JPS6218917A - Distance relay - Google Patents

Distance relay

Info

Publication number
JPS6218917A
JPS6218917A JP15747985A JP15747985A JPS6218917A JP S6218917 A JPS6218917 A JP S6218917A JP 15747985 A JP15747985 A JP 15747985A JP 15747985 A JP15747985 A JP 15747985A JP S6218917 A JPS6218917 A JP S6218917A
Authority
JP
Japan
Prior art keywords
value
obtaining
current
output
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15747985A
Other languages
Japanese (ja)
Other versions
JPH0528054B2 (en
Inventor
好文 大浦
松沢 邦夫
和芳 吉田
孝幸 横山
山浦 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP15747985A priority Critical patent/JPS6218917A/en
Publication of JPS6218917A publication Critical patent/JPS6218917A/en
Publication of JPH0528054B2 publication Critical patent/JPH0528054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、距離継電器、特に微分方程式に立脚する距離
測定方式を用いた距離継電器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a distance relay, and particularly to a distance relay using a distance measurement method based on differential equations.

〔発明の技術的背景〕[Technical background of the invention]

最近の系統事故現象では電圧、電流の波形歪が増大し、
かつ歪成分が低次化する傾向にある。こノタメ、従来の
定常状態のインピーダンスに着目した距離継電器では、
歪成分による測距誤差の増大及び歪を十分に除去するた
めのフィルタによる動作速度の遅延等が問題になり、適
用が困雅になることが予想される。なお、この種の装置
としては、例えば特願昭58−144988号に示され
るものが提案されている。
In recent power grid failure phenomena, waveform distortion of voltage and current increases,
In addition, distortion components tend to be of lower order. In conventional distance relays that focus on steady state impedance,
It is expected that application will become difficult due to problems such as an increase in distance measurement errors due to distortion components and a delay in operating speed due to the filter used to sufficiently remove the distortion. As an example of this type of device, the one shown in Japanese Patent Application No. 144988/1988 has been proposed.

そしてマイクロコンピュータを使用した距離継電器の距
離測定方式として、送を線の電圧υ、電流i、抵抗R1
インダクタンスLの間に成立する微分方程式 を用いる方式が提案されているが、(1)式は系統故障
時の過渡状態におりても成立することから、波形歪に対
する距離継電器の特性を改善することが可能である。
As a distance measurement method for a distance relay using a microcomputer, the transmission line voltage υ, current i, and resistance R1 are
A method using a differential equation that holds true between the inductance L has been proposed, but since equation (1) holds true even in a transient state during a system failure, it is important to improve the characteristics of distance relays with respect to waveform distortion. is possible.

微分方程式に立脚した距離測定方式の原理は、(1)式
よりL値及びR値を求めるものであるが、2つの未知数
を得るためには連立方程式を解く必要がある。即ち、異
なる時刻t 及びt において、m         
n υ□、imは電圧及び電流の時刻trnにおける値の関
係が成立するが、考慮している時間内でL及びR値が一
定であれば、(2)式を連立方程式として解き、(3)
式の如くL及びR値が夫々求められる。
The principle of the distance measurement method based on differential equations is to obtain the L value and R value from equation (1), but it is necessary to solve simultaneous equations in order to obtain the two unknowns. That is, at different times t and t, m
n υ□, im holds the relationship between the voltage and current values at time trn, but if the L and R values are constant within the time under consideration, equation (2) can be solved as simultaneous equations, and (3 )
The L and R values are determined as shown in the formula.

周知の如く、系統故障時にはL及びR値は、故障点迄の
系統インピーダンスに応じた値になるため、(3)式の
結果により、故障点の内外部判定を行なうことができる
As is well known, when a system failure occurs, the L and R values become values that correspond to the system impedance up to the failure point, so it is possible to determine whether the failure point is internal or external based on the result of equation (3).

ここで電流の微分値jはハードウェアにて求めることが
可能であるが、ソフトウェアによりて電流値から算出す
ることも可能である。−例として電流微分値を得る近似
式を(4)式に示す。
Here, the differential value j of the current can be determined by hardware, but it can also be calculated from the current value by software. - As an example, an approximate equation for obtaining the current differential value is shown in equation (4).

