JPS6218890B2 - - Google Patents

Info

Publication number
JPS6218890B2
JPS6218890B2 JP57125002A JP12500282A JPS6218890B2 JP S6218890 B2 JPS6218890 B2 JP S6218890B2 JP 57125002 A JP57125002 A JP 57125002A JP 12500282 A JP12500282 A JP 12500282A JP S6218890 B2 JPS6218890 B2 JP S6218890B2
Authority
JP
Japan
Prior art keywords
optical
output
input
optical signal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57125002A
Other languages
Japanese (ja)
Other versions
JPS5915915A (en
Inventor
Takeshi Koseki
Toshifumi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12500282A priority Critical patent/JPS5915915A/en
Priority to US06/439,547 priority patent/US4511208A/en
Priority to DE8282306134T priority patent/DE3280300D1/en
Priority to EP19820306134 priority patent/EP0080829B1/en
Publication of JPS5915915A publication Critical patent/JPS5915915A/en
Publication of JPS6218890B2 publication Critical patent/JPS6218890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光フアイバからの光信号を分配する
光分配器の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the structure of an optical splitter that distributes optical signals from optical fibers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、光信号を受動光回路素子により多数の
端子に分配することは、信頼性の高い経済的光ネ
ツトワーク等の実現にとつて特に重要である。
In general, the distribution of optical signals to a large number of terminals by passive optical circuit elements is particularly important for realizing highly reliable and economical optical networks.

従来、このような受動回路素子としては1つの
入力端子に入力された光信号を全ての出力端子に
出力するスターカプラが知られており、この種の
カプラを中心にしたスター状ネツトワークが知ら
れている。しかし、このようなシステムでは全て
の局からスターカプラまで光ケーブルを配線する
必要があり、局数を増やすと必要な光ケーブルの
全体の長さが長くなりコスト高となる問題があつ
た。又1個のスターカプラに多くの光ケーブルが
接続されることになる為、ケーブルが輻輳し必ず
しも使い易いものではなかつた。
Conventionally, a star coupler is known as such a passive circuit element, which outputs an optical signal input to one input terminal to all output terminals, and a star-shaped network centered on this type of coupler is known. It is being However, in such a system, it is necessary to wire optical cables from all stations to the star coupler, and when the number of stations is increased, the overall length of the required optical cables increases, resulting in an increase in cost. Furthermore, since many optical cables are connected to one star coupler, the cables become congested and are not necessarily easy to use.

上記のスターカプラを複数個用い、これらをカ
スケードに接続すれば、全局数が多くても各スタ
ーカプラに接続される局の数は少なく、上述のよ
うな問題点は除去されると考えられる。しかしな
がら、従来のスターカプラでは、光信号が入力さ
れるポートの出力端子にも光信号の一部が分配さ
れるので、閉ループが形成され発振してしまい、
正常な光伝送が不可能であつた。
If a plurality of the star couplers described above are used and connected in cascade, the number of stations connected to each star coupler will be small even if the total number of stations is large, and the above-mentioned problems can be considered to be eliminated. However, in conventional star couplers, a part of the optical signal is also distributed to the output terminal of the port where the optical signal is input, so a closed loop is formed and oscillation occurs.
Normal optical transmission was impossible.

即ち、第1図に示すように第1、第2のスター
カプラ1a,1bが、各ポートの入力端子に供給
される光信号を全てのポートの出力端子に出力す
る特性を有すると、第1のスターカプラ1aから
出力される光信号は、第1の受信器2a、第1の
送信器3a、第2のスターカプラ1bを通り、更
に第2の受信器2b、第2の送信器3bを通つて
第1のスターカプラ1aに入力され再びその一部
が第1の受信器2aに送り出される。このように
閉ループが形成され発振を生じてしまう。尚、第
1図において4は光送信器4aと光受信器4bと
から成る局である。
That is, as shown in FIG. 1, if the first and second star couplers 1a and 1b have the characteristic of outputting the optical signal supplied to the input terminal of each port to the output terminal of all ports, the first The optical signal output from the star coupler 1a passes through a first receiver 2a, a first transmitter 3a, a second star coupler 1b, and then a second receiver 2b and a second transmitter 3b. The signal is then inputted to the first star coupler 1a, and a portion of it is sent out again to the first receiver 2a. In this way, a closed loop is formed and oscillation occurs. Note that in FIG. 1, 4 is a station consisting of an optical transmitter 4a and an optical receiver 4b.

