JPS62189899A - Diaphragm for speaker - Google Patents
Diaphragm for speakerInfo
- Publication number
- JPS62189899A JPS62189899A JP3092886A JP3092886A JPS62189899A JP S62189899 A JPS62189899 A JP S62189899A JP 3092886 A JP3092886 A JP 3092886A JP 3092886 A JP3092886 A JP 3092886A JP S62189899 A JPS62189899 A JP S62189899A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fabric
- carbon fiber
- diaphragm
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 33
- 239000004917 carbon fiber Substances 0.000 claims abstract description 33
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 33
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002131 composite material Substances 0.000 claims abstract description 21
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 19
- 238000004513 sizing Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 abstract description 28
- 239000011347 resin Substances 0.000 abstract description 28
- 239000004744 fabric Substances 0.000 abstract description 14
- 229920002292 Nylon 6 Polymers 0.000 abstract description 7
- 239000003822 epoxy resin Substances 0.000 abstract description 5
- 229920000647 polyepoxide Polymers 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract 1
- -1 etc.) Polymers 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002759 woven fabric Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 101100313164 Caenorhabditis elegans sea-1 gene Proteins 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005007 epoxy-phenolic resin Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Diaphragms For Electromechanical Transducers (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、スピーカーに使用する振動板に関する。[Detailed description of the invention] Industrial applications The present invention relates to a diaphragm used in a speaker.
従来の技術
炭素繊維材料と樹脂との複合材料からなるスピーカー用
振動板は、よく知られている。しかして、炭素繊維材y
13+としては、短繊維や織物が使われている。また、
樹脂としては、初期のころは熱硬化性樹脂が使われてい
たが、熱硬化性樹脂は振動減衰性がそれほど大きくなく
、出力音圧周波数特性の、特に高音域に大きな山や谷が
現われること、熱硬化性樹脂は成形に比較的時間がかか
り、生産性が低いこと、などの理由から、近年、振動減
衰性がより大きくて比較的平坦な出力音圧周波数特性が
19られ、かつ人世生産に向いた熱可塑性樹脂が注目さ
れるようになってきた。BACKGROUND OF THE INVENTION A speaker diaphragm made of a composite material of carbon fiber material and resin is well known. However, carbon fiber material y
Short fibers and woven fabrics are used as 13+. Also,
In the early days, thermosetting resins were used as resins, but thermosetting resins do not have very good vibration damping properties, and large peaks and troughs appear in the output sound pressure frequency characteristics, especially in the high frequency range. In recent years, thermosetting resins have been developed to have higher vibration damping properties and relatively flat output sound pressure frequency characteristics. Thermoplastic resins, which are suitable for
そのような、炭素繊Iff材制と熱可塑性樹脂との複合
材料からなる振動板としては、たとえば特開昭52−1
28238公報に記載されているようなものが知られて
いる。この振動板は、炭素pIi雑の織物と熱可塑性樹
脂フィルムとを臣ね合わせ、加熱、加圧して両者を複合
化したものである。ところが、この振動板は、音響特性
が紅時的に変化してくるという問題がある。これは、炭
素繊維織物と熱可塑性樹脂フィルムとを単に矩ね合わせ
て加熱、加圧しただけでは、炭素繊維と熱可塑性樹脂と
の接合が十分に行われず、振動を繰り返しているうちに
界面が剥離してくるためではないかと思われた。また、
重ね合せ体の単なる加熱、加圧ににつては、炭素w4紺
織物と熱可塑性樹脂との十分な複合化が起こらず、rA
素繊維と熱可塑性樹脂との界面に空隙ができているので
はないかとも思われた。As a diaphragm made of such a composite material of carbon fiber If material and thermoplastic resin, for example, Japanese Patent Laid-Open No. 52-1
The one described in Publication No. 28238 is known. This diaphragm is made by combining a carbon pIi mixed fabric and a thermoplastic resin film, and heating and pressurizing the two to form a composite. However, this diaphragm has a problem in that its acoustic characteristics change over time. This is because simply arranging the carbon fiber fabric and the thermoplastic resin film together in a rectangular shape and heating and pressurizing them does not sufficiently bond the carbon fibers and the thermoplastic resin, and as the vibrations are repeated, the interface breaks down. I thought it was because it was peeling off. Also,
If the stacked body is simply heated and pressurized, sufficient compositing of the carbon w4 navy blue fabric and the thermoplastic resin will not occur, resulting in rA
It was also thought that voids were formed at the interface between the elementary fiber and the thermoplastic resin.
