JPS62191035A - Pressure-crystallizing apparatus - Google Patents
Pressure-crystallizing apparatusInfo
- Publication number
- JPS62191035A JPS62191035A JP3340786A JP3340786A JPS62191035A JP S62191035 A JPS62191035 A JP S62191035A JP 3340786 A JP3340786 A JP 3340786A JP 3340786 A JP3340786 A JP 3340786A JP S62191035 A JPS62191035 A JP S62191035A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- crystallized
- filter
- partition wall
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 41
- 238000005192 partition Methods 0.000 claims abstract description 16
- 238000002425 crystallisation Methods 0.000 abstract description 11
- 230000008025 crystallization Effects 0.000 abstract description 11
- 239000007788 liquid Substances 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract description 8
- 238000010008 shearing Methods 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- 239000010720 hydraulic oil Substances 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Glanulating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、被晶析材料を超高圧下に加圧して、結晶を析
出させる圧力晶析装置の改善に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a pressure crystallizer that precipitates crystals by pressurizing a material to be crystallized under ultra-high pressure.
(従来の技術)
液状物の結晶を析出させるに当って、被晶析材料を超高
圧下に加圧して行なうことは既知であり、第10図に示
すように容器内に被晶析材料を収容し、ピストンによっ
てこれを加圧する手段が用いられている。即ち同図にお
いて、プレス枠21内に設置する処理容器22に、ブレ
ス枠21側に設けた油圧シリンダ23のピストン24が
加圧部材として昇降自在に挿入され、タンク25内の液
状物である被晶析材料26が供給管路27を介して処理
容器22内に定量供給され、油圧管路28を介し、ピス
トン24が下降して、被晶析材料26を例えば2000
kgf/cffl程度の超高圧下に加圧して結晶を析出
させ、排液管路30より被晶析材料の排液のみを排出さ
せ、ガス置換管路29により置換ガスを容器22内に送
るのであり、これによって例えばP−リンチクレゾール
液からP一体を回収する等である。この第10図に示し
たものは断熱的圧力晶析の可能であることを実証するた
めのパイロット装置であって、P−リッチクレゾールか
らP一体を回収する目的のもので、その圧力2000k
gf/am!、容量1.51、原料注入温度10〜50
℃、加圧速度10sec/2000kgf/c+J、サ
イクル時間2m1n(最短)の主要諸元下において、P
−濃度30χの原料を用いた結果では、サイクル時間3
m1n程度で、その到達純度99.5χ、回収率は計算
値の90χに近い結果が得られている。第9図に例示し
たものはかかる圧力晶析装置として工業的に実用に供さ
れている1例を示し、上蓋3、下蓋4を備えた圧力容器
2内に、下蓋4側に設けた供給路4aを介して被晶析材
料26を上蓋3および下M4間に亘って、かつ容器2の
内面との間に空間による断熱層14を介して立設したフ
ィルター13内に供給し、ピストン15によって加圧す
ることによって晶析し、排液をフィルター13により濾
過して、下蓋4例の外下M(パツキングランド)6に設
けられ、かつ断面層14下端と連通ずる排液路6aから
排出させるのである。第10図において示した加圧用圧
力媒体や被晶析材料26の供給手段は第9図においても
使用される。(Prior Art) It is known that the material to be crystallized is pressurized under ultra-high pressure to precipitate crystals of a liquid, and as shown in Fig. 10, the material to be crystallized is placed in a container. Means is used to house the container and pressurize it with a piston. That is, in the same figure, a piston 24 of a hydraulic cylinder 23 provided on the press frame 21 side is inserted into a processing container 22 installed in a press frame 21 as a pressurizing member so as to be able to move up and down. The crystallization material 26 is supplied in a constant quantity into the processing container 22 via the supply pipe line 27, and the piston 24 descends via the hydraulic pipe line 28, and the material to be crystallized 26 is fed into the processing container 22, for example, by
The crystals are precipitated by applying pressure under ultra-high pressure of approximately kgf/cffl, only the waste liquid of the material to be crystallized is discharged from the drain pipe 30, and the replacement gas is sent into the container 22 through the gas replacement pipe 29. This allows, for example, recovering P from a P-lynchresol solution. The device shown in Fig. 10 is a pilot device to demonstrate the possibility of adiabatic pressure crystallization, and is intended to recover P from P-rich cresol at a pressure of 2000 K.
