JPS62190903A - Multiple mode horn antenna - Google Patents

Multiple mode horn antenna

Info

Publication number
JPS62190903A
JPS62190903A JP3347286A JP3347286A JPS62190903A JP S62190903 A JPS62190903 A JP S62190903A JP 3347286 A JP3347286 A JP 3347286A JP 3347286 A JP3347286 A JP 3347286A JP S62190903 A JPS62190903 A JP S62190903A
Authority
JP
Japan
Prior art keywords
dielectric
mode
waveguide
antenna
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347286A
Other languages
Japanese (ja)
Inventor
Goro Yoshida
吉田 吾朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP3347286A priority Critical patent/JPS62190903A/en
Publication of JPS62190903A publication Critical patent/JPS62190903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To prevent the opening efficiency of a parabolic antenna from decreasing by filling a dielectric in a mode generator. CONSTITUTION:A dielectric matching element 5 is a matching circuit which has a cylindrical dielectric projecting into a hollow circular waveguide 3 from a dielectric loaded waveguide 4 along the center axis of the waveguide. The TE11 mode in the hollow circular waveguide 3 is coupled with the TE11 mode in the dielectric loaded circular waveguide 4 without disordering an electric field distribution while an electromagnetic field is converged on the center of the waveguide by the circular dielectric. This multiple mode horn antenna is reducible in shape to one over the square root of the dielectric constant of the filled dielectric and the width of a 10dB down antenna beam can be expanded to >=90 deg., so it operates as the primary radiator of a parabolic antenna which has a >=120 deg. opening angle normally to obtain excellent radiation directivity without decreasing the opening rate of the parabolic antenna.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーダ製画のパラボラアンテナの−(従来の技
術) 纜モードホーンアンテナは、R6H,Turri口の 
”  Dual  ・Vlode  Small−Ap
erture  Antennas  ”(Egh;E
  tras、 AP −15no、21967 、P
P 307−308)に紹介されているアンテナ等があ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a parabolic antenna for radar production.
”Dual ・Vlode Small-Ap
erture Antennas” (Egh;E
tras, AP-15no, 21967, P
There are antennas introduced on pages 307-308).

第3図に従来の複モードホーンアンテナの一例の断面図
を示す。lはモード発生器、2は開口面、3は円形導波
管、θはモード発生器10円錐テーパの角度、lはモー
ド発生器1の円形導波管部分の長さ、Dは開口直径であ
る。
FIG. 3 shows a cross-sectional view of an example of a conventional multi-mode horn antenna. l is the mode generator, 2 is the aperture surface, 3 is the circular waveguide, θ is the angle of the conical taper of the mode generator 10, l is the length of the circular waveguide portion of the mode generator 1, and D is the aperture diameter. be.

この複モードホーンアンテナは、モード発生器1の内部
K T E u ト’l”M u モh’ ヲ発生すセ
、  2つのモードの型幅と位相を調整することにより
This multi-mode horn antenna generates the internal KTE of the mode generator 1 by adjusting the width and phase of the two modes.

E面とH面の放射指向性のアンテナビーム幅を一致させ
たものである。
The antenna beam widths of the radiation directivity of the E-plane and the H-plane are matched.

(発明が解決しようとする問題点) しかし′I″Mllモードは中空の円形導波管では。(Problem that the invention attempts to solve) However, the 'I''Mll mode is in a hollow circular waveguide.

その直径が1,22波長以下であると伝播されないので
、複モードホーンアンテナの開口直径を1.25波長よ
り小さくすることは雌しい。そのため従来の復モードホ
ーンアンテナでは+10dnダウンのアンテナビーム幅
を約90度からそれパ 以上に拡げることが出来なかった。通常の磁うボラアン
テナは開口角120度以上のものが用いられているが、
この開口角をもつパラボラアンテナの一次放射4として
従来の環モードホーンアンテナを用いろと、−次放射器
のアンテナビーム幅が狭いため、パラボラアンテナの開
口能率が低下する欠点があった。
If the diameter is less than 1.22 wavelengths, the light will not propagate, so it is advisable to make the aperture diameter of the multimode horn antenna smaller than 1.25 wavelengths. Therefore, with the conventional double-mode horn antenna, it was not possible to widen the +10 dn down antenna beam width from approximately 90 degrees to more than 90 degrees. Normal magnetic bolet antennas are used with an aperture angle of 120 degrees or more,
If a conventional ring mode horn antenna was used as the primary radiation 4 of a parabolic antenna having this aperture angle, the aperture efficiency of the parabolic antenna would be reduced due to the narrow antenna beam width of the -order radiator.