そこで、発明者は、炭素械N織物と熱可塑性樹脂フィル
ムとを重ね合わせて加熱、加圧するのではなく、炭素繊
$1 F31’物に溶融した熱可塑性樹脂を含浸するこ
とによる成形を試みた。しかしながら、このようにして
(qた振動板においても、上述したものほど茗しくはな
いものの、やはり音響特性の経時変化が現われた。また
、熱可塑性樹脂に代えて熱硬化性樹脂を使用した場合に
は、かかる経時変化がそれほど顕著に現われないことも
わかってきIこ。Therefore, the inventor attempted to form carbon fibers by impregnating them with molten thermoplastic resin instead of superimposing the carbon fiber N fabric and thermoplastic resin film and applying heat and pressure. . However, even with the diaphragm produced in this way, changes over time in the acoustic properties still appeared, although not as harsh as those described above.Also, when thermosetting resin was used instead of thermoplastic resin, It has also been found that such changes over time do not appear so markedly.
発明者は、かかる現象を検討した結果、その原因が、炭
素繊維に付与されているサイジング剤にあることがわか
った。すなわち、炭素繊維は、剛直で大変毛羽立ちやす
く、また糸切れしやすいため、そのままでは製造工程に
お【プるガイド類等との接触ヤ製織操作によって大量の
毛羽を発生したり、糸切れを起こして使いものにならな
い。そこで、サイジング剤による表面処理を施している
が、このサイジング剤が、振動板の、炭素繊維と熱可塑
性樹脂との接合性を悪くし、音響13性の経時変化を引
き起こしているのである。かかる接合性の低下は、サイ
ジング剤には一般にエポキシ系樹脂が使われるため、熱
硬化性樹脂を使用した場合にはほとんど問題なく、熱可
塑性樹脂を使用した場合に特有の問題であると考えられ
る。As a result of studying this phenomenon, the inventor found that the cause was the sizing agent applied to the carbon fibers. In other words, carbon fiber is rigid and very prone to fluffing, and it is easy to break, so if it is used as it is during the manufacturing process, it may generate a large amount of fuzz or cause yarn breakage due to contact with guides, etc., or weaving operations. It's useless. Therefore, surface treatment is performed using a sizing agent, but this sizing agent impairs the bonding between the carbon fiber and thermoplastic resin of the diaphragm, causing a change in acoustic properties over time. Since epoxy resins are generally used as sizing agents, this decrease in bondability is almost no problem when thermosetting resins are used, but is thought to be a problem specific to thermoplastic resins. .
発明が解決しようとする間n点
この発明の目的は、従来の振動板の上記欠点を解決し、
炭素繊維と熱可塑性樹脂との接合が良好で音響特性の経
時変化が極めて少ないばかりか、出力音圧周波数特性が
比較的平坦で、優れた音響特性を有するスピーカー用振
動板を提供するにある。The purpose of this invention is to solve the above-mentioned drawbacks of the conventional diaphragm,
It is an object of the present invention to provide a diaphragm for a speaker which not only has good bonding between carbon fiber and thermoplastic resin and has very little change in acoustic characteristics over time, but also has relatively flat output sound pressure frequency characteristics and has excellent acoustic characteristics.
問題点を解決するための手段
上記目的を達成するために、この発明においては、iナ
イロン樹脂が付着していない炭素!AIi紺材料と熱可
塑性樹脂との複合材料からなるスピーカー用振動板が(
2供される。Means for Solving the Problems In order to achieve the above object, in this invention, i.carbon to which nylon resin is not attached! A speaker diaphragm made of a composite material of AIi navy blue material and thermoplastic resin (
2 servings are served.
この発明をその製造方法とともに詳細に説明するに、こ
の発明においては、まず、炭素m雑材お1と熱可塑性樹
脂とを用意する。To explain this invention in detail together with its manufacturing method, in this invention, first, a carbon m miscellaneous material 1 and a thermoplastic resin are prepared.