gf/am! , capacity 1.51, raw material injection temperature 10-50
℃, pressurization speed 10sec/2000kgf/c+J, cycle time 2m1n (minimum), P
-Results using feedstock with a concentration of 30χ indicate a cycle time of 3
With a purity of about m1n, the achieved purity was 99.5χ, and the recovery rate was close to the calculated value of 90χ. The one illustrated in FIG. 9 shows one example of such a pressure crystallizer that is in practical use industrially. The material to be crystallized 26 is supplied through the supply path 4a into the filter 13 which is provided upright between the upper lid 3 and the lower M4 and with a heat insulating layer 14 formed by a space between the inner surface of the container 2 and the piston. 15, and the drained liquid is filtered by the filter 13, and the liquid is drained from the drain path 6a provided at the outer lower M (packing gland) 6 of the four lower lids and communicating with the lower end of the cross-sectional layer 14. It is discharged. The means for supplying the pressure medium for pressurization and the material to be crystallized 26 shown in FIG. 10 are also used in FIG.
(発明が解決しようとする問題点) 上記した従来技術における問題点は、次の通りである。(Problem to be solved by the invention) The problems with the above-mentioned conventional technology are as follows.
圧力容器内に直接ピストンを押込んで加圧するタイプの
ため、被晶析材料自体の摺動超高圧シールが必要であり
、また材料の液性質によっては容器内面に耐蝕ライナを
張る等の対策が必要とされるのみならず、結晶体はフィ
ルターと相対運動を行ない、フィルターに剪断力が発生
し、晶析の最終段階では粉体と同様となり、圧力分布が
生じて圧搾が不均一となる等の問題点が生じるのである
。Since this is a type in which a piston is pushed directly into the pressure vessel to apply pressure, a sliding ultra-high pressure seal is required for the material to be crystallized itself, and depending on the liquid properties of the material, measures such as applying a corrosion-resistant liner to the inside of the vessel may be required. Not only that, but the crystals move relative to the filter, generating shearing force on the filter, and in the final stage of crystallization it becomes similar to powder, resulting in pressure distribution and uneven squeezing. A problem arises.
(問題点を解決するための手段)
本発明は、上記の問題点を解決するため、被晶析材料と
圧力媒体とをエラステインクな隔壁によって完全に仕切
り、従来型式のような摺動シール構造を用いる必要をな
くし、更にはフィルター構造を改善して、晶析のだめの
加圧力が等方向で、フィルターに対し直角方向に力が加
わるようにし、圧搾段階において圧力が均等化されるよ
うにしたもので、具体的には、圧力媒体の供給手段と被
晶析材料の供給手段とを具備する圧力容器内に、前記圧
力媒体と被晶析材料とを分離する弾性加圧隔壁が設けら
れるとともに、前記弾性加圧隅壁とほぼ等距離下にフィ
ルターが被晶析材料側に設けられることにある。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention completely partitions the material to be crystallized and the pressure medium by an elastane partition wall, and has a sliding seal structure like the conventional type. In addition, the filter structure has been improved so that the pressure applied to the crystallization reservoir is uniform and perpendicular to the filter, so that the pressure is equalized during the compression stage. Specifically, in a pressure vessel equipped with a supply means for a pressure medium and a supply means for a material to be crystallized, an elastic pressure partition is provided to separate the pressure medium and the material to be crystallized. , a filter is provided on the side of the material to be crystallized at substantially the same distance below the elastic pressure corner wall.
