正孔輸送層(3)への正
孔の注入か非常にスムーズであることから誘起された正
孔は、そのまま第2の正孔輸送層(3)に注入され同時
に正孔輸送層中を走行し、電荷発生居中の電子を中和す
る。この時、表面の(+)電荷はすでに(−)帯電時の
(−)電荷で中和されているので感光体は初期状態にも
どる(第2−f図)。
Next, in the photo-erase process, the charge distribution inside the photoreceptor is
When (-) charging is performed after making the state shown in the figure (Figure 2-e), holes are induced in the base, but the work function of the base is lower than the ionization energy of the second hole transport layer (3). If the size is large, the injection of holes from the base to the second hole transport layer (3) is very smooth, and the induced holes directly flow into the second hole transport layer (3). At the same time as it is injected, it travels through the hole transport layer and neutralizes the electrons in the charge-generating region. At this time, since the (+) charge on the surface has already been neutralized by the (-) charge at the time of (-) charging, the photoreceptor returns to its initial state (Fig. 2-f).

感光体表面を(−)に帯電すると(第3−a図)、ベー
スに誘起された正孔はベース金属の仕事関数が第2の正
孔輸送層(3)のイオン化エネルギーとほぼ等しいかま
たは大きく、注入バリヤーが形成されていないのでスム
ーズに第2の正孔愉送石(3)へ注入され同時に正孔輸
送層を走行し第2の正孔輸送層(3)と電荷発生層(2
)の界面に蓄積される(第3−b図)。したかって、(
−)帯電後の電荷分布は第3−b図の様に通常の積層感
光体を、(−)帯7uて使用する場合と全く同しで、以
下、〃光−現像一イレース(第3−c−e図)の通常の
プロセスがそのまま適用されることになる。
When the surface of the photoreceptor is charged to (-) (Fig. 3-a), the holes induced in the base will be generated if the work function of the base metal is approximately equal to the ionization energy of the second hole transport layer (3) or Since it is large and does not have an injection barrier, it is smoothly injected into the second hole transporting stone (3), simultaneously travels through the hole transporting layer, and flows into the second hole transporting layer (3) and charge generation layer (2).
) (Figure 3-b). I wanted to do it, (
-) The charge distribution after charging is exactly the same as when using a normal laminated photoreceptor with (-) band 7u as shown in Figure 3-b. The normal process shown in Figures ce) will still be applied.

以上の作像原理から明らかなように、本発明の感光体は
正極性、負極性のいずれに乙帯電するごとができる乙の
であるが、次に該感光体を、例えば実際にリーダープリ
ンタに使用し、ネガまたはポジ原稿よりポジ画像を得る
方法について説明する。正極性帯電時にポジ・ボッ画像
を得る場合は第2−a図〜第2−r図に示される工程を
経て感光体は帯電、露光、現像、イレーズされるのであ
るが、第2−0図の工程において感光体は非露光部を画
像部とする静電潜像か形成され、負極性のトナーにより
正規現像されてポジ原稿からポジ画像を得る。一方、帯
電極性を負に切り換えてネガ・ボッ画像を得ろ場合はだ
3−d図において光照射部を画像部とする静電潜像か形
成され、負極性のトナーにより反射環(′ρされて不労
原稿からボッ画像か得られる。
As is clear from the above image forming principle, the photoreceptor of the present invention can be charged to either positive or negative polarity. Then, a method for obtaining a positive image from a negative or positive original will be explained. To obtain a positive blurred image when positively charged, the photoreceptor is charged, exposed, developed, and erased through the steps shown in Figures 2-a to 2-r. In the process, an electrostatic latent image is formed on the photoreceptor with the unexposed area serving as an image area, and is regularly developed with negative polarity toner to obtain a positive image from a positive original. On the other hand, if the charge polarity is changed to negative to obtain a negative/outlined image, an electrostatic latent image is formed with the light irradiation area as the image area as shown in Figure 3-d, and the negative polarity toner forms a reflective ring ('ρ). You can get blurry images from unfinished manuscripts.

このように本発明に係る感光体は両極性のいずれにも帯
電可能であり、単一の現像装置でボッ原稿およびネガ原
稿からボン画像を1ひることかできる。即ち、従来の感
光体では一方の極性にして帯電できず、現像器が2 (
,9必要であり、またそのめたに全体の装置か大型化ず
ろとういう欠点をrf才る乙のであっノコか、本発明の
感光体は111j記欠点を解消したものである。
As described above, the photoreceptor according to the present invention can be charged to either polarity, and a single blank image can be created from a blank original or a negative original using a single developing device. In other words, conventional photoreceptors cannot be charged with one polarity, and the developing device is
, 9 is necessary, and the disadvantage of increasing the size of the entire device is therefore avoided.The photoreceptor of the present invention overcomes the disadvantages listed in item 111j.