勾ΣKk(iよに’m−に−1)    ・・・・・・
 (4)但し、N p Kk(k −0−N)は定数で
、少なくともKoNO,に、40 (4)式によれば、少なくとも2つの周波数におpて近
似誤差は零となり、かつ中間の周波数での誤差も小さく
できるので、広い周波数範囲にわたり、近似式を用いて
L及びR値の算出が可能になる。
Gradient ΣKk (i to 'm- to -1) ・・・・・・
(4) However, N p Kk (k −0 − N) is a constant, and at least KoNO, 40 According to equation (4), the approximation error becomes zero at p at least at two frequencies, and Since the error in frequency can also be reduced, it becomes possible to calculate the L and R values using approximate expressions over a wide frequency range.

なお−、(4)式では微分値Jは1サンプリング時間だ
け異なる時刻tm及びtm−1の電流微分値の和として
求められるため、L及びR値の算出式は、下記の如く変
形される。
Note that in equation (4), the differential value J is obtained as the sum of the current differential values at times tm and tm-1, which differ by one sampling time, so the equations for calculating the L and R values are modified as follows.

即ち、(2)式より ここで とおくと、次のく7)式によりL値、R値が求められる
That is, if we set the formula (2) here, the L value and the R value can be obtained from the following formula (7).

第3図は距離継電器のハードウェア構成図である。第3
図において1は保護対象である送電線、2は変成器、3
は変流器、4及び5は入力変換器、6はアナログ/ディ
ジタル変換回路(い変換回路)、7は演算処理部である
。この場合、系統電圧は変成器2を介して導入され、入
力変換器4にて適当な電圧レベルに変換した後、前置フ
ィルタを経て出力υを得る。同じく系統電流は変流器3
間隔で同時にサンプリングされ、順次ディジタル量に変
換されて、マイクロコンピュータよりなる演算処理部7
に入力される。
FIG. 3 is a hardware configuration diagram of the distance relay. Third
In the figure, 1 is the power transmission line to be protected, 2 is the transformer, and 3
1 is a current transformer, 4 and 5 are input converters, 6 is an analog/digital conversion circuit (conversion circuit), and 7 is an arithmetic processing section. In this case, the system voltage is introduced via the transformer 2, converted to an appropriate voltage level by the input converter 4, and then passed through a pre-filter to obtain the output υ. Similarly, the system current is transferred to current transformer 3.
The data are sampled simultaneously at intervals, sequentially converted into digital quantities, and processed by an arithmetic processing unit 7 consisting of a microcomputer.
is input.

第4図は上記演算処理部7における処理内容を示す機能
ブロック図である。第4図にトいて、8は電流の微分演
算手段で例えば前記(4)式の如く入力電流データより
、電流微分量Jを算出する。9は電流演算手段、10は
電圧演算手段で夫々(6)式に示した演算を行ない、電
流tI、電圧量Vを得る。11は(7)式に示したL及
びR値算出式の分母値演算手段で、分母値U□−ImJ
n−InJmを得る。
FIG. 4 is a functional block diagram showing the processing contents in the arithmetic processing section 7. As shown in FIG. In FIG. 4, reference numeral 8 denotes a current differential calculating means which calculates the current differential amount J from the input current data, as shown in equation (4) above, for example. Reference numeral 9 denotes a current calculation means, and reference numeral 10 denotes a voltage calculation means, each of which performs the calculation shown in equation (6) to obtain a current tI and a voltage amount V. 11 is a denominator value calculation means for the L and R value calculation formula shown in formula (7), and the denominator value U□-ImJ
n-InJm is obtained.

12は(7)式のL値算出式のうちの分子値演算手段で
、分子値tn1−■rnvn−Invm  を得、同様
に13はR値算出式のうちの公子値演算手段で、分子値
rm−vmJn−vnJm を得る。14はL値演算手
段で、前記分母値U及びL値の分子値tより除算を行な
いL値を算出する。15はR値演算手段で、同じく前記
分母値U及びR値の分子値rより除算を行ないR値を算
出する。これらの算出されたL及びR値は、リレー動作
判定部16に導入して距離リレーの特性に応じた動作判
定を行ない、その結果を出力する。
12 is a numerator value calculation means in the L value calculation formula of equation (7) to obtain the numerator value tn1−■rnvn−Invm, and 13 is a common value calculation means in the R value calculation formula to obtain the numerator value. Obtain rm-vmJn-vnJm. Reference numeral 14 denotes an L value calculation means that calculates the L value by dividing the denominator value U and the numerator value t of the L value. Reference numeral 15 denotes an R value calculation means, which similarly calculates the R value by dividing the denominator value U and the numerator value r of the R value. These calculated L and R values are introduced into the relay operation determining section 16 to perform operation determination according to the characteristics of the distance relay, and output the results.

