JPS62189779A - Gas laser generator - Google Patents

Gas laser generator

Info

Publication number
JPS62189779A
JPS62189779A JP3086686A JP3086686A JPS62189779A JP S62189779 A JPS62189779 A JP S62189779A JP 3086686 A JP3086686 A JP 3086686A JP 3086686 A JP3086686 A JP 3086686A JP S62189779 A JPS62189779 A JP S62189779A
Authority
JP
Japan
Prior art keywords
pulse
deltaib
current
circuit
deltaip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3086686A
Other languages
Japanese (ja)
Inventor
Masayoshi Maeda
昌良 前田
Shigeo Shiono
塩野 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3086686A priority Critical patent/JPS62189779A/en
Publication of JPS62189779A publication Critical patent/JPS62189779A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an effective pulse-shape laser beam which has a predetermined output and is suitable when bias heat energy is to be avoided by a method wherein a two-step pulse form which is formed by adding a step pulse to a dropping portion of a pulse signal is employed. CONSTITUTION:A base signal circuit 12 predetermines a current DELTAIb arbitrarily and a pulse signal circuit 13 predetermines a current DELTAIp, a frequency DELTAf and a duty DELTAD arbitrarily. As a result, the output of an auxiliary adding circuit 11-b becomes a current pulse of (DELTAIb+DELTAIp). On the other hand, if the dropping point of DELTAIp is detected by a dropping edge detecting circuit 14 and a pulse of a current Ic and a width (t) is obtained by a single pulse generating circuit 15, the pulse form of a main adding circuit 11-a becomes (DELTAIb+Ic+DELTAIp). As a result, the pulse form of the main adding circuit 11-a is given to the grid of a vacuum tube 9. Therefore, the current-I and the voltage-V of a glow discharge 6 become as shown in the figures so that DELTAIb does not overshoot DELTAIB and DELTAIb can be maintained at the minimum value. Therefore, a laser beam which satisfies the predetermined value perfectly can be obtained by the next pulse.

Description

【発明の詳細な説明】 〔唖巣上の利用分野〕 本発明は、レーザ光のパルス出力が周波数及びデユティ
の広範囲領域で安定して出力できる匍制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a laser beam control device that can stably output pulsed laser light over a wide range of frequency and duty.

〔従来の技術J 近年、レーザ加工の範囲が非鉄金属材、特に。[Conventional technology J In recent years, the scope of laser processing has expanded to non-ferrous metal materials, especially.

セラミックスなどの新素材に適用さね始めている。It is beginning to be applied to new materials such as ceramics.

即ち、セラミック材などは熱膨張が小さく硬いので、レ
ーザ照射するときはするどい急峻なパルスレーザ光が望
ましい。しかし、ガスレーザ発生装置はクロー放電のパ
ルス化でパルスレーザ51得る原理のため、パルス状の
グロー放電を行なわせるのにある程度のバイアス電流t
−流して、パルス状信号を重畳してクロー放電の点弧を
よくしているtめ、パルス状レーザ光にバイアスレーザ
光が重畳されてt出力となり、セラミック材の切断加工
時に熱加熱を促進し、熱歪みを与え不定形状のクラック
を生じる欠点かある。
That is, since ceramic materials and the like have small thermal expansion and are hard, it is desirable to use a sharp and steep pulsed laser beam when irradiating the material with a laser. However, since the gas laser generator generates a pulsed laser 51 by pulsing claw discharge, a certain amount of bias current t is required to generate the pulsed glow discharge.
-The pulsed laser beam is superimposed on the pulsed signal to improve the ignition of the claw discharge.The bias laser beam is superimposed on the pulsed laser beam to produce the output, which promotes thermal heating during cutting of ceramic materials. However, it has the disadvantage of causing thermal distortion and irregularly shaped cracks.

尚、この梅のバイアス゛電流によるパルス放′屯の点弧
性向上等は特開昭56−42392号公報を挙けること
ができる。
In addition, Japanese Patent Laid-Open Publication No. 56-42392 can be cited for improving the ignition performance of pulse emission by using this bias current.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

従来、バイアス電流をある111以上に連続的に流さな
いと光共振器の内部ビーム強度との関係よりレーザ光は
出力さjない。その++iを最少グロー放電々流と定義
する。しかし、パルス状のクロー放電を行なわせると、
グロー放n+: Wの電気的イアビーダンスが点弧時は
インダクタンス性となり、パルス休止時はキャパシタノ
ス性と動的変化するため、パルス状のグロー放電波形を
実測すると、@3図のように、立上シ部はキャパシタノ
ス性インピーダンス負荷によりオーバシュート振動し、
立下シ部はインダクタンス性インピーダンス負荷により
オーバシュート振動している。
Conventionally, unless a bias current of a certain value 111 or higher is caused to flow continuously, laser light is not output due to the relationship with the internal beam intensity of the optical resonator. The ++i is defined as the minimum glow discharge current. However, when a pulsed claw discharge is performed,
Glow discharge n+: Since the electrical impedance of W changes dynamically, becoming inductance at the time of ignition and capacitance at the time of pulse rest, when the pulsed glow discharge waveform is actually measured, it shows a rise as shown in Figure @3. The upper part vibrates overshoot due to the capacitor impedance load.
The falling portion vibrates overshoot due to the inductance impedance load.