(問題点を解決するための手段) 本発明は、モード発生器の内部に誘電体を充填すること
により、開口直径が1.25波長以下でありてもTg、
、とTM 、、が伝搬モードとなり、E面と1−1面の
アンテナビーム幅が一致しかつ狭(ならないようにし、
120度以上の開口角をもつパラボラアンテナの一次放
射器として用いても、パラボラアンテナの開口能率を低
下させな(・ようにしたものである。また中空導波管と
誘電体を充填した導波管との間でインピーダンス不整合
が生じるので、中空導波管内に中心軸にそって誘電体を
突き出した形で整合をとったものである。
(Means for Solving the Problems) The present invention has the advantage of filling the inside of the mode generator with a dielectric material, so that even if the aperture diameter is 1.25 wavelength or less, the Tg and
, and TM , are the propagation modes, and the antenna beam widths of the E plane and the 1-1 plane are the same and narrow (so that they are not
Even when used as the primary radiator of a parabolic antenna with an aperture angle of 120 degrees or more, it does not reduce the aperture efficiency of the parabolic antenna. Since impedance mismatching occurs between the waveguide and the waveguide, matching is achieved by protruding a dielectric material along the central axis within the hollow waveguide.

(実施例) 第1図は本発明の一実施例を示す断面図である。1はモ
ード発生器、2は開口面、3は円形導波管、4は誘電体
装荷円形導波管、5は誘電体整合素子、εは誘電体の誘
電率、0はモード発生器10円錐テーパの角度、lはモ
ード発生器lの円形導波管部分の長さ、Dは開口直径で
ある。
(Embodiment) FIG. 1 is a sectional view showing an embodiment of the present invention. 1 is a mode generator, 2 is an aperture, 3 is a circular waveguide, 4 is a dielectric-loaded circular waveguide, 5 is a dielectric matching element, ε is the permittivity of the dielectric, 0 is the mode generator 10 cone The angle of taper, l is the length of the circular waveguide section of mode generator l, and D is the aperture diameter.

(作用) 第3図において、モード発生器lで生じるTM11モー
ドと’rg、、モードの電力比率は、テーパの角度θに
より次のように関係づけられる。
(Operation) In FIG. 3, the power ratios of the TM11 mode and the 'rg, mode generated in the mode generator l are related to each other by the taper angle θ as follows.

ココで、  PtM+1. Pti+tHTMo、TE
o モ)”) を力、λは自由空間における波長、λp
TM11+λ9TE+lはTM II 、 T E +
rE 壬ドの管内波長である。またモード発生器1で発
生されるTM目モードは、’rg、。
Here, PtM+1. Pti+tHTMo, TE
o Mo)”) is the force, λ is the wavelength in free space, λp
TM11+λ9TE+l is TM II, T E +
rE is the internal wavelength of the pipe. The TMth mode generated by the mode generator 1 is 'rg.

モードに対して90度の位相が進むため、開口面2で2
つのモードの位相が同相となるためには、モード発生器
10円形導波管部分の長さlが次の関係を充たす必要が
ある。
Since the phase advances by 90 degrees with respect to the mode, 2
In order for the phases of the two modes to be in phase, the length l of the circular waveguide portion of the mode generator 10 must satisfy the following relationship.

第1図において、誘電率Cの誘電体を充填しホーンアン
テナの形状を1戸qに縮小すると。
In FIG. 1, the shape of the horn antenna is reduced to 1 unit q by filling it with a dielectric material having a dielectric constant C.