以下本発明と実施例を用0て説明する。The present invention will be explained below using examples.

実施例1− Au蒸着したポリエチレンテレフタレートフィルム(1
25μm)の上に下記組成 ポリカーボネ−ト ・・・・・・  60重量部D E
 H・・・・・・  40重量部TIIF      
 ・・・・・・・・ 400重塁部の溶液を塗布乾燥し
、厚さが12μmの第2の正孔輸送FJC3)を形成し
た後、真空蒸着法で厚さ約1μmの無定形セレンの電荷
発生層を形成した。
Example 1 - Au-deposited polyethylene terephthalate film (1
25 μm) on top of polycarbonate with the following composition...60 parts by weight D E
H...40 parts by weight TIIF
・・・・・・・・・ After applying and drying the solution of 400 layers to form a second hole transport FJC3) with a thickness of 12 μm, amorphous selenium with a thickness of about 1 μm was deposited using a vacuum evaporation method. A charge generation layer was formed.

次いでこの無定形セレン層上にさらに上記組成の溶液を
塗布乾燥し厚さ12μmの第1の正孔輸送層(1)を形
成し全1’;C2571mの感光板を作成し、1主復型
の感光体試験機(図示せず)で評価した。
Next, a solution having the above composition was further applied and dried on this amorphous selenium layer to form a first hole transport layer (1) with a thickness of 12 μm, and a photosensitive plate with a total thickness of 1'; The evaluation was made using a photoreceptor tester (not shown).

(4−)帯電について:初期表面電位として100OV
を印加し、ハロゲンランプよりの白色光を照射し、さら
に光イレーズを行なうことにより表面電位が530V1
.:減衰した。さらに()、ji;電イレースを行なっ
た。 残留電位は30Vてあり、表面電位が100OV
から750Vにまで減衰する半減露光!11E1/2は
7 Jlux−secてあった。
(4-) Regarding charging: 100OV as initial surface potential
was applied, irradiated with white light from a halogen lamp, and further photoerased to raise the surface potential to 530V1.
.. : Attenuated. Furthermore, (), ji; electric erase was performed. The residual potential is 30V and the surface potential is 100OV.
Half-reduction exposure that attenuates from to 750V! 11E1/2 had 7 Jlux-sec.

以上の(+)帯電−露光−・光イレーズ−・(−)帯電
イレーズのサイクルを100回行なったが特性変化は認
められなかった。
The above cycle of (+) charging - exposure - photo erasing - (-) charging erase was repeated 100 times, but no change in characteristics was observed.

()4:唇dについて、初期表面電位として一500V
を印加し、ハロゲンランプ、jこりの白色光を照射し、
光イレーズを行なった。
()4: Regarding the lip d, the initial surface potential is -500V
, apply white light from a halogen lamp, and
Optical erase was performed.

表面電位が一500Vから一250Vにまで減衰する半
減露光Hk Et 72は7 lux −secであり
、また残留電位は20Vであった。
The half-exposure Hk Et 72 in which the surface potential attenuates from 1500V to 1250V was 7 lux-sec, and the residual potential was 20V.

以上の(−)帯電−露光−光イレーズのサイクルを10
0回くり返したか特性変化は認められなかった。
10 or more (-) charging-exposure-photo-erase cycles
No change in characteristics was observed, probably because it was repeated 0 times.

なお、この時のAu蒸着面の仕事関数を外部光電効果法
で測定すると 5.2 eV、またC T Lのイオン
化エネルギーrpを外部光電効果法で測定すると 5.
IeVであった。
At this time, the work function of the Au evaporated surface was measured using the external photoelectric effect method, and it was 5.2 eV, and when the ionization energy rp of C T L was measured using the external photoelectric effect method, it was 5.2 eV.
It was IeV.

実施例2 Ni仮の上に実施例Iで示し/こ感光体を形成し実施例
Iと同様に往復型の感光体試験機で3・V価しく+)帯
電、(−)帯電共に実施例(1)と同様良好な結果を得
た。
Example 2 The photoreceptor shown in Example I was formed on a temporary Ni layer, and as in Example I, it was charged with a 3.V value using a reciprocating photoreceptor testing machine for both +) and (-) charging. Similar to (1), good results were obtained.