ここに、立上り時のオーバーシュート振動は、グロー放
電の点弧を容易にするため、有効であるか、立下り部の
オーバシュート振動け、前述の最少グロー放′亀々流値
を下まわる次め、C@3図のΔIB)、次のパルス状立
上りを不安定(すなわち。
Here, the overshoot oscillation at the rising edge is effective in order to facilitate the ignition of the glow discharge, or the overshoot oscillation at the falling edge is effective in order to facilitate the ignition of the glow discharge. Therefore, C @ ΔIB in Figure 3) makes the next pulse-like rise unstable (i.e.

チャンスにより点弧がばらつく)となるので、バイアス
電流を大きくシ、最少グロー放電々流を維持してき友。
(The ignition may vary depending on the chance), so it is recommended to increase the bias current and maintain the minimum glow discharge current.

その結果、バイアス電流が大きいので、連続的にレーザ
光出力が重畳しパルスレーザ光となってしまう。
As a result, since the bias current is large, the laser light outputs are continuously superimposed, resulting in pulsed laser light.

本発明の目的は、パルスレーザ出力のみを取出せる制御
方式を提供するものである。
An object of the present invention is to provide a control system that can extract only pulsed laser output.

〔問題点を解決するための手段〕[Means for solving problems]

この問題点はパルス信号の立下り部に階段状のパルスを
付加し友、二段階パルス形状とするととで解決される。
This problem can be solved by adding a stepped pulse to the falling edge of the pulse signal to create a two-step pulse shape.

〔作用〕[Effect]

パルス信号のパルス電流ΔIpの立下り部に、ΔIp>
Ic(二〇、3ΔIp)なるIc(時間巾を二0.05
m5)を付加し交二段階形状パルスとすることで1周波
数ΔfデユティΔDの広範囲領域でのパルスレーザ光出
力を安定に得られるようにした。
At the falling part of the pulse current ΔIp of the pulse signal, ΔIp>
Ic (20, 3ΔIp) (time width is 20.05
By adding m5) and making the pulse into an alternating two-step shape, it is possible to stably obtain pulsed laser light output in a wide range of one frequency Δf duty ΔD.

〔実施例〕〔Example〕

以下、本発明の実施例を8g1図に示す。軸流形ガスレ
ーザ発生装置により説明する。
Examples of the present invention are shown in Figure 8g1 below. An explanation will be given using an axial flow type gas laser generator.

レーザヘッド部lと主電源部2と制御部3とよシ成る。It consists of a laser head section l, a main power supply section 2, and a control section 3.

ミラー7をもつ放電管は、一方の供給管より他方の排気
管に陰極および陽極を配置し1両電極間でグロー放[6
を行ない、混合ガスを反転分布状態よシレーザ光16を
一方のミラーより外部に取出す。
A discharge tube with a mirror 7 has a cathode and an anode arranged from one supply tube to the other exhaust tube, and glow emission [6
The mixed gas is brought into a population inversion state and the laser beam 16 is taken out from one mirror.

両電極間のグロー放電6は、主電源部2より接続してい
る。主電源部2は、陽極4−2から直流電源10と真空
管9および安定化抵抗8を介して陰極4−1に接触して
いる。
The glow discharge 6 between both electrodes is connected to the main power supply section 2. The main power supply section 2 is in contact with the cathode 4-1 from the anode 4-2 via the DC power supply 10, the vacuum tube 9, and the stabilizing resistor 8.

真空管9のグリッドは制御部3に接続している。The grid of vacuum tubes 9 is connected to the control section 3.

制御部3は主加算回路11aに接続し、一方の補助加算
回路11−bとベース信号回路12に接続している。加
算回路の他方は単一パルス発生回路15に、豆下りエツ
ジ検出回路14および補助加算回路11−bはパルス信
号回路13にそれぞt1接続されている。
The control section 3 is connected to the main adder circuit 11a, one of the auxiliary adder circuits 11-b, and the base signal circuit 12. The other adder circuit is connected to the single pulse generating circuit 15, and the falling edge detection circuit 14 and the auxiliary adder circuit 11-b are connected to the pulse signal circuit 13 at t1.

これらの機能をI!2図で説明する。These functions I! This will be explained using Figure 2.

ベース信号回路12はΔIbt−任意に設定する。The base signal circuit 12 is set to ΔIbt - arbitrarily.

パルス信号回路13は、゛イ流Δ■p、同波数Δf。The pulse signal circuit 13 has the same current Δ■p and the same wave number Δf.

デユティΔD’を任意に設定する。Duty ΔD' is set arbitrarily.