上記炭素繊維材料は、炭素繊維の短NIA維または連続
11i1tからなるものである。しかして、この材料を
構成している炭素繊維には、サイジング剤が付着してい
る。なお、炭素繊維は、振動板の比弾性率を向上させ、
より高音域まで再生が可能であるように、弾性率が15
トン/mm2以上のものであるのが好ましい。The carbon fiber material is made of short NIA fibers or continuous 11ilt carbon fibers. However, the sizing agent is attached to the carbon fibers constituting this material. In addition, carbon fiber improves the specific elastic modulus of the diaphragm,
The elastic modulus is 15 so that it can reproduce higher frequencies.
It is preferable that it is more than ton/mm2.
炭素11i維材料は、短繊維を使用する場合には短繊維
マットの形で、また連続繊維を使用する場合には炭素m
維のマルチフィラメントの織物の形で用意する。短繊維
マットは、ヂョツプドストランドマットや解繊マットの
ようなものである。また、織物は、平織物、綾織物、朱
子織物など、いずれの織組織のものであってもよい。な
お、炭素m&紺材11には、少量の、たとえばガラス繊
維やアラミド繊維などの他の繊維が混入されていてもよ
い。The carbon 11i fiber material can be used in the form of short fiber mats if short fibers are used or in the form of carbon m if continuous fibers are used.
It is prepared in the form of a multifilament woven fabric. Short fiber mats include chopped strand mats and defibrated mats. Further, the woven fabric may have any woven structure such as a plain woven fabric, a twill woven fabric, or a satin woven fabric. Note that the carbon m&dark blue material 11 may contain a small amount of other fibers such as glass fibers and aramid fibers.
このような繊維の(jf用は、振動板の、たとえば比弾
性率や内部10失を制御したいような場合に有効である
。The use of such fibers (JF) is effective when it is desired to control, for example, the specific elastic modulus and internal loss of the diaphragm.
ざて、炭素繊維材料を構成している炭素繊維には、上述
したようにサイジング剤が付着しているが、この発明に
おいては、そのサイジング剤を除去して使用する。サイ
ジング剤の除去は、いろいろな方法によって行うことが
できる。たとえば、サイジング剤がエポキシ系樹脂やフ
ェノール系樹脂など、水不溶性のものである場合には、
炭素繊維材料を焼成し、熱分解して除去することができ
る。また、水溶性のサイジング剤、たとえばポリビニル
アルコール系樹脂やでんぷんなどが使われている場合に
は、水洗して除去する。As mentioned above, the sizing agent is attached to the carbon fibers constituting the carbon fiber material, but in this invention, the sizing agent is removed before use. Removal of the sizing agent can be accomplished by various methods. For example, if the sizing agent is water-insoluble, such as epoxy resin or phenolic resin,
The carbon fiber material can be removed by firing and pyrolyzing. Also, if a water-soluble sizing agent such as polyvinyl alcohol resin or starch is used, remove it by washing with water.
熱可塑性樹脂は、たとえばナイロン樹脂(ナイロン6樹
脂、ナイロン66樹脂など)、ポリエステル樹脂(ポリ
エチレンテレフタレート、ポリブチレンテレフタレート
など)、ポリオレフィン樹脂(ポリエチレン樹脂、ポリ
プロピレン樹脂、ポリ−4−メチルペンテン−1樹脂な
ど)、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリス
ルホン樹脂、ポリエーテルエーテルケ1−ン樹脂のよう
なものである。なかでも、振動減衰性が優れているナイ
ロン樹脂やポリオレフィン樹脂が好ましい。Examples of thermoplastic resins include nylon resins (nylon 6 resin, nylon 66 resin, etc.), polyester resins (polyethylene terephthalate, polybutylene terephthalate, etc.), polyolefin resins (polyethylene resin, polypropylene resin, poly-4-methylpentene-1 resin, etc.) ), polystyrene resin, polyvinyl chloride resin, polysulfone resin, and polyetheretherkene resin. Among these, nylon resins and polyolefin resins are preferred because of their excellent vibration damping properties.