なお、この時のN1仮の仕事関数を外部光電効果法て測
定すると 4.BeVてあった。
In addition, when the N1 provisional work function at this time is measured using the external photoelectric effect method, 4. There was BeV.

実施例3 Cu蒸着したポリエチレンテレフタレートフィルム(1
25μm)の上に実施例Iで示した感光体を形成し、往
復型の感光体試験機で評価しく+)帯電、(−)帯電共
に実施例1と同様に良好な結果を1また。
Example 3 Cu-deposited polyethylene terephthalate film (1
The photoreceptor shown in Example I was formed on a surface of 25 μm) and evaluated using a reciprocating photoreceptor tester, and the same good results as in Example 1 were obtained for both +) and (-) charging.

実施例4 Ag蒸着したポリエチレンテレフタレートフィルム(1
25μm)の上に下記組成 A S I) l’)         ・・・・・・
 100重量部ポリカルボネートティノンに−1300
)・・・・・・ 10重4部 ′I″IIF          ・・・・ 80重量
部の溶液を塗布乾燥し、厚さが12μmの正孔輸送層を
形成した後、真空蒸着法で厚さ約1μmの無定形セレン
の電荷発生層を形成した。
Example 4 Ag-deposited polyethylene terephthalate film (1
25μm) on top of the following composition ASI) l')...
-1300 to 100 parts by weight polycarbonate tinone
)...... 10 parts by weight, 4 parts 'I''IIF... 80 parts by weight of the solution was applied and dried to form a hole transport layer with a thickness of 12 μm, and then a layer with a thickness of approximately A charge generating layer of 1 μm of amorphous selenium was formed.

次いでこの無定形セレン層上にさらに上記組成の溶液を
塗布乾燥し厚さ12μmの正孔輸送層を形成し、全17
25μmの感光板を作成し往復型の感光体試験機で評価
し実施例1と同様に(十X−)両極性で良好な結果を得
た。
Next, a solution having the above composition was further applied and dried on this amorphous selenium layer to form a hole transport layer with a thickness of 12 μm.
A 25 μm photosensitive plate was prepared and evaluated using a reciprocating photoreceptor tester, and as in Example 1, good results were obtained with (10X-) bipolarity.

なお、この時のAg蒸着面の仕事関数を外部光電効果法
で測定すると4.4eVであった。またこの時のCT 
Lのイオン化エネルギーは4.8eVてあった。
Note that the work function of the Ag-deposited surface at this time was 4.4 eV when measured using an external photoelectric effect method. CT at this time again
The ionization energy of L was 4.8 eV.

実施例5 Au蒸着したポリエチレンテレフタレートフィルム(1
25μm)の上に実施例1て使用した組成の溶液を塗布
乾燥し12μm厚の正孔輸送層を形成し、次いで該正孔
輸送層の上に下記組成CDB (クロログイアンプル−
) ・・・・・ lO重!i部 ポリエステル(V−200)  ・・・・・・ IO重
置部シクロヘキザノン     ・・・・・・200重
量部の分散液をスピンコードにより塗布し 05μmの
電荷発生層を形成した。
Example 5 Au-deposited polyethylene terephthalate film (1
A solution having the composition used in Example 1 was applied and dried to form a hole transport layer with a thickness of 12 μm.
)... 10 heavy! i part polyester (V-200) IO overlapping part cyclohexanone 200 parts by weight of the dispersion was applied using a spin cord to form a charge generation layer of 0.05 μm.

次に再び該電荷発生層の上に実施例1で使用した組成の
溶液を塗布乾燥し12μm厚の正孔輸送層を形成し全厚
25μmの感光板を作製し、実施例1と同様の評価を行
ない、(+)および()、l+F電共にE (12” 
5 LuX ” SeCの良好な結果を得た。
Next, a solution having the composition used in Example 1 was again coated on the charge generation layer and dried to form a hole transport layer with a thickness of 12 μm to prepare a photosensitive plate with a total thickness of 25 μm, and the same evaluation as in Example 1 was carried out. and (+), (), l+F electrics both E (12”
Good results were obtained for 5 LuX'' SeC.

実施例6 Au蒸着したAi木管上に実施例1で示したように作製
した両極性感光体(13)を第5図に示した電子写真装
置に装着し、画像評価を実施した。
Example 6 The bipolar photoreceptor (13) prepared as shown in Example 1 on the Au-deposited Ai woodwind was mounted on the electrophotographic apparatus shown in FIG. 5, and image evaluation was performed.