〔背景技術の問題点〕[Problems with background technology]

上記した方法は、系統故障時の過渡状態においても成立
する微分方程式に立脚しているために。
The above method is based on differential equations that hold true even in transient conditions during system failures.

原理的には電流、電圧の周波数には依存しな−が、電流
微分値の算出に近似式を用いる場合には、近似精度に影
響されることになる。しかしく4)式に示した近似式を
用いれば、近似が成立する周波数範囲におい【、L値、
R値も精度良く算出できるので距離継電器の周波数特性
を著しく改善することができる。
In principle, it does not depend on the frequency of the current or voltage, but if an approximation formula is used to calculate the current differential value, it will be affected by the accuracy of the approximation. However, if the approximation formula shown in equation 4) is used, in the frequency range where the approximation holds, [, L value,
Since the R value can also be calculated with high accuracy, the frequency characteristics of the distance relay can be significantly improved.

ここで上記した距離継電器におりて、電流iを下記(8
)式の如く、高調波を含有した波形で与えた場合の応動
を示す。
Here, at the distance relay described above, the current i is as follows (8
) shows the response when a waveform containing harmonics is applied.

i電I。dB ωt + II I 。9石(N・ωを
十〇〕  ・・・・・・ (8)但し、ρ:高調波含有
率 N:高調波次数 θ:高調波含有位相 簡単のため、電流微分値jは(8)式を微分した理論値
な用いる。
i-den I. dB ωt + II I . 9 stones (N・ω is 10) ...... (8) However, ρ: harmonic content rate N: harmonic order θ: harmonic content phase For simplicity, the current differential value j is (8) Use the theoretical value obtained by differentiating the equation.

j−ωl0−cosωt+NωρI 0CQI(N ・
ωt+θ)  −−−−・−(9)この時、前記(6)
式及び(7)式より分母値Uは下式となる。
j−ωl0−cosωt+NωρI 0CQI(N ・
ωt+θ) −−−−・−(9) At this time, the above (6)
From the formula and formula (7), the denominator value U is given by the following formula.

um ” ImJm−1−’m−IJm+4ρωl2c
caジ暦ゴC(N+1 )dn惺士式嗣(No 2 2
     2 −1)(ωt−ωT)十〇)−(N−1)dn盪1ビ■
((N+1)(ωを一ωT)十〇)〕       ・
・・・・・ αQ但しく6)式及び(7)式において、
n5wm−1゜Tはサンプリング周期 α1式より明らかな如く、分母値Uは電ff、iが単一
周波入力、即ち、ρ=Oであれば、 uwm 4ωI2・■2”” ・m(dTとなり、ωT
くπならば正の一定値になる。しかしながら電流iが高
調波成分を含有する場合には、分母値Uは変動し、高調
波次数及び含有率によっては、U中Oとなることがある
。そして理論的には分母値U中Oとなっても、(7)式
によって正しくL値、R値が求められるが、実際には入
力回路部の誤差及びディジタル量に変換することによる
量子化誤差等によって、分母値UキOでL値、R値の演
算誤差が著増する場合がある。この現象は電流微分値の
導出手段の如何によらず、微分方程式に立脚し、(3)
式を基本式とした距離継電器では本質的な問題であり、
測距性能の低下を招く原因となる。
um ” ImJm-1-'m-IJm+4ρωl2c
ca calendar GoC (N+1) dn Soshishiki Tsugu (No 2 2
2 -1)(ωt-ωT)〇)-(N-1)dn■1bi■
((N+1) (ω is one ωT) 10)] ・
... αQ However, in equations 6) and (7),
n5wm-1°T is the sampling period α1 As is clear from the equation, if the denominator value U is the voltage ff and i is a single frequency input, that is, ρ=O, then uwm 4ωI2・■2””・m(dT becomes ,ωT
If π, then it becomes a constant positive value. However, when the current i contains a harmonic component, the denominator value U changes and may become O in U depending on the harmonic order and content rate. Theoretically, even if the denominator value is U out of O, the L and R values can be calculated correctly using equation (7), but in reality, errors in the input circuit and quantization errors due to conversion to digital quantities occur. etc., the calculation errors of the L value and R value may increase significantly when the denominator value is U or O. This phenomenon is based on the differential equation, regardless of the method used to derive the current differential value, and (3)
This is an essential problem in distance relays using the basic formula as follows.
This causes a decrease in ranging performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決するためになされたものであ
り、測距性能の向上した距離継電器を提供することを目
的としている。
The present invention was made to solve the above problems, and an object of the present invention is to provide a distance relay with improved distance measurement performance.