上記熱可塑性樹脂は、振動減衰性や内部損失を向上させ
る目的で、5〜30ffiffi%稈度の、共手合成分
や、従来公知の可塑剤などを含んでいてもよい。たとえ
ば、ナイロン6にナイロン12ヤ66を共臣合させた樹
脂や、ポリプロピレンにエヂレンヤw#酸ビニルを共単
合させた樹脂を使用することができる。また、可塑剤と
して、ナイロン6樹脂にN−エヂルPトルエンスルホン
アミドを混入したり、ポリプロピレン樹脂にフタル酸ジ
オクチルを混入することができる。The thermoplastic resin may contain a synergistic component having a culm of 5 to 30 ffiffi%, a conventionally known plasticizer, etc. for the purpose of improving vibration damping properties and internal loss. For example, a resin in which nylon 6 and nylon 12 and 66 are co-incorporated, or a resin in which polypropylene and polypropylene are co-incorporated can be used. Further, as a plasticizer, N-edyl P-toluenesulfonamide can be mixed into nylon 6 resin, or dioctyl phthalate can be mixed into polypropylene resin.
さて、この発明においては、次いで上記炭素繊維材料と
熱可塑性樹脂とを複合し、所望の大きさの、または帯状
の複合シートを得る。これは、たとえば次のようにして
行う。Now, in this invention, the carbon fiber material and the thermoplastic resin are then composited to obtain a composite sheet of a desired size or band shape. This can be done, for example, as follows.
すなわち、それぞれ複数枚の、所望の大きざに裁断した
炭素繊維材料とシート状熱可塑性樹脂とを交互に手ね合
わせ、熱可塑性樹脂の融点以上、好ましくは融点上30
℃から80℃程度の温度下に5〜100Kg/cm2の
圧力を加えて複合化する。帯状の炭素繊維材料と熱可塑
性樹脂とを重ね合わゼて加熱ゾーンに供給し、その加熱
ゾーンにおいて上下一対の無端全屈ベル!−で挟み込ん
で加圧するJ:うにすれば、複合化を連続的に行うこと
ができるばかりか、帯状の複合シートを15Iることが
できる。複合シートはまた、炭素繊維材料の上に粉状の
熱可塑性樹脂を散イ[シた後、上記と同様に加熱、加圧
り゛ることによって′!!A造することもできる。なお
、複合シートは、炭素$JlIi紺の体積分打率が20
〜70%程度になるようにするのが好ましい。That is, a plurality of sheets of carbon fiber material cut into desired sizes and a sheet-like thermoplastic resin are alternately hand-kneaded to a temperature higher than the melting point of the thermoplastic resin, preferably 30 degrees higher than the melting point.
Compounding is carried out by applying a pressure of 5 to 100 Kg/cm2 at a temperature of about 80°C to 80°C. A belt-shaped carbon fiber material and thermoplastic resin are superimposed and supplied to a heating zone, and a pair of upper and lower endless fully bent bells are installed in the heating zone! By sandwiching and applying pressure with J:, not only can composite formation be performed continuously, but also 15I of band-shaped composite sheets can be produced. Composite sheets can also be produced by sprinkling a powdered thermoplastic resin onto a carbon fiber material, followed by heating and pressing in the same manner as above. ! It is also possible to build A. The composite sheet has a carbon $JlIi navy blue volume batting average of 20
It is preferable to set it to about 70%.
次に、上述した複合シートを、平たいシート状、または
コーン状ヤドーム状などの所望の振動板形状に成形し、
この発明の振動板を得る。この成形は、熱可塑性樹脂の
軟化点または融点以上、分解温度未満、好ましくは融点
上15〜60℃の温度に予熱した複合シートを、¥温か
ら熱可塑性樹脂の融点を越えない範囲の温度に保った圧
縮成形型に供給し、5〜500Kg/cm2の圧力を加
えて行う。Next, the above-mentioned composite sheet is formed into a desired diaphragm shape such as a flat sheet shape or a cone-shaped dome shape,
A diaphragm of this invention is obtained. This molding process involves heating the composite sheet, which has been preheated to a temperature above the softening point or melting point of the thermoplastic resin and below the decomposition temperature, preferably 15 to 60°C above the melting point, to a temperature in the range from ¥000 to not exceeding the melting point of the thermoplastic resin. The mixture is supplied to a compression mold that has been maintained, and a pressure of 5 to 500 kg/cm2 is applied thereto.