モード発生器1の開口面2直前での2つのモードの型幅
・位相関係は、従来の中空の複モードホーンアンテナと
全く同様になる。しかし一方。
The width and phase relationship between the two modes immediately before the aperture 2 of the mode generator 1 is exactly the same as that of a conventional hollow multi-mode horn antenna. But on the other hand.

開口面2で各モードの特性インピーダンスと自由空間イ
ンピーダンスが異なるため、インピーダンスの不整合を
生じる。
Since the characteristic impedance and free space impedance of each mode differ at the aperture surface 2, impedance mismatch occurs.

そこで、モード発生51で生じるTM、、モードとtp
 B 、、モードの電力比率の平方根をとおいて、第1
図のA−A’、B−13’間のSパラメータを表すと、
マトリックスのユニタリー性から次の様になる。
Therefore, TM, , mode and tp generated in the mode generation 51
B,, taking the square root of the mode power ratio, the first
Expressing the S parameter between AA' and B-13' in the figure,
Due to the unitary property of the matrix, it becomes as follows.

ここでl”lt2は独立な位相であり、  811はA
−A′面に左から入射するTE、、モードの反射係数、
  82□はB −B’面に右から入射するTLIモー
ドの反射係数、S、3はB −r3’面に右から入射す
るTM11モードの反射係数、  Stg、SztはA
−X。
Here l”lt2 is an independent phase, and 811 is A
- TE incident on the A′ plane from the left, , reflection coefficient of the mode,
82□ is the reflection coefficient of the TLI mode incident on the B-B' plane from the right, S, 3 is the reflection coefficient of the TM11 mode incident on the B-r3' plane from the right, Stg and Szt are A
-X.

B −B’間のTEロモードの伝送量、  SI2.S
!IはA −A、  B −B’間ノTtV1nモー)
” ノ伝送it 8tx。
Amount of transmission in TE mode between B and B', SI2. S
! I is TtV1n between A-A and B-B')
”No transmission it 8tx.

S 12はB −B’面でのTE’、、モードとTM 
、、モードの間の伝送量である。またA−A面に左から
入射する″rE■モードの反射係数は小さいため8.I
−Oとしている。
S12 is TE' on the B-B' plane, mode and TM
, , is the amount of transmission between modes. Also, since the reflection coefficient of the "rE■ mode incident on the A-A plane from the left is small, 8.I
-O.

開口面2で自由空間とのインピーダンス不整合により、
それぞれのモードで反射が生じる時の定常状態での開口
面2からの放射電界を賑、1゜心組、°  とし、開口
面でのTEIIモードの反射係数をFT4透過係数をT
TE 、 TM、、モードの反射係数をrTM、透過係
数を’rTM、とすると、(4)式のSパラメータを用
いてETm++°、ETM口°は次の様に表せる。
Due to the impedance mismatch with the free space at the aperture surface 2,
The radiated electric field from the aperture surface 2 in a steady state when reflection occurs in each mode is set at 1°, and the reflection coefficient of the TEII mode at the aperture surface is defined as the FT4 transmission coefficient by T.
If the reflection coefficient of the TE, TM, mode is rTM, and the transmission coefficient is 'rTM, then ETm++° and ETM mouth° can be expressed as follows using the S parameter of equation (4).

&E++・=i”Tr、・S+□+i″tg・(/’7
2・SH・St 2+l’ru・Sxz・Slx)+ 
1”Tto(/’trs226(r?t1St z+s
+ z+/″TMH8zs 8Sr s )十rTM−
82,・(rTM−83,・SI3+/″T6・S、2
・S1□))+・・・(5)&Mt+’=T7M−81
3イl′1・(FTM−83,・Sl、±rTt−8,
2・Sl□)+TTM・(FTM−8s s ・(/’
TM″8ss°Sti%5iz−8+2)+ /’rz
・ss’x ・(/’rz−8z□・8.2+/’?M
”s23 ’81 m ))+・・・(61ここで、(
4)式の12 : tnπとするとと成り、モード発生
器で発生した比率で2つのモードの電磁界が複モードホ
ーンアンテナの開口面2から放射されろ。
&E++・=i”Tr,・S+□+i″tg・(/'7
2・SH・St 2+l'ru・Sxz・Slx)+
1"Tto(/'trs226(r?t1St z+s
+ z+/″TMH8zs 8Sr s) 10rTM-
82,・(rTM-83,・SI3+/″T6・S, 2
・S1□))+...(5)&Mt+'=T7M-81
3l'1・(FTM-83,・Sl,±rTt-8,
2・Sl□)+TTM・(FTM-8s s ・(/'
TM″8ss°Sti%5iz−8+2)+ /’rz
・ss'x ・(/'rz-8z□・8.2+/'?M
”s23 '81 m )) +... (61 where, (
4) Equation 12: If tnπ, then two modes of electromagnetic fields are radiated from the aperture 2 of the multimode horn antenna at the ratio generated by the mode generator.