本発明者等は、先に上記のようなシステムに適
し、発振等を生じない光分配器を提案した(特願
昭57−5651)。即ち、光信号の供給されたポート
対の出力端子には光信号が出力されない光分配器
である。第2図にこの種の光分配器の一例を示
す。この分配器は3つのポート対を有する光分配
器の例であり、第1のポート対は入力端子11a
と出力端子11bとから成り、同様に第2のポー
ト対は入力端子12a、出力端子12bとから、
第3ポート対は入力端子13a、出力端子13b
とからそれぞれ成る。光フアイバにより入力端子
11a,12a,13aに各々入力された光信号
は、いわゆるカマボコ状レンズ体を3個垂直に並
設して成る凸レンズ14により垂直方向に所定の
移相量変化を与えられ、更に凸レンズ15により
水平方向に移相量変化を与えられた後、図示のよ
うな放射側で6つの異なる平面を有する偏向マト
リクス板16に入射する。このマトリクス板16
の出射側に配置された偏向マトリクス板17は、
16と全く逆の光学的作用を有するものである。
偏向マトリクス板16の上段に入射した光信号は
前半、後半に2分割され偏向マトリクス板17の
下段と中段の部分に入射する。同様に偏向マトリ
クス板16の中段、下段に入射した光信号は、偏
向マトリクス板17の上段、下段及び中段、上段
の部分に入射する。偏向マトリクス板17を通過
した光信号は凸レンズ15,14と同じ構造を有
する凸レンズ18,19を通過し、各ポート対の
出力端子11b,12b,13bに出力される。
The present inventors previously proposed an optical splitter that is suitable for the above-mentioned system and does not cause oscillation (Japanese Patent Application No. 57-5651). That is, it is an optical splitter in which no optical signal is output to the output terminals of the port pair to which the optical signal is supplied. FIG. 2 shows an example of this type of optical splitter. This distributor is an example of an optical distributor having three port pairs, where the first port pair is the input terminal 11a.
Similarly, the second port pair consists of an input terminal 12a, an output terminal 12b, and an output terminal 11b.
The third port pair is input terminal 13a and output terminal 13b
Each consists of Optical signals input to input terminals 11a, 12a, and 13a through optical fibers are given a predetermined phase shift change in the vertical direction by a convex lens 14 made up of three so-called semicylindrical lens bodies arranged vertically in parallel. Further, after being given a phase shift change in the horizontal direction by a convex lens 15, the light enters a deflection matrix plate 16 having six different planes on the radiation side as shown in the figure. This matrix plate 16
The deflection matrix plate 17 arranged on the emission side of
It has an optical effect completely opposite to that of No. 16.
The optical signal incident on the upper stage of the deflection matrix plate 16 is divided into two parts, the first half and the second half, and enters the lower and middle parts of the deflection matrix plate 17. Similarly, the optical signals incident on the middle and lower stages of the deflection matrix plate 16 are incident on the upper and lower stages, and the middle and upper stages of the deflection matrix plate 17. The optical signal that has passed through the deflection matrix plate 17 passes through convex lenses 18 and 19 having the same structure as convex lenses 15 and 14, and is output to output terminals 11b, 12b, and 13b of each port pair.

結局この光分配器では、第1ポート対の入力端
子11aに入つた光信号は第2、第3ポート対の
出力端子12b,13bに出力されるが第1ポー
ト対の出力端子11bには出力されない。したが
つて上記のような特性を有する光分配器である。
しかしこの光分配器は構成が複雑で調整が困難で
あり、光の低損失化等において問題がある。
In the end, in this optical splitter, the optical signal that enters the input terminal 11a of the first port pair is output to the output terminals 12b and 13b of the second and third port pair, but is output to the output terminal 11b of the first port pair. Not done. Therefore, the optical distributor has the characteristics described above.
However, this optical splitter has a complicated configuration and is difficult to adjust, and there are problems in reducing optical loss.

〔発明の目的〕[Purpose of the invention]

本発明は、多くの局を有する光伝送システムに
適した光分配器、即ち光信号の供給されたポート
対の出力端子には光信号が出力されない特性を有
する改良された光分配器を提供することを目的と
する。
The present invention provides an optical splitter suitable for an optical transmission system having many stations, that is, an improved optical splitter having a characteristic that no optical signal is output to the output terminal of a pair of ports to which an optical signal is supplied. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、光信号を透過させる透過面と光信号
を反射させる反射面を有する反射板を複数個所定
の傾きに保持して積層された反射板群を用いる。
そして、入力光フアイバ端部及び出力光フアイバ
端部から成る複数個のポート対の、各入力光フア
イバ端部から反射された光信号を、ロツドレンズ
又はそれと等価な光学系を介して上記反射板群に
より、この光信号を発射した入力フアイバ端部の
ポート対以外のポート対の出力フアイバ端部に入
射させるように反射する。
The present invention uses a group of reflective plates in which a plurality of reflective plates each having a transmitting surface that transmits an optical signal and a reflective surface that reflects the optical signal are stacked and held at a predetermined inclination.
Then, the optical signals reflected from each input optical fiber end of the plurality of port pairs consisting of the input optical fiber end and the output optical fiber end are transmitted to the reflector group through a rod lens or an optical system equivalent thereto. As a result, this optical signal is reflected so as to be incident on the output fiber end of a port pair other than the port pair at the input fiber end from which it was emitted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多くの局を有する光伝送シス
テムに適した光分配器が得られる。又本発明で
は、上記のような透過面及び反射面を有する反射
板を所定の傾きに保持して積層した反射板群によ
り、所要の反射特性を得るので、調整が容易な光
分配器が得られる。
According to the present invention, an optical splitter suitable for an optical transmission system having many stations can be obtained. In addition, in the present invention, the desired reflection characteristics are obtained by a group of stacked reflectors having transmitting surfaces and reflecting surfaces as described above held at a predetermined inclination, so that a light distributor that is easy to adjust can be obtained. It will be done.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について述べる。 Examples of the present invention will be described below.