〔発明の概要〕[Summary of the invention]

本発明では、系統の電圧tv、電流量i、電流微分tj
、インダクタンスL、抵抗Rの間に成立する関係式u 
−R,; + Lj  を用いて距離測定を行なう距離
継電器におりて、異なる時効L 及びt にm    
     n おける前記各電気量υ 、υ 、電流量im、 i:n
、m      n 電流微分k jmr jnから電気’t ’m’n  
’njm ’1v−iυ 、jυ−jυ を得、更に前
記各電気171n     rl171      m
 n      nmlの異なる時刻の複数の加減算値
をもとに、L値、及びR値を求めて距離測定をしようと
するものである。
In the present invention, the system voltage tv, current amount i, current differential tj
, inductance L, and resistance R.
−R, ; + Lj for distance measurement, m
Each of the electrical quantities υ and υ in n, the current quantity im, i:n
, m n current differential k jmr jn to electricity 't 'm'n
'njm' 1v-iυ, jυ-jυ are obtained, and each of the electricity 171n rl171 m
This method attempts to measure the distance by determining the L value and the R value based on a plurality of addition and subtraction values at different times.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第1図は本発明
による距離継電器の一実施例の機能ブロック図である。
Examples will be described below with reference to the drawings. FIG. 1 is a functional block diagram of an embodiment of a distance relay according to the present invention.

なお、ハードウェアについては第3図と同様であるので
構成図の説明は省略する。
Note that since the hardware is the same as that in FIG. 3, explanation of the configuration diagram will be omitted.

第1図において、17は(7)式のL値及びR値算出式
の分母値Uの加減算手段、18は(7)式のL値算出式
の分子値tの加減算手段、同じく19はR値算出式の分
子値rの加減算手段である。なお、加減算手段とは加算
を行なう手段、又は符号の正、負により加算あるいは減
算を行なう手段を意味する。本実施例においては前記加
減算手段において各々αや式の演算を行ない、加算値L
J、 L、 Rを得る0 20はL値演算手段で前記したU、Lを用い除算により
L値を算出する。21はR値演算手段で同様に加算値U
、RよりR値を算出する。そして各々の算出式は下記の
通りである。
In FIG. 1, 17 is a means for adding and subtracting the denominator value U of the L value and R value calculation formula of formula (7), 18 is a means for adding and subtracting the numerator value t of the L value calculation formula of formula (7), and 19 is R This is means for adding and subtracting the numerator value r of the value calculation formula. Note that the addition/subtraction means means means for performing addition, or means for performing addition or subtraction depending on the positive or negative sign. In this embodiment, the addition/subtraction means each calculate α and the expression, and the addition value L
Obtaining J, L, and R 0 20 calculates the L value by division using the above-mentioned U and L in the L value calculation means. 21 is an R value calculation means which similarly calculates the addition value U.
, R value is calculated from R. The calculation formula for each is as follows.

その他の講成は第4図と同様である。Other lectures are the same as in Figure 4.

本実施例によれば以下の如く、距離継電器の測距性能を
改善することが可能である。説明を簡単にするため、L
値算出式に注目し、L値の真値を”Idealとして、
時刻tmにおける(7)式の演算誤差eLmを下式で定
義する。
According to this embodiment, it is possible to improve the distance measuring performance of the distance relay as described below. To simplify the explanation, L
Paying attention to the value calculation formula, set the true value of the L value as "Ideal,"
The calculation error eLm of equation (7) at time tm is defined by the following equation.

