JPS62191432A - Preform of optical fiber with reduced defects - Google Patents

Preform of optical fiber with reduced defects

Info

Publication number
JPS62191432A
JPS62191432A JP3181086A JP3181086A JPS62191432A JP S62191432 A JPS62191432 A JP S62191432A JP 3181086 A JP3181086 A JP 3181086A JP 3181086 A JP3181086 A JP 3181086A JP S62191432 A JPS62191432 A JP S62191432A
Authority
JP
Japan
Prior art keywords
preform
glass
transmission loss
optical fiber
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3181086A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshida
吉田 伊知朗
Gotaro Tanaka
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3181086A priority Critical patent/JPS62191432A/en
Publication of JPS62191432A publication Critical patent/JPS62191432A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Abstract

PURPOSE:The areas which do not have effect on light transmission loss are made of a glass which has higher viscosity than that of the glass in the areas which have effect on the emission loss to produce a preform which gives optical fiber with reduced defects and hardly increasing transmission loss. CONSTITUTION:The objective preform for optical fiber is obtained by forming an area B which do not effect the light transmission loss on the outer surface of the area A which effect light transmission loss. In the preform, the area A is composed of the pure quartz core and the fluorine-containing quartz clad. In the meantime, the area B is composed of a glass which contains N, Zr and has higher viscosity, preferably double or more as high as that the glass in area A and pure quartz glass at the temperature at which the preform is drawn into filaments. Thus, the tension in the filament drawing is almost loaded to the area B whereby the titled preform which gives optical fibers with reduced increase in transmission loss by radiation such as gamma-rays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用プリフォームの改良に係り、更に
詳しくは欠陥が少なく放射線被曝や水素雰囲気下におい
ても特性劣化が少ない新規す構成のプリフォームに関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the improvement of preforms for optical fibers, and more specifically to the improvement of preforms for optical fibers, and more specifically to the improvement of preforms for optical fibers, and more specifically to the improvement of preforms for optical fibers. Regarding renovation.

〔従来の技術〕[Conventional technology]

光ファイバは銅線ケーブルに比べて小型、軽量で大量・
低伝送損失、高帯域伝送が可能のため、従来の銅線ケー
ブルに代って次第に通信路線に取り入れられてきている
Optical fibers are smaller and lighter than copper wire cables, and can be manufactured in large quantities.
Because it enables low transmission loss and high-bandwidth transmission, it is gradually being incorporated into communication lines in place of conventional copper wire cables.

ところが光ファイバは、γ線被曝下や水素雰囲気の下に
おいては伝送損失が増加することが知られている。また
、この伝送損失の増加はガラスや石英中の欠陥に基因す
るものであることが知られており、欠陥が少なければ伝
送損失は少なくなる。
However, it is known that transmission loss of optical fibers increases when exposed to gamma rays or in a hydrogen atmosphere. Furthermore, it is known that this increase in transmission loss is caused by defects in glass or quartz, and the fewer defects there are, the lower the transmission loss will be.

ここで、ある種の欠陥は線引き張力により発生する。添
加剤を含まない純石英ガラスは本質的に欠陥が少ないも
のであり、コアが純石英・クラッドが弗素を添加した5
in2である光ファイバは比較的良好な特性を示してい
る。ところがこのタイプのファイバでも線引きによる欠
陥の問題があった。従来は線引速度を小さくする、およ
び線引温度を高くすることにより、この欠陥の生成を少
なく抑える方法をとっていた。
Here, certain defects are caused by drawing tension. Pure silica glass, which does not contain additives, has essentially few defects, and the core is pure quartz and the cladding is doped with fluorine.
The in2 optical fiber exhibits relatively good characteristics. However, even this type of fiber has the problem of defects due to drawing. Conventionally, the generation of these defects has been suppressed by reducing the drawing speed and increasing the drawing temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、線引き速度を小さくすることは生産性の
低下をもたらし、また線引き温度を高くして粘性を極端
に小さくすると炉体の消耗が早くなるとともに、線引き
を安定に行うことも難かしくなる、という欠点があった
However, reducing the drawing speed reduces productivity, and raising the drawing temperature to extremely reduce the viscosity causes the furnace body to wear out faster and makes it difficult to draw the wire stably. There were drawbacks.

本発明はこのような線引き張力による欠陥発生の問題を
解消し、欠陥が少なく、伝送損失増加の少ない光ファイ
バーを得ることのできる光ファイバ用プリフォームを得
ることを目的としてなされたものである。
The present invention has been made for the purpose of solving the problem of defects caused by drawing tension and obtaining an optical fiber preform that can produce optical fibers with fewer defects and less increase in transmission loss.