(+)帯電の時は両極性帯電器(14)で+000Vに
帯電した後、ハロゲンランプよりの白色光(15)でポ
ジ画像を露光し静電画像を形成させた。
For (+) charging, after charging to +000V with a bipolar charger (14), a positive image was exposed to white light (15) from a halogen lamp to form an electrostatic image.

次にこの感光体上に現像器(IG)を用いて現像バイア
ス電位650Vで現像し、次いで紙上に転写した(17
)。感光体をクリーニングユニット(18)でクリーニ
ングし、光イレーサー(]9)および(−)極性帯電器
(20)により除電ずろことにより良好なボッ画像を得
た。その時の帯電電位の挙動を第4−a図に示す。図中
、実線は露光部の表面電位の変化を、点線は非露光部の
表面11位の変化を示す。第4−a図において、まず感
光体を1000Vに帯電し、矢印(8)の時点ては変化
しない。
Next, development was carried out on this photoreceptor using a developing device (IG) at a developing bias potential of 650 V, and then transferred onto paper (17
). The photoreceptor was cleaned by a cleaning unit (18), and a good blurred image was obtained by removing static electricity using an optical eraser (9) and a (-) polar charger (20). The behavior of the charging potential at that time is shown in Figure 4-a. In the figure, the solid line indicates the change in surface potential of the exposed area, and the dotted line indicates the change at position 11 on the surface of the non-exposed area. In FIG. 4-a, the photoreceptor is first charged to 1000V, and there is no change at the point indicated by the arrow (8).

次に矢印(11)で表される現像バイアス電位印加の下
に現像する。矢印(9)の時点て光イレースずろと露光
部の表面電位は変化仕4”、非露光部のみ電位が低下し
て露光部の電位と同様になり矢印(10)の時点て負j
1シ電して、vJ初期状態戻す。(12)で表わされる
電位は残留電位である。
Next, development is performed under the application of a development bias potential indicated by an arrow (11). At the point of arrow (9), the optical erase shift and the surface potential of the exposed area change by 4'', and the potential of only the non-exposed area decreases to be the same as the potential of the exposed area, and at the point of arrow (10) it becomes negative.
Power up once to return vJ to its initial state. The potential represented by (12) is the residual potential.

(−)帯電の時は両極性帯電器(14)で−500Vに
帯電した後、ネガ画像露光して潜像を形成し、その潜像
を現像バイアス電位−350■で現像して良好なポジ画
像を得た。その時の表面電位の挙動を第4−b図に示す
。図中、実線は露光部、点線は非露光部の表面電位の変
化を表す。第4−b図においてまず感光体を一500V
に帯電し、矢印(8)の時点で画像露光を行って露光部
のみ表面電位が低下し、次に矢印(11)で表される現
象バイアス電位印加の下に現像する。更に矢印(9)の
時点で光イレースを行なって露光部、非露光部とも同じ
表面電位となって初期状態に戻る。(12)で表わされ
る電位は残留電位である。
(-) When charging, charge to -500V with the bipolar charger (14), then expose to negative image to form a latent image, and develop the latent image at a development bias potential of -350■ to create a good positive image. Got the image. The behavior of the surface potential at that time is shown in Figure 4-b. In the figure, the solid line represents the change in surface potential of the exposed area, and the dotted line represents the change in surface potential of the non-exposed area. In Fig. 4-b, first the photoreceptor is turned on at -500V.
image exposure is performed at the point of arrow (8), the surface potential of only the exposed area is reduced, and then development is carried out under application of a bias potential, a phenomenon represented by arrow (11). Further, at the point of arrow (9), photo-erasing is performed, and both the exposed and non-exposed areas have the same surface potential, returning to the initial state. The potential represented by (12) is the residual potential.

比較例I Ag蒸着したポリエチレンテレフタレートフィルム(1
25μm)の上に実施例1で示した感光体を形成し往復
型の感光体試験機で評価した。
Comparative Example I Ag-deposited polyethylene terephthalate film (1
The photoreceptor shown in Example 1 was formed on the photoreceptor (25 μm) and evaluated using a reciprocating photoreceptor tester.

(+)帯電については最初の1回目の帯電、露光のプロ
セスでのみ感度をaし、2回目以後のブロセスでは全く
感度がなかった。
Regarding (+) charging, the sensitivity was a only in the first charging and exposure process, and there was no sensitivity at all in the second and subsequent processes.