(作 用)
本発明の技術的手段によれば、第1図に示すように、図
例では冷間静水圧加圧手段(CI P法)による圧力晶
析装置を示しているが、プレスフレームlによって圧力
容器2の軸力を受けるようにし、容器2の上下には上M
3および下蓋4がそれぞれ外下M(パツキングランド)
5および外下蓋(バンキングランド)6とともに閉塞さ
れ、前記外下蓋5および外下蓋6との間に亘って、容器
2の内面とは間隙を置いて弾性加圧隔壁となる略円筒状
の加圧ゴム型7を密封状に配設し、容器2には前記間隙
に連通ずる圧カポ−)2aを設け、上蓋3の下端と下蓋
4の上端との間に亘って被晶析材料の収納バッグ8を同
じく密封状に介在させて、バッグ8の上下両端を上蓋3
、下蓋4側にそれぞれ固着し、下蓋4側に被晶析材料の
給排路16を設け、該給排路16の収納ハング8側と連
通ずる開口端にフィルター13を設けるのである。この
給排路16の一端に被品析1料26のタンク9側からの
供給管路17を閉止弁10を介して連通し、給排路16
の他端に閉止弁11a、 llbを具備する排液管路1
Bを連通させ、また上M3側にガス供給路19を収納ハ
ング8と連通状に設けるとともに、ガス供給路19にガ
ス置換管路20を閉止弁12を介して連通させることに
よって、次のようにして晶析を行なうことができる。タ
ンク9より被晶析材料26を、閉止弁10を介して給排
路16、フィルター13をへて収納バッグ8内に定量供
給し、閉止弁10.11.12側を閉じた後、圧カポ−
)2aを介して圧力媒体(圧力油等)を容器2と加圧ゴ
ム型7との間に圧送し、所要の超高圧下に同ゴム型7収
納バツグ8を介して被晶析材料26を加圧し、結晶を析
出させるのであり、その後、閉止弁11側を開き、閉止
弁12を開いて置換管路20よりガス供給路19より収
納バッグ8内に置換ガスを送り、被晶析材料の液体のみ
をフィルター13、給排路16および閉止弁11側を介
して、排液管路18より排出させることになる。これに
よれば被晶析材料26と圧力媒体とは、エラスティック
な弾性加圧隔壁である加圧ガム型7、更には収納バッグ
8によって完全に分離されるとともに、前記両者7.8
によって被晶析材料26を加圧するため、シール構造を
設けるとしても全てそれは固定シール構造であり、摺動
超高圧シール構造を全く必要としないのであり、シール
構造の節単化と漏洩のおそれなく、また圧力容器2に対
して被晶析材料26が直接触れるおそれがない。更にま
たその加圧は等方向であるため、常にフィルター13に
直角方向に力が加わり、しかも圧搾段階では圧力が均等
となるのであり、結晶体がフィルターと相対運動し、フ
ィルター13に剪断力が発生したりするおそれも全(な
くなるのである。(Function) According to the technical means of the present invention, as shown in FIG. 1, although the illustrated example shows a pressure crystallizer using cold isostatic pressing means (CIP method), 1 to receive the axial force of the pressure vessel 2, and upper and lower M
3 and lower lid 4 are each outer lower M (packing land)
5 and an outer lower lid (banking land) 6, and extends between the outer lower lid 5 and the outer lower lid 6, and is spaced from the inner surface of the container 2 and has a substantially cylindrical shape that forms an elastic pressurizing partition. A pressurized rubber mold 7 is disposed in a sealed manner, and a pressurized capo 2a is provided in the container 2 to communicate with the gap, so that the material to be crystallized extends between the lower end of the upper lid 3 and the upper end of the lower lid 4. A material storage bag 8 is also interposed in a sealed manner, and both upper and lower ends of the bag 8 are attached to the upper lid 3.
, are fixed to the lower lid 4 side, a supply/discharge passage 16 for the material to be crystallized is provided on the lower lid 4 side, and a filter 13 is provided at the open end of the supply/discharge passage 16 that communicates with the storage hang 8 side. A supply pipe line 17 from the tank 9 side of the first material to be analyzed 26 is communicated with one end of this supply/discharge passage 16 via a shutoff valve 10 .