〔問題点分解法するだめの手段〕[Means to avoid problem decomposition method]

本発明は光伝送損失に影響を与える部分およびその外周
にあって光伝送損失に影響しない部分からなる光ファイ
バ用プリフォームであって、後者の部分のガラスの該プ
リフォームの線引き温度における粘性が前者の部分のガ
ラス及び純石英ガラスのそれより高い、ことを特徴とす
る光ファイバ用プリフォームである。
The present invention provides an optical fiber preform consisting of a part that affects optical transmission loss and a part on the outer periphery that does not affect optical transmission loss, wherein the viscosity of the glass in the latter part at the drawing temperature of the preform is This is an optical fiber preform characterized in that the former part is higher than that of glass and pure silica glass.

本発明の特に好ましい実施態様としては、コアが純粋石
英ガラスであり、クラッドが少なくともフッ素を含む石
英ガラスである上記方法が挙げられる。
Particularly preferred embodiments of the invention include the method described above, in which the core is pure quartz glass and the cladding is quartz glass containing at least fluorine.

従来、コア・クラッド等を有する光ファイバの外層で光
が通らない部分、すなわち光伝送損失には影響を与えな
い領域には、純粋石英ガラスまたはクラッドと同じ材質
のガラスが用いられていたが、本発明はこれらにかえて
、線引き時の粘性が、該ファイバにおける光伝送損失に
影響を与える領域の及び純粋石英ガラスの線引き時の粘
性より高い粘性であるガラスを用いるのである。ここで
、本発明にいう光伝送に影響を与えるもしくは与えない
領域とは、前者を人後者をBとするときに、 ■ 利用する光の99.9999%がAを通る(Aの、
外への光のしみ出し量が10−4%以下)、■ 利用す
る光の密度が、Aの中の最小値≧Bの中の最大値、の関
係にある、 の上記■又は■及び■を満すA、Bをいう。
Conventionally, pure silica glass or glass made of the same material as the cladding has been used for the outer layer of an optical fiber that has a core and cladding, etc., where light does not pass through, that is, an area that does not affect optical transmission loss. In place of these, the present invention uses a glass whose viscosity when drawn is higher than the viscosity of pure silica glass when drawn, in a region that affects optical transmission loss in the fiber. Here, the area that affects or does not affect optical transmission as referred to in the present invention is defined as an area where 99.9999% of the light used passes through A (where the former is defined as the area B) and the latter is defined as B.
(The amount of light seeping out is 10-4% or less), ■ The density of the light used is in the relationship of the minimum value in A ≧ the maximum value in B, the above ■ or ■ and ■ A and B that satisfy the following.

本発明は、光伝送損失には影響を与えない領域CB+の
ガラスとして、線引き時の粘度が、光伝送損失に影響す
る領域CAIのガラス及び純粋石英ガラスの線引時の粘
度より、高い粘度を有するガラスを用いることにより、
線引き時の張力のより多くの部分を、上記の光が通らな
い部分で受けとめ、その結果、該部分には欠陥が多く生
成してしまうが、光伝送に関与する部分には欠陥が生成
しにくくなシ、γ線照射等による伝送損失の増加を低く
抑えることができるのである、第1図は本発明のプリフ
ォームの1例の径方向の粘性分布を示すグラフである。
The present invention uses a glass in the region CB+ that does not affect optical transmission loss, which has a higher viscosity when drawn than the viscosity of glass in the region CAI, which affects optical transmission loss, and pure silica glass. By using glass with
A larger portion of the tension during drawing is received by the above-mentioned areas where light does not pass, and as a result, many defects are generated in these areas, but defects are less likely to be generated in areas involved in optical transmission. Moreover, the increase in transmission loss due to γ-ray irradiation can be suppressed to a low level. FIG. 1 is a graph showing the radial viscosity distribution of an example of the preform of the present invention.

以下の図中で1および2は光伝送に影響を与える領域(
4)をあられし、3け光伝送に影響を与えない領域をあ
られす。このときAがコア1とクラッド2からなり、コ
ア1が純粋石英ガラス、クラッド2が少なくともフッ素
を含む石英ガラスであれば、さらに効果が犬である。
In the figure below, 1 and 2 are areas that affect optical transmission (
4) It rains the area that does not affect the 3rd optical transmission. At this time, if A consists of a core 1 and a cladding 2, where the core 1 is pure silica glass and the cladding 2 is quartz glass containing at least fluorine, the effect is even better.