複合シートの、以上説明した方法とは全く異なる製造方
法として、複合シートを、炭素繊It (マルチフィラ
メント)に熱可塑性樹脂を含浸もしくは被覆し、それを
織成した後加熱して熱可塑性樹脂を溶融させてもよい。As a manufacturing method for a composite sheet that is completely different from the method described above, a composite sheet is produced by impregnating or coating carbon fiber It (multifilament) with a thermoplastic resin, weaving it, and then heating it to melt the thermoplastic resin. You may let them.
このとき、炭素Ili紺に熱可塑性樹脂を含浸もしくは
被覆する代わりに、微粉末状の熱可塑性樹脂を付着せし
めてもよい。At this time, instead of impregnating or coating the carbon Ili navy blue with a thermoplastic resin, a finely powdered thermoplastic resin may be attached.
以下、実施例に暴いてこの発明をざらに詳細に説明する
。Hereinafter, this invention will be explained in detail with reference to Examples.
衷凰■ユ
東し株式会社製炭素繊維平織物#63/i3を約380
℃で約30分間加熱し、付着しているエポキシ樹脂系サ
イジング剤を分解、除去した。Approximately 380 carbon fiber plain woven fabric #63/i3 manufactured by Yūtoshi Co., Ltd.
It was heated at ℃ for about 30 minutes to decompose and remove the attached epoxy resin sizing agent.
次に、サイジング剤を除去した後の上記織物と、ナイロ
ン6樹脂のフィルム(厚み255μm)とを重ね合わせ
、その重ね合せ体を約280℃に加熱した平型に入れ、
約5 K g/ c m 2の圧力下で約5分間保持し
た後、型に入れたまま、しかし圧力を約50KQ/cm
2まで上置させた状態で約10分間冷却し、炭素繊維織
物とナイロン6樹脂とからなる、平たい複合シートを得
た。Next, the above fabric from which the sizing agent has been removed and a nylon 6 resin film (thickness: 255 μm) are superimposed, and the superimposed body is placed in a flat mold heated to about 280°C.
After holding for about 5 minutes under a pressure of about 5 K g/cm2, leave it in the mold but reduce the pressure to about 50 KQ/cm.
2 and cooled for about 10 minutes to obtain a flat composite sheet made of carbon fiber fabric and nylon 6 resin.
次に、上記複合シー1〜を、約285℃に予熱した後、
約150℃に加熱された圧縮成形型に入れ、約100K
g/Cm2の圧力下に約10秒間保持してコーン状に成
形し、口径が’15cmであるこの発明の振動板を得た
。振動板中の炭素繊維の割合は、約58休槓%であった
。Next, after preheating the composite seams 1 to 1 to about 285°C,
Place it in a compression mold heated to about 150℃ and heat it to about 100K.
The diaphragm of the present invention was molded into a cone shape by holding it under a pressure of g/Cm2 for about 10 seconds to obtain a diaphragm of the present invention having a diameter of 15 cm. The proportion of carbon fiber in the diaphragm was approximately 58%.
次に、この振動板を用いてスピーカーを組み立て、周波
数F (H2>と出力音圧レベルL (dB)との関係
、つまり出力音圧周波数特性を測定した。Next, a speaker was assembled using this diaphragm, and the relationship between the frequency F (H2> and the output sound pressure level L (dB), that is, the output sound pressure frequency characteristic) was measured.
測定は、45リツトルの内容積をもつ密閉エンクロージ
ャーにスピーカーを取り付け、1Wの正弦波を20H2
から20000H2まテ4+’i)引し、生じた音の音
圧をスピーカーの前面1mの位置においてコンデンサー
マイクロホンで測定することによって行った。測定結果
を図面に実線で示す。The measurement was carried out by installing a speaker in a sealed enclosure with an internal volume of 45 liters, and applying a 1W sine wave to a 20H2
The sound pressure of the resulting sound was measured using a condenser microphone at a position 1 m in front of the speaker. The measurement results are shown in the drawing as solid lines.
図面から、この発明の振動板は、高音域においても出力
音圧周波数特性が比較的平坦で、著しい山や谷がなく、
また高い音圧レベルが117−られる、すなわち再生周
波数帯域が広いことがわかる。しかも、この特性は、ス
ピーカーを15Wの入力で96簡聞連続して駆動した後
においても全く変わらなかった。From the drawings, it can be seen that the diaphragm of the present invention has a relatively flat output sound pressure frequency characteristic even in the high frequency range, with no significant peaks or valleys.