”m = ”Ideal +”m    ”’ ”’ 
 a3この演算誤差は第4図のL値算出手段14の演算
誤差に相当するもので、α1式の両辺に分母値umを乗
すると次式が成立する。
”m = ”Ideal +”m ”'”'
a3 This calculation error corresponds to the calculation error of the L value calculation means 14 in FIG. 4, and when both sides of the α1 equation are multiplied by the denominator value um, the following equation holds true.

um”rr+=um”LIdeal+et、m””tm
”””  (14a→式の関係をαの式の加算値りの算
出式に代入すると、 Lm″″Σ(um−k ’ (Lideal +eLm
 ) )k=0 となる。よって(6)式よりL値は下式で求められる。
um”rr+=um”LIdeal+et, m””tm
``'''' (Substituting the relationship in equation 14a → into the equation for calculating the addition value of the equation for α, Lm″″Σ(um−k ′ (Lideal +eLm
)) k=0. Therefore, from equation (6), the L value can be determined by the following equation.

上記したα9式の第2項はL値の演算誤差IELを示し
ている。−例として01式においてN−3とじた時の誤
差ELを示す。
The second term of the α9 formula described above indicates the calculation error IEL of the L value. - As an example, the error EL when formula 01 is closed by N-3 is shown.

・・・・・・ α力 ここで各時刻の誤差eLは、前述の如く分母値UζOの
時には著増する場合があるが、分母値の絶対値がlul
>Oの時は実用上e♂■と考えてよい。第αカ式におい
て、例えば時刻tにて分母値騙ζOとなり、これに対応
する誤差eLmが大きくなった場合を考えると、前記(
1η式から誤差eLmの係数はum / (um + 
u m−+ + u m−2+ unl−5)となる。
...... α force Here, the error eL at each time may increase significantly when the denominator value is UζO as described above, but if the absolute value of the denominator value is lul
>O, it can be considered as e♂■ in practical terms. In the α-th equation, for example, consider the case where the denominator value becomes false ζO at time t and the corresponding error eLm becomes large.
From the 1η formula, the coefficient of error eLm is um / (um +
um-+ + um-2+ unl-5).

しかるに、uo<(u□+um−、十um−2+ um
−3)であるから、全体としてみると誤差eLmの影響
は著しく緩和され、その他の誤差項eLm−11eLr
l−2’ eLm−5につ−ても、前記したように分母
値が大きければeLζ0であるため、総合的に01式の
演算誤差ξは少さくなる。そして比較のためα1式の関
係を用いて上記と同様にL値算出結果を47′−夕にわ
たり、単純加算平均した場合の誤差EAvを求めると、
EAv= (6Lm+6Lm−、+eLm−、+eLm
−3)/4  ・Qeとなる。
However, uo<(u□+um-, 10um-2+um
-3), the influence of the error eLm is significantly alleviated as a whole, and the other error terms eLm-11eLr
As for l-2' eLm-5, as described above, if the denominator value is large, eLζ0 is obtained, so the calculation error ξ of equation 01 is reduced overall. For comparison, the error EAv when simply averaging the L value calculation results over 47' - evening using the relationship of the α1 formula as above is found.
EAv= (6Lm+6Lm-, +eLm-, +eLm
-3)/4 ・Qe.

そこで時刻tInにおいて誤差eLmが大きくなった場
合、α樽式ではeLmの係数は1/4であるが、04式
のeLmの係数が1/4以下になることは、上記説明か
ら明らかであり、L値算出誤差が改善されて測距性能の
向上が図れることがわかる。
Therefore, when the error eLm becomes large at time tIn, the coefficient of eLm in the α barrel type is 1/4, but it is clear from the above explanation that the coefficient of eLm in the 04 type becomes 1/4 or less, It can be seen that the L value calculation error is improved and distance measurement performance can be improved.