Drainage pipe 1 equipped with shutoff valves 11a and llb at the other end
B, and by providing a gas supply path 19 on the upper M3 side in communication with the storage hang 8, and by communicating a gas replacement pipe 20 with the gas supply path 19 via the shutoff valve 12, the following can be achieved. Crystallization can be carried out using A fixed amount of the material to be crystallized 26 is supplied from the tank 9 through the shutoff valve 10, the supply/discharge path 16, and the filter 13 into the storage bag 8. After closing the shutoff valves 10, 11, and 12 sides, the pressure capacitor −
) 2a, a pressure medium (pressure oil, etc.) is fed between the container 2 and the pressurized rubber mold 7, and the material to be crystallized 26 is fed through the rubber mold 7 storage bag 8 under the required ultra-high pressure. After that, the shutoff valve 11 side is opened, the shutoff valve 12 is opened, and the displacement gas is sent from the displacement pipe 20 to the gas supply passage 19 into the storage bag 8 to remove the material to be crystallized. Only the liquid is discharged from the drain pipe 18 via the filter 13, the supply/drain passage 16, and the shutoff valve 11 side. According to this, the material to be crystallized 26 and the pressure medium are completely separated by the pressure gum mold 7, which is an elastic pressure partition wall, and further by the storage bag 8.
In order to pressurize the material 26 to be crystallized, even if a seal structure is provided, it is a fixed seal structure, and there is no need for a sliding ultra-high pressure seal structure. Furthermore, there is no risk that the material to be crystallized 26 will come into direct contact with the pressure vessel 2. Furthermore, since the pressure is applied in the same direction, the force is always applied to the filter 13 in the perpendicular direction, and the pressure is even during the squeezing stage, and the crystals move relative to the filter, causing shearing force to be applied to the filter 13. There is no longer any possibility of this occurring.
(実施例)
本発明装置の各実施例を、第2図以下について逐次説示
する。(Example) Each example of the apparatus of the present invention will be sequentially explained with reference to FIG. 2 and subsequent figures.
第2図に示した実施例は、第1図実施例においては弾性
加圧隔壁としての加圧ゴム型7と収納バッグ8とを一体
化して兼用させた実施例であり、即ちゴム等の弾性材料
による力■圧ゴム型兼被晶析材料収納バッグ7aとして
構成したものを示し、またこの実施例においては、ガス
置換手段を省略し、圧力ボート2aを上蓋3側に設ける
とともに、これによって第1図実施例において示した外
下M5および外下蓋6を上M3、下蓋4側に一体に吸収
させることを可能としたものであり、このさい前記した
加圧ゴム型兼被晶析材料収納ハソグ7aは袋筒状とされ
、袋筒状の開口一端が下蓋4側に固着される。その他は
第1図実施と同様であるため、タンク9以下は省略しで
ある。The embodiment shown in FIG. 2 is an embodiment in which the pressurizing rubber mold 7 as an elastic pressurizing bulkhead and the storage bag 8 in the embodiment shown in FIG. The structure shown is a pressure rubber type/crystallization material storage bag 7a, and in this embodiment, the gas exchange means is omitted and the pressure boat 2a is provided on the upper lid 3 side. This allows the lower outer M5 and lower outer lid 6 shown in the example in Figure 1 to be absorbed into the upper M3 and lower lid 4 sides, and in this case, the above-mentioned pressurized rubber type and crystallization target material are used. The storage hook 7a is shaped like a tubular bag, and one end of the opening of the tubular bag is fixed to the lower lid 4 side. Since the other parts are the same as those shown in FIG. 1, the parts below tank 9 are omitted.
第3図に示した実施例は、袋筒状の加圧ゴム型7と収納
バッグ8とを用い、加圧ゴム型70袋筒の開口下端を下
M4側の外下蓋6上に支持させ、袋筒状の収納バッグ8
の開口下端を下M4側に支持させたものであり、また第
2図実施例と同じくガス置換手段を省略し、圧カポ−)
2aを上M3側に設けたものを示している。これら第2
.3図実施例においては加圧弾性隔壁7,8を袋筒状と
することにより、加圧は3方向より行なわれることにな
り、隅壁側の歪みを小さくするとともに被処理体の等方
向な圧搾上、有利である。またかかるガス置換手段を省
略する場合、晶析後の被晶析材料の液体排出は、圧力媒
体の低圧加圧によって行なうことになる。The embodiment shown in FIG. 3 uses a pressurized rubber mold 7 in the shape of a bag cylinder and a storage bag 8, and supports the open lower end of the pressurized rubber mold 70 on the outer lower lid 6 on the lower M4 side. , tubular storage bag 8
The lower end of the opening is supported on the lower M4 side, and the gas replacement means is omitted as in the embodiment shown in FIG.