It can also be seen that the high sound pressure level is 117 -, that is, the reproduction frequency band is wide. Furthermore, this characteristic did not change at all even after the speaker was driven continuously for 96 cycles with an input of 15 W.
実施例2
東し株式会社製炭素繊N8枚朱子織物#6341を約3
80″Cで約30分間加熱し、イ」むしているエポキシ
樹脂系サイジング剤を分解、除去した。Example 2 Approximately 3 pieces of carbon fiber N8-ply satin fabric #6341 manufactured by Toshi Co., Ltd.
It was heated at 80"C for about 30 minutes to decompose and remove the epoxy resin sizing agent that had been eaten away.
次に、サイジング剤を除去した後の上記織物の両面に、
ポリプロピレン樹脂フィルム(厚み二100μm)を手
ね合わせ、その重ね合せ体を約250’Cに加熱した平
型に入れ、以下実施例1と同様にして、炭素繊ML織物
とポリプロピレン樹脂とからなる平たい複合シー1〜を
得た。Next, on both sides of the fabric after removing the sizing agent,
Polypropylene resin films (thickness 2 100 μm) were hand-combined, the stacked body was placed in a flat mold heated to about 250'C, and the same procedure as in Example 1 was carried out to form a flat mold made of carbon fiber ML fabric and polypropylene resin. Composite sea 1~ was obtained.
次に、上記複合シートを、約250’Cに予熱した後、
¥温に保たれた圧縮成形望に入れ、約50KCI/cm
2の圧力下に約5秒間保持してコーン状に成形し、口径
が16cmであるこの発明の振動板を19だ。振動板中
に占める炭素m紺の割合は、約54体積%であった。Next, after preheating the composite sheet to about 250'C,
Placed in a compression molding chamber kept at a temperature of approximately 50 KCI/cm.
The diaphragm of this invention is molded into a cone shape by holding it under pressure of 2 for about 5 seconds and has a diameter of 16 cm. The proportion of carbon black in the diaphragm was approximately 54% by volume.
この振動板について実施例1と同様の試験をしたところ
、図面に点線で示すように、実施例1のものと同様、俤
れた出力音圧周波数1h性が得られた。この特性は、入
力15Wで96時間連続駆動した後においても全く変わ
らなかった。When this diaphragm was subjected to the same test as in Example 1, as shown by the dotted line in the drawing, similar to that in Example 1, a wide output sound pressure frequency of 1h was obtained. This characteristic did not change at all even after continuous driving for 96 hours at an input of 15 W.
発明の効果
この発明の振動板は、サイジング剤が付着していない炭
素l1li維材お1と熱可塑性樹脂との複合U利からな
るものであるからして、炭素繊維と熱可塑↑1樹脂との
接合が良好で、両省の界面が剥離することによる音響特
性の経時変化を防止することができる。しか゛b1炭M
繊維材料を使用しているから比弾性率が大変高く、また
振動域真性に優れた熱可塑性樹脂を使用しているから内
部損失が大きく、高音域においても分割振動が抑制され
、比較的平坦な、若しい山や谷のない出力音圧周波数特
性が得られる。Effects of the Invention The diaphragm of this invention is made of a composite material of carbon fiber material to which no sizing agent is attached and thermoplastic resin. It is possible to prevent changes in acoustic characteristics over time due to separation of the interface between the two parts. But b1 charcoal M
Because it uses fiber material, it has a very high specific modulus of elasticity, and because it uses thermoplastic resin, which has excellent vibration range intrinsicity, it has a large internal loss, suppresses split vibration even in the high frequency range, and has a relatively flat sound. , an output sound pressure frequency characteristic without peaks or valleys can be obtained.
また、この発明は熱可塑性樹脂を使用するから、いわゆ
るスタンピング成形による大量生産が可能であり、生産
性が高いばかりか、製造コストが安い。Furthermore, since the present invention uses thermoplastic resin, mass production by so-called stamping molding is possible, and not only is productivity high, but manufacturing costs are low.