(4)式ノ8s3ハ、  B −B’面ニ右カラTM+
+モー 1−’を入射した時の反射係数であり、その位
相はt2+π である。B−B′面から入射した′ls
M、、モードはモード発生器内で円形導波管の直径が細
くなるためTM 、、モードが遮断される直径で反射さ
れ。
(4) Formula 8s3c, B - B' side right side TM+
This is the reflection coefficient when +Mo1-' is incident, and its phase is t2+π. 'ls incident from the B-B' plane
The M, mode is reflected at the diameter where the TM, mode is blocked due to the narrowing of the diameter of the circular waveguide within the mode generator.

この時位相は反転する。そのため、B−B’面からTM
、、モードが遮断される面までの伝播位相がnπであれ
ば、S、3の位相は20π+πとなる。
At this time, the phase is reversed. Therefore, from the B-B' plane, TM
,,If the propagation phase to the plane where the mode is blocked is nπ, then the phase of S,3 becomes 20π+π.

値にすることにより、開口面2でインピーダンス不整合
が生じている場合であっても、開口面2から放射される
TM 、1モードとrpE、、モードの比率を(1)式
の関係から決めることができる。このため誘電体を装荷
してE面、H面の放射指向性を同一なものとしたまま、
アンテナビーム幅を広げることが可能となった。アンテ
ナビーム幅は装荷する誘電体の誘電率を変えることによ
って調整できる。
By setting the value, even if impedance mismatch occurs at the aperture surface 2, the ratio of the TM, 1 mode and the rpE, mode radiated from the aperture surface 2 is determined from the relationship in equation (1). be able to. For this reason, while keeping the radiation directivity of the E plane and H plane the same by loading a dielectric,
It became possible to widen the antenna beam width. The antenna beam width can be adjusted by changing the dielectric constant of the loaded dielectric.

また導波管内に誘電体を装荷すると、中空の導波管との
接続面でインピーダンス不整合を生じる。腹モードホー
ンアンテナの入力側は、’rg、。
Furthermore, when a dielectric material is loaded into the waveguide, an impedance mismatch occurs at the connection surface with the hollow waveguide. The input side of the belly mode horn antenna is 'rg.

モードだけが伝播できる導波管直径となっているが9円
偏波あるいは水平、垂直の両側波を放射する為には、2
つの直交するTE、1モードが伝播する必要がある。こ
のためインピーダンス整合は2つのTg 、、モードに
たいして対称であり、かつモード間の結合の無い整合回
路を用いる必要がある。
The waveguide diameter is such that only the mode can propagate, but in order to radiate 9 circularly polarized waves or both horizontal and vertical waves, it is necessary to
Two orthogonal TEs, one mode, need to propagate. For this reason, it is necessary for impedance matching to use a matching circuit that is symmetrical with respect to the two Tg modes and has no coupling between the modes.