2a is provided on the upper M3 side. These second
.. In the embodiment shown in Fig. 3, the pressurizing elastic partition walls 7 and 8 are shaped like bag tubes, so that pressurization is performed from three directions, thereby reducing distortion on the corner wall side and uniformly distributing the object to be processed. It is advantageous in terms of compression. In addition, when such a gas replacement means is omitted, the liquid discharge of the material to be crystallized after crystallization is performed by pressurizing the pressure medium at a low pressure.
第1図乃至第3図実施例においては、そのフィルター1
3を弾性加圧隔壁よりほぼ等距離下に設けるに際し、下
M4の上端位置としたが、フィルターの設置構造につい
ては、第4図以下の各実施例に示す構造が採用できる。In the embodiments of FIGS. 1 to 3, the filter 1
3 was placed at the upper end of the lower M4 at approximately the same distance below the elastic pressurizing partition wall.However, as for the installation structure of the filter, the structure shown in each embodiment shown in FIG. 4 and subsequent figures can be adopted.
第4図に示した実施例においては、第1図実施例に示し
たものと、同一符号は同一部材を示しているように、加
圧ゴム型7および収納バッグ8は同様であるが、フィル
ター13を図示のように上蓋3と下M4との上下中心位
置に亘って円筒状のフィルター13を縦断状に立設した
ものであり、このため被晶析材料26の供給路16aと
排出路16bは、図示のように分離されて別位置に設け
られる。従って加圧晶析後の排液に当っては、排出路1
6b側の圧力を徐々に落し、フィルター13を経由して
排液を排出させることになる。このフィルター13によ
れば、フィルター13は圧縮のみを受け、フィルター材
料としてポーラス体や網目体のフィルターを用いる時、
強度上有利であり、かつフィルター濾過面積は第1図乃
至第3図実施例に比し、著しく増大できる。In the embodiment shown in FIG. 4, the pressurized rubber mold 7 and the storage bag 8 are the same as those shown in the embodiment in FIG. As shown in the figure, a cylindrical filter 13 is vertically installed vertically across the center of the upper lid 3 and the lower M4, and therefore a supply path 16a and a discharge path 16b for the material to be crystallized 26 are provided. are separated and provided at different locations as shown. Therefore, when it comes to draining liquid after pressure crystallization, the drain path 1
The pressure on the 6b side is gradually reduced, and the waste liquid is discharged through the filter 13. According to this filter 13, the filter 13 receives only compression, and when a porous or mesh filter is used as the filter material,
This is advantageous in terms of strength, and the filter filtration area can be significantly increased compared to the embodiments shown in FIGS. 1 to 3.
第5図に示した実施例は、第4図実施例における円筒形
のフィルター13を、図示のように菊形断面のフィルタ
ー13としたものを示しており、これによればその濾過
面積は更に増大される利点があり、かつコンパクト化さ
れることになる。In the embodiment shown in FIG. 5, the cylindrical filter 13 in the embodiment in FIG. There will be increased benefits and compactness.
第6図に示した実施例は、先に第3図実施例において説
示した袋筒状の加圧ゴム型7、収納ハソグ8を用いるも
のにおいて、そのフィルター13を図示のように同じく
袋筒状としたものであり、これによれば第3図実施例と
同様に3方向よりの加圧によって弾性加圧隅壁側の歪み
を少なくし、被晶析材料26の等方向あ圧搾上、更に有
利である。The embodiment shown in FIG. 6 uses the bag-tube-shaped pressurized rubber mold 7 and the storage hook 8, which were previously explained in the embodiment of FIG. According to this, as in the embodiment of FIG. 3, the strain on the elastic pressurized corner wall side is reduced by applying pressure from three directions, and the material 26 to be crystallized is compressed in the same direction. It's advantageous.
尚被晶析材料26の給排に当っては、第4図実施例と同
様に供給路16aと排出路16bとに分れる。In supplying and discharging the material to be crystallized 26, it is divided into a supply path 16a and a discharge path 16b, similar to the embodiment shown in FIG.