また、第2図に示すように、上記第1図の構成にさらに
最外層4として、粘性の低いガラス薄層をつけてもよい
。このようにすると、ガラス表面のΦズが線引時に消え
、強度向上に効果がある。
Furthermore, as shown in FIG. 2, a thin glass layer with low viscosity may be added as the outermost layer 4 to the structure shown in FIG. In this way, the Φ scratches on the glass surface disappear during drawing, which is effective in improving the strength.

なお第3図ないし第5図は従来品の粘度分布を示すグラ
フである。
Note that FIGS. 3 to 5 are graphs showing the viscosity distribution of conventional products.

本発明において、光伝送に影響を与える領域偽)に用い
うるガラスとしては、例えば純siO,もしくはBe、
 P、 F、 B、 Fb等のうちのいずれかを主要な
添加物とするガラス等が挙げられる。また光伝送に影響
を与えない領域03)に用い得るガラスとしては、例え
ばN、 Zr、 La、 Os、 Pr、 N(1゜P
m、 am、 Mu、 G(1,TI)、 D7. E
IO,Fir、 Tm、 Yb、LuおよびわずかなA
/  (14重量%まで)からなる群のうちの1以上を
主要な添加物とする石英系ガラスが挙げられる。
In the present invention, examples of the glass that can be used for the region affecting optical transmission include pure SiO, Be,
Examples include glasses containing any one of P, F, B, Fb, etc. as a main additive. In addition, examples of glasses that can be used in the region 03) that do not affect optical transmission include N, Zr, La, Os, Pr, N (1°P
m, am, Mu, G (1, TI), D7. E
IO, Fir, Tm, Yb, Lu and a little A
/ (up to 14% by weight) as the main additive.

上記したようなガラスを用いて構成した本発明のプリフ
ォームの領域Bの部分の粘度としては、例えば10藝〜
108ボワズ程度で、領域(4)の部分の粘度はこれ以
下、ふつう(Blの粘度の数分の1であるが、できるだ
け低くすることが好ましい。すなわち囚と031の粘度
差は、大きければ大きいほど、本発明の目的にとυ好ま
しい。(5)とCBIの粘度差はわずかでも有効である
が、差が2倍以上であることが好ましい。
The viscosity of the region B of the preform of the present invention constructed using the glass described above is, for example, 10 to 10 g.
The viscosity of the area (4) is about 108 Boise, and the viscosity of the region (4) is normally lower than this (a fraction of the viscosity of Bl, but it is preferable to keep it as low as possible. In other words, the larger the difference in viscosity between Bl and 031, the larger it is. It is more preferable for the purpose of the present invention to have a viscosity difference of (5) and CBI, although even a small difference in viscosity is effective, it is preferable that the difference is twice or more.

ところで、光ファイバプリフォームにおいて、その外周
部の粘度が高い場合、i)線引き温度、ii)線引き張
力を固定すると、iii )線引き温度は高くなる。こ
の:)〜(11)は独立には制御できないが、本発明に
よれば、温度と張力を固定する、張力と速度とを固定す
る、のいずれの場合でも、従来品より好結果が得られる
。本発明の技術思想と忠実に一致する方法としては、張
力と線引速度を固定して行うことが好ましいが、技術的
に困難な点があるため、以下の実施例においては、張力
と温度を固定することによった。
By the way, in the case where the viscosity of the outer circumference of an optical fiber preform is high, if i) the drawing temperature and ii) the drawing tension are fixed, the drawing temperature (iii) becomes high. Although these :) to (11) cannot be controlled independently, according to the present invention, better results than conventional products can be obtained in either case of fixing the temperature and tension, or fixing the tension and speed. . As a method that faithfully corresponds to the technical idea of the present invention, it is preferable to fix the tension and drawing speed, but since it is technically difficult, in the following examples, the tension and temperature are fixed. By fixing it.

さらに、本発明は、シングルモードファイバ用プリフォ
ーム、マルチモードファイバ用プリフォームのいずれに
適用しても有効である。
Furthermore, the present invention is effective when applied to either a single mode fiber preform or a multimode fiber preform.

〔実施例〕〔Example〕

以下、実施例によυ本発明の光ファイバプリフォームお
よびその効果を具体的に説明する。
Hereinafter, the optical fiber preform of the present invention and its effects will be specifically explained with reference to Examples.

実施例1゜ 直径5fiの純シリカコアとその外周の外径7−の弗素
含量3重量%の弗素添加シリカクラッドからなるプリフ
ォームの外周に、窒素をCL3重量5含有するシリカガ
ラスを2.75+m厚さにプラズマ法により外付けした
Example 1 A preform consisting of a pure silica core with a diameter of 5 fi and a fluorine-doped silica cladding with an outer diameter of 7 and a fluorine content of 3% by weight was coated with silica glass containing CL3 weight of nitrogen at a thickness of 2.75+m. It was attached externally using the plasma method.