第1図の誘電体整合素子5は、誘電体装荷導波管4から
中空の円形導波管3内に円筒状誘電体を導波管の中心軸
にそって突き出した形の整合回路である。中空の円形導
波管3内の′■“r!311モードは9円筒状誘電体に
より導波管中央に電磁界が集中し、電磁界分布を大きく
乱すことなく誘電体装荷円形導波管4の1rFj ロモ
ードに結合させろことができる。第2図は誘電体整合素
子5による誘電体装荷複モードホーンアンテナのインピ
ーダンスの変化を示す。第2図のP点は整合回路を用い
ないときの誘電体装荷復モードホーンアンテナのインピ
ーダンス、3つの円弧は3種類の誘電体整合素子5の直
径で、長さを変えた時のインピーダンスの軌跡を表して
いる。
The dielectric matching element 5 shown in FIG. 1 is a matching circuit in which a cylindrical dielectric is protruded from the dielectric-loaded waveguide 4 into the hollow circular waveguide 3 along the central axis of the waveguide. . In the '■'r!311 mode in the hollow circular waveguide 3, the electromagnetic field is concentrated at the center of the waveguide by the 9 cylindrical dielectric, and the dielectric-loaded circular waveguide 4 is generated without greatly disturbing the electromagnetic field distribution. Figure 2 shows the change in impedance of a dielectric-loaded multi-mode horn antenna due to the dielectric matching element 5. Point P in Figure 2 shows the dielectric resistance when no matching circuit is used. The impedance of the loaded re-mode horn antenna, the three circular arcs are the diameters of the three types of dielectric matching elements 5, and represents the locus of impedance when the length is changed.

直径に対する変化と、長さに対する変化がほぼ直交して
いるため、容易に整合をとることができる。この誘電体
整合素子を用いた整合回路は。
Since the change in diameter and the change in length are almost orthogonal, matching can be achieved easily. A matching circuit using this dielectric matching element.

円形アイリスによる整合方法に比べて放電耐圧の低下の
恐れが無いため、高出力のレーダiitのアンテナとし
て使用することができる。
Compared to the matching method using a circular iris, there is no risk of reduction in discharge withstand voltage, so it can be used as an antenna for high-output radar IIT.

(発明の効果) 本発明による複モードホーンアンテナは、その形状を充
填する誘電体の誘電率の平方根分の1に縮小でき、従来
の複モードホーンアンテナでは得られなかったIQ d
Bダウンアンテナビーム幅を90度以上に拡げられるた
め9通常の120度以上の開口角をもつパラボラアンテ
ナの一次放射器として、パラボラアンテナの開口能率を
低下させることなく2円偏波および水平・垂直の両側波
に対して良好な放射指向特性が得られる。また、中空導
波管と誘電体を充填した導波管とのインピーダンス整合
に、中空導波管内に中心軸にそって突き出た形の誘電体
整合素子を用いたことにより、良好な入力定在波比が得
られる利点がある。
(Effects of the Invention) The multi-mode horn antenna according to the present invention can be reduced to 1/square root of the permittivity of the dielectric material filling its shape, and has an IQ d that cannot be obtained with conventional multi-mode horn antennas.
B Down Antenna Because the beam width can be expanded to over 90 degrees, it can be used as the primary radiator for parabolic antennas with a normal aperture angle of 120 degrees or more, allowing circular polarization and horizontal/vertical polarization without reducing the aperture efficiency of the parabolic antenna. Good radiation directivity characteristics can be obtained for both side waves. In addition, by using a dielectric matching element that protrudes along the central axis inside the hollow waveguide for impedance matching between the hollow waveguide and the dielectric-filled waveguide, good input stability is achieved. There is an advantage that a wave ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第の複モード
アンテナの一例を示す断面図である。 1・・・モード発生器、2・・・開口面、3・・・円形
導波管、4・・・誘電体装荷円形導波管、5・・・誘電
体整合素子。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and a cross-sectional view showing an example of a second multi-mode antenna. DESCRIPTION OF SYMBOLS 1...Mode generator, 2...Aperture surface, 3...Circular waveguide, 4...Dielectric-loaded circular waveguide, 5...Dielectric matching element.