第7図および第8図に示した実施例は、第1図乃至第6
図に示した各実施例において、加圧ゴム型7が何れも容
器2側に設置されたものであるに対し、加圧ゴム型7を
何れも袋筒状として、その開口上端を上M3側に圧力バ
ード2aを介して支持させ、この加圧ゴム型5を囲んで
外側にフィルター13を、上下蓋3.4側に亘って配設
したものである。このさい第7図実施例のものはフィル
ター13が円筒状であるに対し、第8図実施例はフィル
ター13を袋筒状としたものを用いた点で異なる。供給
路16aで示すように被晶析材料26はフィルター13
と加圧ゴム型7との間に供給され、排液は排出路16b
で示すようにフィルター13と容器2の内面との間の空
間による断熱層14をへて行なわれる。The embodiments shown in FIGS. 7 and 8 are similar to those shown in FIGS.
In each of the embodiments shown in the figures, the pressurized rubber molds 7 are all installed on the side of the container 2, whereas the pressurized rubber molds 7 are each shaped like a bag cylinder, and the upper end of the opening is placed on the upper M3 side. The pressure rubber mold 5 is supported by a pressure bar 2a, and a filter 13 is disposed on the outside surrounding the pressure rubber mold 5, extending over the upper and lower lids 3.4. In this case, the filter 13 of the embodiment shown in FIG. 7 is cylindrical, whereas the embodiment of FIG. 8 differs in that the filter 13 is shaped like a bag cylinder. As shown by the supply path 16a, the material to be crystallized 26 is fed to the filter 13.
and the pressurized rubber mold 7, and the drained liquid is discharged through the discharge path 16b.
As shown in FIG. 2, this is carried out through a heat insulating layer 14 formed by the space between the filter 13 and the inner surface of the container 2.
これによれば収納バッグ8を省略できるとともに、フィ
ルター13の濾過面積は著しく増大できることになる。According to this, the storage bag 8 can be omitted, and the filtration area of the filter 13 can be significantly increased.
同第1図乃至第6図に示した実施例においても、加圧ゴ
ム型7および該ゴム型7と容器内面との間の圧力媒体は
断熱層としての働きをすることはいうまでもない。It goes without saying that in the embodiments shown in FIGS. 1 to 6, the pressurized rubber mold 7 and the pressure medium between the rubber mold 7 and the inner surface of the container function as a heat insulating layer.
(発明の効果)
本発明によれば、従来のピストン押込方式の圧力晶析装
置に比し、何れの実施例においても、被晶析材料と圧力
媒体を弾性加圧隔壁7乃至8によっ゛ζ完全に分離し、
これによって従来のように所要部分に摺動超高圧シール
構造を用いる必要なく、全てのシール構造を簡単で漏洩
のおそれのない固定シール構造と出来、これによって超
高圧利用の晶析のための必要構造が簡単化され、しかも
弾性加圧隔壁とほぼ等距離下にフィルターを配設するこ
とにより、フィルター面積を容易に増大して濾過面積、
効率を向上させ、結晶体とフィルターとの相対運動や剪
断力発生をなくし、等友釣な加圧と相まって圧搾段階で
の圧力均等下が得られ、晶析の円滑、等質を期すること
ができるのである。(Effects of the Invention) According to the present invention, the material to be crystallized and the pressure medium are separated by the elastic pressurizing partitions 7 and 8 in all embodiments, compared to the conventional pressure crystallizer of the piston-push type. ζ completely separated,
As a result, there is no need to use a sliding ultra-high pressure seal structure in the required parts as in the past, and all seal structures can be made into a simple fixed seal structure with no risk of leakage. The structure is simplified, and by arranging the filter almost equidistantly below the elastic pressure partition, the filter area can be easily increased and the filtration area can be increased.
It improves efficiency, eliminates the relative movement between the crystal and the filter and the generation of shearing force, and in combination with equal pressure, achieves uniform pressure during the compression stage, ensuring smooth and homogeneous crystallization. It can be done.