上記により得られた光ファイバプリフォームを温度21
00℃張力15fの状態で線引きし、光ファイバを得た
。この時の粘性は外周部〉コア部〉クラッド部となって
いた。
The optical fiber preform obtained above was heated to 21°C.
An optical fiber was obtained by drawing at 00° C. under a tension of 15 f. At this time, the viscosity was as follows: outer periphery, core, and cladding.

得られた外径125μ毒、コア径50μ慣の光ファイバ
に”Co0r線を10’R/Hの線量率で1時間照射し
、1週間後に波長Q、65μ常における伝送損失を測定
したところ554B/kmであった。
The resulting optical fiber with an outer diameter of 125μ and a core diameter of 50μ was irradiated with Co0r radiation at a dose rate of 10'R/H for 1 hour, and after one week, the transmission loss at wavelength Q and 65μ was measured and it was 554B. /km.

比較例1゜ 実施例1において窒素を0.5重量%含有するシリカガ
ラスのかわシに純石英ガラスを外付けした以外は同様に
行った。得られた光ファイバのγ線照射後におけるcL
63μ惰での伝送損失は77 aB/ kmと実施例1
より大きかった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that pure silica glass was attached externally to the silica glass sill containing 0.5% by weight of nitrogen. cL of the obtained optical fiber after γ-ray irradiation
The transmission loss at 63 μ inertia is 77 aB/km in Example 1.
It was bigger.

実施例Z 直径1.6118の純シリカコアとその外周の外径19
.2.の弗素含量1重量%の弗素添加シリカクラッドか
らなるプリフォームの外周に、窒素をα5重量5含有す
るシリカガラスをz9■厚さにプラズマ法により外付け
した。
Example Z Pure silica core with a diameter of 1.6118 and its outer diameter of 19
.. 2. On the outer periphery of a preform made of a fluorine-doped silica cladding having a fluorine content of 1% by weight, silica glass containing α5% by weight of nitrogen was externally attached to a thickness of z9cm by a plasma method.

上記により得られた光ファイバプリフォームを温度21
00℃、張力15fの状態で線引きし、シングルモード
光ファイバを得た。このファイバの1.5μ倶における
伝送損失は(L 、a OdB/kmであった。
The optical fiber preform obtained above was heated to 21°C.
The fiber was drawn at 00° C. and under a tension of 15 f to obtain a single mode optical fiber. The transmission loss of this fiber at 1.5 μm was (L, a OdB/km).

得られたファイバに”Coのγ線を106R/Hの線量
率で1時間照射し、1週間後に波長1.3μ倶における
伝送損失を測定したところα51clB/41anでろ
った。
The obtained fiber was irradiated with Co gamma rays at a dose rate of 106R/H for 1 hour, and one week later, the transmission loss at a wavelength of 1.3μ was measured and found to be α51clB/41an.

比較例λ 実施例2において窒素をQ、5重量%含有するシリカガ
ラスのかわりに純石英ガラスを外付けした以外は、同様
に行った。得られた光ファイバの1.3μ常における初
期伝送損失は[1,58dB/bで実施例2とほぼ同じ
であった。γ線照射1週間後の伝送損失はa 64 d
B/kmで実施例2よシ大きかった。
Comparative Example λ The same procedure as in Example 2 was carried out except that pure silica glass was externally attached instead of the silica glass containing Q and 5% by weight of nitrogen. The initial transmission loss of the obtained optical fiber at 1.3μ was 1.58 dB/b, which was almost the same as in Example 2. The transmission loss after one week of γ-ray irradiation is a 64 d
B/km was higher than that of Example 2.

以上の実施例は窒素を含有するシリカガラスからなる高
粘度層のものを示したが、窒素にかえてZrを添加した
ガラスを用いることも特に好ましい実施態様である。
Although the above examples have shown high viscosity layers made of silica glass containing nitrogen, it is also a particularly preferred embodiment to use glass to which Zr is added instead of nitrogen.

〔発明の効果〕〔Effect of the invention〕

本発明の光ファイバプリフォームは該プリフォームを線
引きして光ファイバを得たときに、従来品に比し、放射
線被曝や水素雰囲気下においても特性劣化が少ない、優
れた光ファイバを得ることができる効果を奏する。  
When the optical fiber preform of the present invention is drawn to obtain an optical fiber, it is possible to obtain an excellent optical fiber with less characteristic deterioration even under radiation exposure or hydrogen atmosphere compared to conventional products. Make the most of your efforts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、光ファイバ用プリフォームの断
面構造と、線引き時における径方向の粘性分布を示す図
であって、 第1図および第2図は本発明品光ファイバ用プリフォー
ム、 第3図ないし第5図は従来品、の場合である。
1 to 5 are diagrams showing the cross-sectional structure of an optical fiber preform and the radial viscosity distribution during drawing, and FIGS. 1 and 2 show the optical fiber preform of the present invention. , Figures 3 to 5 are for conventional products.