Claims (1)

【特許請求の範囲】[Claims]  誘電体を充填した誘電体装荷導波管から前記誘電体を
中空導波管内に中心軸にそって突き出た形に誘電体整合
素子を備え、前記誘電体装荷導波管は連なり誘電体を充
填して開口面を縮小したモード発生器で構成されたこと
を特徴とする複モードホーンアンテナ。
A dielectric matching element is provided in a shape that projects from a dielectric-loaded waveguide filled with a dielectric material into a hollow waveguide along a central axis, and the dielectric-loaded waveguides are connected and filled with a dielectric material. A multi-mode horn antenna comprising a mode generator with a reduced aperture.
JP3347286A 1986-02-18 1986-02-18 Multiple mode horn antenna Pending JPS62190903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347286A JPS62190903A (en) 1986-02-18 1986-02-18 Multiple mode horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347286A JPS62190903A (en) 1986-02-18 1986-02-18 Multiple mode horn antenna

Publications (1)

Publication Number Publication Date
JPS62190903A true JPS62190903A (en) 1987-08-21

Family

ID=12387482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347286A Pending JPS62190903A (en) 1986-02-18 1986-02-18 Multiple mode horn antenna

Country Status (1)

Country Link
JP (1) JPS62190903A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301902A (en) * 1991-03-28 1992-10-26 Mitsubishi Electric Corp Horn antenna
JPH09162631A (en) * 1995-12-06 1997-06-20 Fujitsu Ltd Antenna
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
JP2009268094A (en) * 2008-04-21 2009-11-12 Krohne Messtech Gmbh & Co Kg Dielectric antenna
JP2012175680A (en) * 2011-02-24 2012-09-10 Nec Corp Horn array antenna
JP2014078805A (en) * 2012-10-09 2014-05-01 Nippon Dengyo Kosaku Co Ltd Antenna and radio equipment
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894346A (en) * 1972-03-14 1973-12-05
JPS4970557A (en) * 1972-11-10 1974-07-08
JPS5368539A (en) * 1976-11-30 1978-06-19 Mitsubishi Electric Corp Horn antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894346A (en) * 1972-03-14 1973-12-05
JPS4970557A (en) * 1972-11-10 1974-07-08
JPS5368539A (en) * 1976-11-30 1978-06-19 Mitsubishi Electric Corp Horn antenna

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301902A (en) * 1991-03-28 1992-10-26 Mitsubishi Electric Corp Horn antenna
JPH09162631A (en) * 1995-12-06 1997-06-20 Fujitsu Ltd Antenna
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
JP2009268094A (en) * 2008-04-21 2009-11-12 Krohne Messtech Gmbh & Co Kg Dielectric antenna
JP2012175680A (en) * 2011-02-24 2012-09-10 Nec Corp Horn array antenna
JP2014078805A (en) * 2012-10-09 2014-05-01 Nippon Dengyo Kosaku Co Ltd Antenna and radio equipment
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith

Similar Documents

Publication Publication Date Title
US9960495B1 (en) Integrated single-piece antenna feed and circular polarizer
US4792814A (en) Conical horn antenna applicable to plural modes of electromagnetic waves
CA1173512A (en) Feed system for radiating elliptically polarized electromagnetic waves in microwave oven
JPH03203402A (en) Compensator for microwave feed phone, compensation type microwave feed phone, compensator for antenna feed phone, and compensation type feed phone
JPS62190903A (en) Multiple mode horn antenna
US4380014A (en) Feed horn for reflector antennae
Lu et al. 3-D-printed circularly polarized twisted-ridge horn antenna
CA2011475A1 (en) Low cross-polarization radiator of circularly polarized radiation
US4199764A (en) Dual band combiner for horn antenna
Li et al. Compact differential diplex filtenna with common-mode suppression for highly integrated radio frequency front-ends
US5903241A (en) Waveguide horn with restricted-length septums
JP2765255B2 (en) Horn antenna
JP3166869B2 (en) Method for converting a TE mode to an EHmn-type hybrid mode, and a helical aperture antenna for implementing the method
JP3188174B2 (en) Folded waveguide
US6700549B2 (en) Dielectric-filled antenna feed
US4862189A (en) Microwave transformer
JP2825261B2 (en) Coaxial horn antenna
US20020190911A1 (en) Multimode horn antenna
Hall et al. Microstrip feeds for prime focus fed reflector antennas
JPH0732324B2 (en) Multimode horn antenna
CN219591661U (en) Horn antenna with high caliber efficiency
JPH0547121B2 (en)
JP2922562B2 (en) Corrugated horn antenna
JPS61189003A (en) Conical horn antenna
JPS6017164B2 (en) horn antenna