図面は、この発明の実施例に係る2種類の振動板につい
て測定した出力音圧周波数特性を示すグラフである。
F:周波数
L:出力音圧レベルThe drawing is a graph showing output sound pressure frequency characteristics measured for two types of diaphragms according to examples of the present invention. F: Frequency L: Output sound pressure level
Claims (1)
樹脂との複合材料からなるスピーカー用振動板。A speaker diaphragm made of a composite material of carbon fiber material and thermoplastic resin to which no sizing agent is attached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61030928A JPH0732511B2 (en) | 1986-02-17 | 1986-02-17 | Vibration plate for speaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61030928A JPH0732511B2 (en) | 1986-02-17 | 1986-02-17 | Vibration plate for speaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62189899A true JPS62189899A (en) | 1987-08-19 |
JPH0732511B2 JPH0732511B2 (en) | 1995-04-10 |
Family
ID=12317344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61030928A Expired - Lifetime JPH0732511B2 (en) | 1986-02-17 | 1986-02-17 | Vibration plate for speaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732511B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5842257A (en) * | 1995-02-07 | 1998-12-01 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for and method of fabricating semiconductor devices |
JP2002180369A (en) * | 2000-12-15 | 2002-06-26 | Mitsubishi Rayon Co Ltd | Processing method for carbon fiber |
JP2019055550A (en) * | 2017-09-22 | 2019-04-11 | 株式会社日本製鋼所 | Method and apparatus for molding fiber-reinforced thermoplastic resin molding |
JP2019178185A (en) * | 2018-03-30 | 2019-10-17 | 株式会社Nhvコーポレーション | Method for production of polyamide type carbon fiber-reinforced resin |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7044607B2 (en) * | 2018-03-29 | 2022-03-30 | 帝人株式会社 | Desizing method, desizing device and molding device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57102294U (en) * | 1980-12-15 | 1982-06-23 |
-
1986
- 1986-02-17 JP JP61030928A patent/JPH0732511B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57102294U (en) * | 1980-12-15 | 1982-06-23 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5842257A (en) * | 1995-02-07 | 1998-12-01 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for and method of fabricating semiconductor devices |
JP2002180369A (en) * | 2000-12-15 | 2002-06-26 | Mitsubishi Rayon Co Ltd | Processing method for carbon fiber |
JP2019055550A (en) * | 2017-09-22 | 2019-04-11 | 株式会社日本製鋼所 | Method and apparatus for molding fiber-reinforced thermoplastic resin molding |
JP2019178185A (en) * | 2018-03-30 | 2019-10-17 | 株式会社Nhvコーポレーション | Method for production of polyamide type carbon fiber-reinforced resin |
Also Published As
Publication number | Publication date |
---|---|
JPH0732511B2 (en) | 1995-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6039145A (en) | Diaphragm-edge integral moldings for speakers, acoustic transducers comprising same and method for fabricating same | |
JP3199559B2 (en) | Speaker damper and method of manufacturing the same | |
EP0457474B1 (en) | Method of producing an acoustic diaphragm | |
EP0322587A3 (en) | Speaker diaphragm | |
US4377617A (en) | Loudspeaker diaphragm and process for producing same | |
JPS62189899A (en) | Diaphragm for speaker | |
US5283027A (en) | Method of molding an acoustic diaphragm part of para aromatic polyamide | |
JPS5498232A (en) | Damper for speakers and production of the same | |
JP2710830B2 (en) | Vibration system members for sound | |
JP2635980B2 (en) | Speaker diaphragm | |
JPS63187900A (en) | Diaphragm for speaker | |
JP4008559B2 (en) | Method for manufacturing diaphragm for electroacoustic transducer and diaphragm for electroacoustic transducer | |
JPS5853825Y2 (en) | Diaphragm for speaker | |
KR800001058B1 (en) | Process for wastefibre regenerating sheet picker of the loom | |
JP2961201B2 (en) | Dust cap for speaker | |
EP0086837B1 (en) | Vibrating plate for speaker | |
JPH04331137A (en) | Laminated product and method for forming the same | |
JPS6356759B2 (en) | ||
JP2002010390A (en) | Speaker edge | |
JPH04340895A (en) | Dust cap for speaker | |
JP2610458B2 (en) | Speaker diaphragm | |
JPS58130697A (en) | Acoustic diaphragm and its production | |
JP3546247B2 (en) | Speaker diaphragm | |
JPS6011520B2 (en) | speaker diaphragm | |
JPH05116211A (en) | Formation of fiber reinforced resin molded body laminated with metallic foil |