Claims (2)

【特許請求の範囲】[Claims] (1)光伝送損失に影響を与える部分およびその外周に
あつて光伝送損失に影響しない部分からなる光ファイバ
用プリフオームであつて、後者の部分のガラスの該プリ
フオームの線引き温度における粘性が前者の部分のガラ
ス及び純石英ガラスのそれより高い、ことを特徴とする
光ファイバ用プリフオーム。
(1) An optical fiber preform consisting of a part that affects optical transmission loss and a part on its outer periphery that does not affect optical transmission loss, where the viscosity of the glass in the latter part at the drawing temperature of the preform is lower than that of the former. A preform for an optical fiber, characterized in that the preform is higher than that of glass and pure silica glass.
(2)コアが純粋石英ガラス・クラッドが少なくともフ
ッ素を含む石英ガラスである特許請求の範囲第(1)項
記載の光ファイバ用プリフオーム。
(2) The optical fiber preform according to claim (1), wherein the core is pure silica glass and the cladding is quartz glass containing at least fluorine.
JP3181086A 1986-02-18 1986-02-18 Preform of optical fiber with reduced defects Pending JPS62191432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181086A JPS62191432A (en) 1986-02-18 1986-02-18 Preform of optical fiber with reduced defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181086A JPS62191432A (en) 1986-02-18 1986-02-18 Preform of optical fiber with reduced defects

Publications (1)

Publication Number Publication Date
JPS62191432A true JPS62191432A (en) 1987-08-21

Family

ID=12341449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181086A Pending JPS62191432A (en) 1986-02-18 1986-02-18 Preform of optical fiber with reduced defects

Country Status (1)

Country Link
JP (1) JPS62191432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208259A (en) * 1994-10-07 1996-08-13 Samsung Electron Co Ltd Optical fiber base material that has thermal conductivity variation in radial direction and its manufacture
US7752869B2 (en) 2002-08-07 2010-07-13 Shin-Etsu Chemical Co., Ltd. Optical fiber preform, method for manufacturing thereof, and optical fiber obtained by drawing thereof
JP2011215556A (en) * 2010-03-17 2011-10-27 Sumitomo Electric Ind Ltd Multi-core optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217010A (en) * 1985-03-22 1986-09-26 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217010A (en) * 1985-03-22 1986-09-26 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208259A (en) * 1994-10-07 1996-08-13 Samsung Electron Co Ltd Optical fiber base material that has thermal conductivity variation in radial direction and its manufacture
US7752869B2 (en) 2002-08-07 2010-07-13 Shin-Etsu Chemical Co., Ltd. Optical fiber preform, method for manufacturing thereof, and optical fiber obtained by drawing thereof
JP2011215556A (en) * 2010-03-17 2011-10-27 Sumitomo Electric Ind Ltd Multi-core optical fiber

Similar Documents

Publication Publication Date Title
US5681365A (en) Radiation resistant optical waveguide fiber
JPH11513141A (en) Optical waveguide fiber containing titania and germania
JPH044988B2 (en)
EP0540042B1 (en) High power acceptable optical fiber and fabrication method thereof
AU601263B2 (en) Optical fiber
JPH11237514A (en) Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform
JPS62191432A (en) Preform of optical fiber with reduced defects
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
JPH0416427B2 (en)
US4553995A (en) Process for producing image fiber
JPH01224706A (en) Optical fiber
US6564585B2 (en) Method for producing a second-order nonlinear glass material
JP2002082250A (en) Low non-linear single mode optical fiber
JP2004529060A (en) Optical fiber and method for producing optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS6163543A (en) Quartz-based optical fiber
JPS63208005A (en) Optical fiber
JPS6050503A (en) Optical fiber
JP4459875B2 (en) Optical fiber preform and manufacturing method thereof, and optical fiber manufacturing method
JP3933522B2 (en) Optical fiber
JPS61132531A (en) Production of optical fiber
JPS63222031A (en) Production of preform for optical fiber
JP2721260B2 (en) Perfluorinated optical fiber
JP3408855B2 (en) Image fiber strand
JPH06345494A (en) Carbon-coated optical fiber