その結果、補助加算回路11−bは〔ΔIb+ΔIp)
の電(l パルスとなる。一方、立下りエツジ検出回路
14で、ΔIpのq下り点を検出し単一パルス発生回路
15により電流I C+ パルス巾tなるパルスを得る
と、主加算回路11aのパルス形状は〔ΔIb+Ic+
ΔIpJとなる。     (その結果、真空管9のグ
リッドに11−aのパルス形状が与オ、ら第1るので、
グロー放電6の電流−Iと電圧−■は第2因のようにな
シ、第3図のように、ΔImtオーバシュートするよう
なことがなくΔlbは最小値に維持できる。故に1次の
パルス成流で、設定値ΔIpを確実に満足するレーザ光
(第2図の16) を得ることができる。第2図の図示
16では説明のtめ、dIs分すなわち。
As a result, the auxiliary addition circuit 11-b is [ΔIb+ΔIp]
On the other hand, when the falling edge detection circuit 14 detects the q falling point of ΔIp and the single pulse generation circuit 15 obtains a pulse with a current I C+ pulse width t, the main addition circuit 11a The pulse shape is [ΔIb+Ic+
It becomes ΔIpJ. (As a result, the pulse shape 11-a is given to the grid of vacuum tube 9, so
Since the current -I and the voltage -2 of the glow discharge 6 are not caused by the second factor, ΔImt does not overshoot as shown in FIG. 3, and Δlb can be maintained at the minimum value. Therefore, by first-order pulse streaming, it is possible to obtain a laser beam (16 in FIG. 2) that reliably satisfies the set value ΔIp. In the illustration 16 of FIG. 2, t and dIs of the explanation are shown.

レーザ出力1wb分を示したが、MijJ3図■■のよ
うなオーバシュート振動が第2図のICでなくなるので
、最小のΔIbのときΔwbを零とすることができ友。
Although the laser output of 1wb is shown, since the overshoot vibration as shown in Figure MijJ3 disappears with the IC shown in Figure 2, Δwb can be made zero when ΔIb is the minimum.

〔発明の効果〕〔Effect of the invention〕

本発明によねば、設定イ直通りのパルスレーザ出力が得
られ、且つ、バイアスレーザ出力もなくなるので無効電
力もなくなり、特に、セラミック加工のように、バイア
ス熱エネルギをきらう場合に好適な有効なパルス形状レ
ーザ光を得ることができる。
According to the present invention, it is possible to obtain a pulsed laser output directly according to the setting, and since there is no bias laser output, there is also no reactive power, which is particularly effective when bias heat energy is disliked, such as in ceramic processing. Pulse-shaped laser light can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

概略説明図、第2 [1,fl第1図のパルス波形図で
ある。 η1図 第2図
A schematic explanatory diagram, 2nd [1, fl] is a pulse waveform diagram of FIG. 1. η1 Figure 2

Claims (1)

【特許請求の範囲】 1、グロー放電部とレーザガス循環部と光学共振部と電
源制御部とより成るガスレーザ発生装置において、 前記電源制御部にパルス状のグロー放電を与えるのに、
パルス立下り部に階段状のパルスを付加することを特徴
とするガスレーザ発生装置。
[Claims] 1. In a gas laser generator comprising a glow discharge section, a laser gas circulation section, an optical resonance section, and a power supply control section, in order to apply a pulsed glow discharge to the power supply control section,
A gas laser generator characterized by adding a step-like pulse to the pulse trailing edge.
JP3086686A 1986-02-17 1986-02-17 Gas laser generator Pending JPS62189779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3086686A JPS62189779A (en) 1986-02-17 1986-02-17 Gas laser generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086686A JPS62189779A (en) 1986-02-17 1986-02-17 Gas laser generator

Publications (1)

Publication Number Publication Date
JPS62189779A true JPS62189779A (en) 1987-08-19

Family

ID=12315649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086686A Pending JPS62189779A (en) 1986-02-17 1986-02-17 Gas laser generator

Country Status (1)

Country Link
JP (1) JPS62189779A (en)

Similar Documents

Publication Publication Date Title
JPH06164042A (en) Gas-laser oscillation apparatus
JPS62189779A (en) Gas laser generator
JPS639393B2 (en)
EP0075282B1 (en) Gas laser apparatus
JPH0145225B2 (en)
JPH05110182A (en) Laser oscillator
JPH01103889A (en) Gas laser generating device
JPS6338875B2 (en)
JPH01185987A (en) Oscillation of pulse laser and apparatus therefor
JPS6022632Y2 (en) Q-switch pulse laser oscillator
JPS61228690A (en) Supersonic excimer laser device
JPH0131714B2 (en)
JPH01192183A (en) Pulse gas laser device
JP2886941B2 (en) Microwave plasma processing equipment
JPS5932185A (en) Silent discharge type gas laser device
JP3317232B2 (en) Pulse laser oscillation device
JPH02281671A (en) Gas laser oscillation device
JPS6341233B2 (en)
JPS6339113B2 (en)
JPS6142979A (en) Laser device
JPH0832137A (en) Piezoelectric vibrator
JPH08204262A (en) Method of generating high-peak output pulse by electric current synthesis in continuous oscillation laser of flash light stimulation type
JPS59147477A (en) Laser oscillator
JPS615588A (en) Gas laser device
JP2714286B2 (en) Metal vapor laser equipment