(−)帯電については残留電位が大きく、また帯電露光
の繰り返しで大+jノに上昇するために、繰り返し使用
に耐えないことが判った。
Regarding (-) charging, it was found that the residual potential was large and increased to a large +j level with repeated charging and exposure, so that it could not withstand repeated use.

なお、この時のAg蒸着面の仕事関数を外部光7u効果
法て測定4−ると 4.4(!Vであった。
The work function of the Ag-deposited surface at this time was measured using the external light 7u effect method and was 4.4 (!V).

比較例2 A4蒸着したポリエチレンテレフタレートフィルム(1
25μl1l)の上に実施例1て示した感光体を形成し
iJ:復型の感光体試験機て評価したところ比較例1と
同様くり返し使用に耐えないことがわか っ ノこ。
Comparative Example 2 A4 vapor-deposited polyethylene terephthalate film (1
The photoreceptor shown in Example 1 was formed on 25 μl (1 liter) of the photoreceptor, and evaluated using a photoreceptor tester of the iJ: Retrospective type. As in Comparative Example 1, it was found that the photoreceptor did not withstand repeated use.

なお、この時のへ!蒸着面の仕事関数を外部光電効果法
で測定したところ 4.3eVであった。
In addition, to this time! The work function of the vapor-deposited surface was measured by external photoelectric effect method and was found to be 4.3 eV.

以上の実施例及び比較例より、ベースの仕事関数が正孔
輸送層のイオン化エネルギーより大きい実施例(1)の
場合のみならず、ベースの仕事関数か正孔輸送層のイオ
ン化エネルギーより小さい場合でらその差が0.5eV
以下であれば電界の助けをかりて容易に正孔はベースか
ら正孔輸送層に注入され本発明の主旨である両極性感光
体として充分に機能することが判明しfこ。
From the above Examples and Comparative Examples, it can be seen that not only the case of Example (1) where the work function of the base is larger than the ionization energy of the hole transport layer, but also the case where the work function of the base is smaller than the ionization energy of the hole transport layer. The difference between them is 0.5eV
It has been found that if the photoreceptor is below, holes can be easily injected from the base into the hole transport layer with the help of an electric field, and the photoreceptor can function satisfactorily as the bipolar photoreceptor which is the gist of the present invention.

訪し激來 本発明により、導電外法体上に第2の正孔輸送層、電荷
発生層、第1の正孔輸送11−ツを順次積層してなり1
.核導電性11r)体の仕事関数W(eV)と該第2の
正孔輸送層のイオン化エネルギー+p(eV)とが式: %式% の関係を汀する物質からなるように構成した両極性感光
体は電荷発生層が弔−のために非常に高感度になり、ま
た正孔輸送層に保護されているために、実使用時ら画像
ノイズか少なく、かつ耐に1す性に愛れている。
According to the present invention, a second hole transport layer, a charge generation layer, and a first hole transport layer are sequentially laminated on a conductive outer body.
.. An ambipolar sensor constructed of a material in which the work function W (eV) of the nuclear conductive 11r) body and the ionization energy +p (eV) of the second hole transport layer satisfy the following relationship: The light body has extremely high sensitivity due to the charge generation layer, and is protected by the hole transport layer, so it produces less image noise and is highly durable during actual use. ing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明両極性感光体の模式断面図、第2−a−
f図および第3−a−0図は作用原理の説明図、第4図
は本発明感光体の表面7[i位の変化を示す図、第5図
は電子琴rt装置の概略構成を示す図、第6図は従来の
両極性感光体の佼式断面図である。 図中の記号は以下の通りである。 1・・・第1の正孔輸送層、  2・・・電荷発生層、
3・・第2の正孔輸送層、 4・・・導電性基体、5・
・・第2の電荷発生層、  6・・・電荷輸送層、7 
第1のTri荷発生層、  8・・露光時点、9・・光
イレース時点、  10・・・(−)帯゛電時点、11
 ・現像バイアス電位、 I2・・残留電位、13・両
極性感光体、    14・・両極性帯電器、15・光
、         1G・・・現像器、17・転写器
、 18・ クリーニングユニット、 19・・光イレーザ、    20・・(−)極性帯電
器。 第1図 第2−d図 第2−e図 第2−f 図手続補正書 昭和61年4月1日
Figure 1 is a schematic cross-sectional view of the bipolar photoreceptor of the present invention, and Figure 2-a-
FIG. , FIG. 6 is a cross-sectional view of a conventional bipolar photoreceptor. The symbols in the figure are as follows. 1... First hole transport layer, 2... Charge generation layer,
3. Second hole transport layer, 4. Conductive substrate, 5.
...Second charge generation layer, 6...Charge transport layer, 7
1st Tri charge generation layer, 8... Time of exposure, 9... Time of photo erasure, 10... Time of (-) charging, 11
-Development bias potential, I2...Residual potential, 13.Bipolar photoreceptor, 14.Bipolar charger, 15.Light, 1G...Developer, 17.Transfer device, 18.Cleaning unit, 19.. Optical eraser, 20...(-) polar charger. Figure 1 Figure 2-d Figure 2-e Figure 2-f Procedural amendment April 1, 1986