以上はL値算出式について説明したが、R値算出式につ
いても同様である。又、(6)式において、L値あるい
はR値算出の除算を行なわずにU値とL値あるいはU値
とR値の比を求めることにより、リレーの動作判定を行
なうことも可能である。
Although the L value calculation formula has been described above, the same applies to the R value calculation formula. Further, in equation (6), it is also possible to determine the operation of the relay by finding the ratio between the U value and the L value or the U value and the R value without performing division to calculate the L value or the R value.

第2図は本発明による距離継電器の他の実施例を説明す
るための機能ブロック図である。なお、第1図と同一部
分については同一符号を付して説明を省略する。
FIG. 2 is a functional block diagram for explaining another embodiment of the distance relay according to the present invention. Note that the same parts as in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

22は(7)式に示すL値及びR値算出式の分母値Uの
加減算手段で、分母値Uが正の時に加算し、負の時に減
算して下記に示す絶対値Uを得る。
22 is a means for adding and subtracting the denominator value U of the L value and R value calculation formula shown in equation (7), which adds when the denominator value U is positive and subtracts when it is negative to obtain the absolute value U shown below.

Um−Σl um−、l     ・・・・・・ (5
)又、23は(7)式に示すL値算出式の分子値tの加
減算手段、24は同じくR値算出式の加減算手段であり
、夫々下記の演算を行なう。
Um-Σl um-, l ...... (5
) Further, 23 is an addition/subtraction means for the numerator value t of the L value calculation formula shown in equation (7), and 24 is an addition/subtraction means for the R value calculation formula, each of which performs the following calculations.

の時、tm−kを加算し、um−1<oの時、trn−
kを減いても同様の演算を行なうが、これはα→式の関
係から明らかなように、分母値Uをαつ式の如く加算す
るため、L値あるいはR値の符号を保存するだめの処理
である。したがってα4式、(ト)式及び(7)式によ
れば、L値の演算誤差は下記で与えられる。
When tm-k is added, when um-1<o, trn-
The same operation is performed even if k is subtracted, but as is clear from the relationship α → expression, this is because the denominator value U is added like α expression, so there is no need to preserve the sign of the L value or R value. It is processing. Therefore, according to the α4 formula, (g) formula, and (7) formula, the calculation error of the L value is given below.

ここで本実施例のQ])式と先に説明した実施例のα1
式の各演算誤差を比較すると、例えば時刻trflでの
誤差eLmの係数は次の関係にある。
Here, the Q]) formula of this embodiment and α1 of the embodiment explained earlier
Comparing the calculation errors in the equations, for example, the coefficients of the error eLm at time trfl have the following relationship.

したがって本実施例によれば、誤差の係数は更に小さく
なり、その影響を緩和することができ、測距性能の改善
が図れる。なおR値についても同様であることは云うま
でもない。
Therefore, according to this embodiment, the error coefficient is further reduced, its influence can be alleviated, and distance measurement performance can be improved. It goes without saying that the same applies to the R value.

上記各実施例において、第1図に示す符号17゜18.
19及び第2図に示す符号22,23.24の加減算手
段は、時刻tm−k(k−0・・・N)の時系列データ
の演算として説明したが、これに限るものではなく、デ
ータの時間間隔が任意の値であっても良いことは明らか
である。
In each of the above embodiments, the reference numerals 17° and 18. shown in FIG.
Although the addition/subtraction means 22, 23, and 24 shown in FIG. 19 and FIG. It is clear that the time interval of can be any value.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば系統の電圧量り、電
流ti、電流微分量j、インダクタンスL及び抵抗Rの
間に成立する関係式υ−Ri十L jを用いて距離測定
を行なう距離継電器において、異なる時刻tm及びtn
における前記電圧量−9vn。
As explained above, according to the present invention, there is provided a distance relay that measures distance using the relational expression υ-Ri+Lj that holds between the system voltage meter, current ti, current differential amount j, inductance L, and resistance R. At different times tm and tn
The voltage amount at -9vn.