第1図は本発明装置実施例の縦断正面図、第2図乃至第
8図は何れも同装置変形実施例の各要部縦断正面図、第
9図はピストン式晶析装置1例の縦断正面図、第10図
は同加圧晶析装置の基本的構造説明図である。
1・・・プレスフレーム、2−圧力容器、3−上蓋、4
・−・下蓋、7・−・加圧ゴム型(加圧弾性隔壁)、8
−収納バソゲ、26・−被晶析材料。
第6図
第70図
J7rA
toa 4 16bFIG. 1 is a longitudinal sectional front view of an embodiment of the apparatus of the present invention, FIGS. 2 to 8 are longitudinal sectional front views of each main part of a modified embodiment of the same apparatus, and FIG. 9 is a longitudinal sectional view of an example of a piston-type crystallizer. The front view and FIG. 10 are explanatory diagrams of the basic structure of the pressure crystallizer. 1...Press frame, 2-Pressure vessel, 3-Top lid, 4
・-・Lower lid, 7・-・Pressure rubber type (pressurized elastic partition), 8
- Storage bathoge, 26. - Material to be crystallized. Figure 6 Figure 70 J7rA toa 4 16b
Claims (1)
備する圧力容器内に、前記圧力媒体と被晶析材料とを分
離する弾性加圧隔壁が設けられるとともに、前記弾性加
圧隔壁とほぼ等距離下にフィルターが被晶析材料側に設
けられることを特徴とする圧力晶析装置。1. An elastic pressure partition separating the pressure medium and the material to be crystallized is provided in a pressure vessel equipped with a supply means for a pressure medium and a supply means for a material to be crystallized, and the elastic pressure partition A pressure crystallizer characterized in that a filter is provided on the side of the material to be crystallized at approximately the same distance below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3340786A JPS62191035A (en) | 1986-02-17 | 1986-02-17 | Pressure-crystallizing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3340786A JPS62191035A (en) | 1986-02-17 | 1986-02-17 | Pressure-crystallizing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62191035A true JPS62191035A (en) | 1987-08-21 |
JPH0535002B2 JPH0535002B2 (en) | 1993-05-25 |
Family
ID=12385742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3340786A Granted JPS62191035A (en) | 1986-02-17 | 1986-02-17 | Pressure-crystallizing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62191035A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63225446A (en) * | 1986-12-15 | 1988-09-20 | 松下電工株式会社 | Push button switch |
-
1986
- 1986-02-17 JP JP3340786A patent/JPS62191035A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63225446A (en) * | 1986-12-15 | 1988-09-20 | 松下電工株式会社 | Push button switch |
Also Published As
Publication number | Publication date |
---|---|
JPH0535002B2 (en) | 1993-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004060810A3 (en) | Method and system for supplying high purity fluid | |
CN108788094A (en) | A kind of multidigit parallel connection compression casting device and method for large aluminum alloy casting | |
AU2017349329B2 (en) | Filter with closely-spaced vertical plates | |
JPS62191035A (en) | Pressure-crystallizing apparatus | |
CN104215548B (en) | The static corrosion inhibition rate test combination unit of a kind of corrosion inhibiter and method of testing | |
CN108941514A (en) | A kind of casting method for large-scale corrosion resistant aluminium magnesium alloy component | |
JP2015516880A (en) | Method and apparatus for sealing a filtration chamber | |
CN207429777U (en) | A kind of plate and frame filter press | |
US1090874A (en) | Process of bringing hydrogen or hydrogen-containing gas mixtures to reaction and apparatus therefor. | |
WO2020262090A1 (en) | Isostatic pressing device, storage container for isostatic pressing device, and isostatic pressing treatment method | |
KR20170004040U (en) | Water purifier | |
CN221412292U (en) | Bulk drug crystallization kettle | |
JP2667528B2 (en) | Gas recovery method and device used therefor | |
US2480732A (en) | Filter apparatus for purifying fluids | |
US5057286A (en) | Vessel for use in hydrothermal synthesis | |
JPH01127198A (en) | Cip device | |
CN217489868U (en) | Improved structure of plate-and-frame filter press hydraulic control filter cake residual liquid | |
JP2000153103A (en) | Filter press apparatus and sludge dewatering | |
CN212760140U (en) | Pressurizing box for online cleaning and sterilizing of linear peristaltic pump hose | |
JPH03189401A (en) | Liquid accumulator | |
JP2526413Y2 (en) | Spiral type module | |
JPS61126998A (en) | Hot hydrostatic pressure applying device | |
JPH029878Y2 (en) | ||
JP3147873B2 (en) | Semiconductor manufacturing equipment | |
JP2839728B2 (en) | Pressure crystallization apparatus and pressure crystallization method |