Claims (1)

【特許請求の範囲】 1、導電性基体上に第2の正孔輸送層、電荷発生層、第
1の正孔輸送層を順次積層してなり、該導電性基体の仕
事関数W(eV)と該第2の正孔輸送層のイオン化エネ
ルギーIp(eV)とが式:W+0.5≧Ip[ I ] の関係を有することを特徴とする両極性感光体。
[Claims] 1. A second hole transport layer, a charge generation layer, and a first hole transport layer are sequentially laminated on a conductive substrate, and the work function W (eV) of the conductive substrate is and the ionization energy Ip (eV) of the second hole transport layer have the following relationship: W+0.5≧Ip[I].
JP61034417A 1986-02-18 1986-02-18 Bipolar photoreceptor Expired - Lifetime JPH0812427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034417A JPH0812427B2 (en) 1986-02-18 1986-02-18 Bipolar photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034417A JPH0812427B2 (en) 1986-02-18 1986-02-18 Bipolar photoreceptor

Publications (2)

Publication Number Publication Date
JPS62191854A true JPS62191854A (en) 1987-08-22
JPH0812427B2 JPH0812427B2 (en) 1996-02-07

Family

ID=12413621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034417A Expired - Lifetime JPH0812427B2 (en) 1986-02-18 1986-02-18 Bipolar photoreceptor

Country Status (1)

Country Link
JP (1) JPH0812427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772090A1 (en) * 1995-11-02 1997-05-07 Konica Corporation Electrophotographic photoreceptor and electrophotographic image forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269631A (en) * 1975-12-08 1977-06-09 Hitachi Ltd Electrophotographic light sensitive material
JPS59231545A (en) * 1983-06-14 1984-12-26 Konishiroku Photo Ind Co Ltd Photosensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269631A (en) * 1975-12-08 1977-06-09 Hitachi Ltd Electrophotographic light sensitive material
JPS59231545A (en) * 1983-06-14 1984-12-26 Konishiroku Photo Ind Co Ltd Photosensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772090A1 (en) * 1995-11-02 1997-05-07 Konica Corporation Electrophotographic photoreceptor and electrophotographic image forming method
US5863687A (en) * 1995-11-02 1999-01-26 Konica Corporation Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH0812427B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4071361A (en) Electrophotographic process and apparatus
JP4898411B2 (en) Image forming member
JP2001175007A (en) Photosensitive body, image forming method and image forming device
JPH1069109A (en) Electrophotographic photoreceptor and electrophotographic device
JP2996175B2 (en) High definition image forming device
JPS62191854A (en) Bipolar photosensitive body
JPS62159151A (en) Positively electrifiable photosensitive body
JP2643216B2 (en) Electrophotographic photoreceptor
JPS61117558A (en) Electrophotographic sensitive body
JPH06138685A (en) Electrophotographic sensitive body
JPH05307270A (en) Electrophotographic sensitive body
JPH0954450A (en) Electrophotographic photoreceptor and electrophotographic device
JP3781362B2 (en) Electrophotographic photoreceptor
JP2817807B2 (en) Electrophotographic photoreceptor
JPH0713379A (en) Electrophotographic photoreceptor and electrophotographic device with it
JPH0756364A (en) Electrophotographic photoreceptor
JPS5952831B2 (en) Electrophotographic latent image formation method
JPH0463352A (en) Image forming method
JPS62157047A (en) Photosensitive body for positive charge
JPH10221865A (en) Electrophotographic photoreceptor, its production and electrophotographic device
JPH09160263A (en) Electrophotographic photoreceptor and its production, electrophotographic device using the same
JPH03175454A (en) Electrophotographic sensitive body
JPH0534939A (en) Electrophotographic sensitive body
JPH05307269A (en) Electrophotographic sensitive body
JPH05113669A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term