電流量im、 稲、電流微分量jm、 j。から、電気
量’mjn  ’njm ’ 福υ。−invm及び稀
υn  jnvmを得、更に前記各電気量の異なる時刻
の複数の加減算値をもとに、L値及びR値を求めて距離
測定するよう構成したので、測距性能を改善した距離継
電器を提供できる。
Current amount im, current differential amount jm, j. From this, the quantity of electricity 'mjn 'njm' Fuku υ. -invm and rare υn jnvm are obtained, and the distance is measured by determining the L value and R value based on the multiple addition and subtraction values of each electric quantity at different times, so the distance measurement performance is improved. We can provide relays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による距離継電器の一実施例を説明する
機能ブロック図、第2図は本発明による他の実施例の機
能ブロック図、第3図は一般的な距離継電器のハードウ
ェア構成図、第4図は従来方式による距離継電器の機能
ブロック図である。 1・・・送電線     2・・・変成器3・・・変流
器     4,5・・・入力変換器6・・・め変換回
路  7・・・演算処理部8・・・微分演算手段  9
・・・電流演算手段10・・・電圧演算手段 11・・
・分母値演算手段12.13・・・分子値演算手段 14.20・・・L値演算手段 15.21・・・R値演算手段 16・・・リレー動作判定部 17.18,19,22,23.24・・・加減算手段
FIG. 1 is a functional block diagram explaining one embodiment of a distance relay according to the present invention, FIG. 2 is a functional block diagram of another embodiment according to the present invention, and FIG. 3 is a hardware configuration diagram of a general distance relay. , FIG. 4 is a functional block diagram of a conventional distance relay. DESCRIPTION OF SYMBOLS 1... Power transmission line 2... Transformer 3... Current transformer 4, 5... Input converter 6... Conversion circuit 7... Arithmetic processing unit 8... Differential calculation means 9
... Current calculation means 10 ... Voltage calculation means 11 ...
- Denominator value calculation means 12.13...Numerator value calculation means 14.20...L value calculation means 15.21...R value calculation means 16...Relay operation determination section 17.18, 19, 22 , 23.24... addition/subtraction means

Claims (3)

【特許請求の範囲】[Claims] (1)電力系統の電圧信号及び電流信号を入力し、電圧
量v、電流量i及び電流微分量jを得て、前記各電気量
と電力系統のインダクタンスL、抵抗Rとの間に成立す
る関係式v=Ri+Ljを用い、異なる時刻t_m及び
t_nにおける前記電圧量v_m、v_n、電流量i_
m、i_n、電流微分量j_m、j_nから電気量i_
mj_n−i_nj_mを得る第1の手段、i_mv_
n−i_nv_mを得る第2の手段及びj_mv_n−
j_nv_mを得る第3の手段を夫々備え、これらの各
手段からの電気量をもとに距離測定を行なう距離継電器
において、時刻t_m及びt_nの少なくとも一方が異
なる時刻における前記第1の手段からの複数の出力の加
減算値を得る第4の手段と、前記第1の手段からの複数
の出力と同時刻における第2の手段からの複数の出力の
加減算値を得る第5の手段及び前記第3の手段からの複
数の出力の加減算値を得る第6の手段とを備えると共に
、前記第4の手段からの出力と第5の手段からの出力と
の比を求める第7の手段と、前記第4の手段からの出力
と第6の手段からの出力との比を求める第8の手段とを
備えたことを特徴とする距離継電器。
(1) Input the voltage signal and current signal of the power system, obtain the voltage amount v, the current amount i, and the current differential amount j, and establish between each of the above electrical amounts and the inductance L and resistance R of the power system. Using the relational expression v=Ri+Lj, the voltage amounts v_m, v_n, and the current amount i_ at different times t_m and t_n
m, i_n, electric quantity i_ from current differential quantity j_m, j_n
The first means of obtaining mj_n−i_nj_m, i_mv_
Second means for obtaining n-i_nv_m and j_mv_n-
In a distance relay that includes third means for obtaining j_nv_m and performs distance measurement based on the amount of electricity from each of these means, at least one of time t_m and t_n is a plurality of third means for obtaining j_nv_m at different times. a fourth means for obtaining an addition/subtraction value of the outputs of the first means; a fifth means for obtaining an addition/subtraction value of the plurality of outputs from the second means at the same time as the plurality of outputs from the first means; a sixth means for obtaining an addition/subtraction value of a plurality of outputs from the means, and a seventh means for obtaining a ratio between the output from the fourth means and the output from the fifth means; and eighth means for determining the ratio of the output from the means and the output from the sixth means.
(2)第4の手段、第5の手段及び第6の手段は、夫々
が各複数の出力の加算値を得るものであることを特徴と
する特許請求の範囲第1項記載の距離継電器。
(2) The distance relay according to claim 1, wherein the fourth means, the fifth means, and the sixth means each obtain an added value of a plurality of outputs.
(3)第4の手段は第1の手段からの出力が正の時は加
算し負の時は減算して複数の出力の絶対値の加算値を得
ると共に、第5の手段及び第6の手段は第1の手段から
の出力が正の時は加算し負の時は減算して夫々の演算値
を得るものであることを特徴とする特許請求の範囲第1
項記載の距離継電器。
(3) The fourth means adds the output when the output from the first means is positive and subtracts it when it is negative to obtain the sum of the absolute values of the plurality of outputs, and the fifth means and the sixth means Claim 1, characterized in that the means adds when the output from the first means is positive and subtracts when it is negative to obtain the respective calculated values.
Distance relay as described in section.
JP15747985A 1985-07-17 1985-07-17 Distance relay Granted JPS6218917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15747985A JPS6218917A (en) 1985-07-17 1985-07-17 Distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15747985A JPS6218917A (en) 1985-07-17 1985-07-17 Distance relay

Publications (2)

Publication Number Publication Date
JPS6218917A true JPS6218917A (en) 1987-01-27
JPH0528054B2 JPH0528054B2 (en) 1993-04-23

Family

ID=15650575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15747985A Granted JPS6218917A (en) 1985-07-17 1985-07-17 Distance relay

Country Status (1)

Country Link
JP (1) JPS6218917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211020A (en) * 1989-02-10 1990-08-22 Fuji Electric Co Ltd Distance relay
JP2014079508A (en) * 2012-10-18 2014-05-08 Olympus Medical Systems Corp Dimming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157480A (en) * 1984-01-20 1985-08-17 三菱電機株式会社 Operating device for elevator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157480A (en) * 1984-01-20 1985-08-17 三菱電機株式会社 Operating device for elevator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211020A (en) * 1989-02-10 1990-08-22 Fuji Electric Co Ltd Distance relay
JP2014079508A (en) * 2012-10-18 2014-05-08 Olympus Medical Systems Corp Dimming device

Also Published As

Publication number Publication date
JPH0528054B2 (en) 1993-04-23

Similar Documents

Publication Publication Date Title
Dai et al. Quasi-synchronous sampling algorithm and its applications
US8145443B2 (en) Fourier transform-based phasor estimation method and apparatus capable of eliminating influence of exponentially decaying DC offsets
CN104040903A (en) Time Domain Switched Analog-to Digital Converter Apparatus And Methods
KR100823832B1 (en) Apparatus and method for estimating frequency of signal in power system
CN108196217B (en) Direct current metering method and system for off-board charger current calibration instrument
JPH0320969B2 (en)
CA1152569A (en) Ac electric energy meter utilizing a counter as an integrator
JPS6218917A (en) Distance relay
Kim Analog-to-digital conversion and harmonic noises due to the integral nonlinearity
KR100326877B1 (en) Power arithmetic apparatus
JP2968607B2 (en) Reactive energy meter
EP0214483B1 (en) Method for measuring distance in digital distance relays
Serov et al. Application of phase shift for reactive power measurement
JPH0528055B2 (en)
Voigtman et al. Low‐pass filters for signal averaging
JPS6387123A (en) Distance relay
JP3182777B2 (en) Electric energy measurement method
JPH11160372A (en) Measuring method for harmonics characteristic
JP2661140B2 (en) Digital type frequency relay
RU2010295C1 (en) Device for compensation of errors of measuring channel
Dai et al. Quasi-synchronous sampling algorithm and its applications-III. High accurate measurement of frequency, frequency deviation and phase angle difference in power systems
JPH0980090A (en) Frequency detector
Pejovic et al. Comments on" New algorithm for measuring 50/60-Hz AC values based on the usage of slow A/D converters" and" Measuring of slowly changing AC signals without sample-and-hold circuit"
Serov et al. Application of Polynomial Approximation to Estimate the RMS Measurement Error of the Polyharmonic Signal Caused by ADC Nonlinearity
JP2611416B2 (en) Distance relay

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term