第3図に本発明の光分配器を適用した光伝送シ
ステムの全体構成を示す。20は後で詳しく説明
する、例えば4ポート対を有する本発明による光
分配器である。各光分配器20は第1乃至第4の
4つのポート対21,22,23,24を有す
る。各光分配器20の第1、第2のポート対2
1,22は隣接する光分配器20に接続されてお
り、第3、第4ポート対23,24には局25が
接続されている。各局25は、光信号を送信する
光送信器26と、光信号を受信する光受信器27
とから成る。
FIG. 3 shows the overall configuration of an optical transmission system to which the optical splitter of the present invention is applied. Reference numeral 20 denotes an optical distributor according to the present invention having, for example, four port pairs, which will be described in detail later. Each optical distributor 20 has four port pairs 21, 22, 23, and 24, first to fourth. First and second port pair 2 of each optical splitter 20
1 and 22 are connected to adjacent optical distributors 20, and a third and fourth port pair 23 and 24 are connected to a station 25. Each station 25 includes an optical transmitter 26 that transmits an optical signal and an optical receiver 27 that receives the optical signal.
It consists of

各光分配器20は、第4図の模式図に示すよう
な特性を有する。各ポート対は、光信号を入力す
る入力光フアイバ端部と、光信号を出力する出力
光フアイバ端部から成る。第1ポート対21は入
力光フアイバ端部M1と出力光フアイバ端部M1′か
ら成り、第2ポート対22は入力光フアイバM2
と出力光フアイバM2′から成る。又、第3ポート
対23は入力光フアイバ端部T1と出力光フアイ
バ端部R1とから成り、第4ポート対24は入力
光フアイバ端部T2と出力光フアイバ端部R2とか
ら成る。そして、各入力光フアイバ端部に入つた
光信号はこの光分配器を通つてそのポート対以外
の全ての出力光フアイバ端部に入る。例えば、第
1ポート対21の入力光フアイバ端部M1に入つ
た光信号は、このポート対の出力光フアイバ端部
M1′以外の第2、第3、第4ポート対22,2
3,24の出力光フアイバ端部M2′,R1,R2に分
配される。以下同様に光信号が分配される特性を
この光分配器は有する。
Each optical distributor 20 has characteristics as shown in the schematic diagram of FIG. Each port pair consists of an input optical fiber end for inputting an optical signal and an output optical fiber end for outputting an optical signal. The first port pair 21 consists of an input optical fiber end M 1 and an output optical fiber end M 1 ', and the second port pair 22 consists of an input optical fiber end M 2 .
and an output optical fiber M 2 ′. Further, the third port pair 23 consists of an input optical fiber end T 1 and an output optical fiber end R 1 , and the fourth port pair 24 consists of an input optical fiber end T 2 and an output optical fiber end R 2 . Become. The optical signal entering each input optical fiber end passes through this optical splitter and enters all output optical fiber ends other than that pair of ports. For example, an optical signal entering the input optical fiber end M 1 of the first port pair 21 is transmitted to the output optical fiber end M 1 of the first port pair 21.
2nd, 3rd, and 4th port pair 22, 2 other than M 1 '
3 and 24 output optical fiber ends M 2 ', R 1 and R 2 . This optical distributor has the characteristic that optical signals are distributed in the same manner.

上記のような特性を有する本発明の一実施例の
構成を第5図に示す。第5図において、31〜3
4はその端部を入力光フアイバ端部M1,M2
T1,T2とする光フアイバであり、41〜44は
その端部を出力光フアイバ端部M1′,M2′,R1
R2とする光フアイバである。各入出力光フアイ
バ端部の位置関係を第6図に示した。同図におい
て、点線により示した円形部分は各光フアイバと
同一寸法、形状の光フアイバがダミーとして設け
られていることを示す。上記の入出力光フアイバ
31〜34,41〜44のみで正確な位置関係を
保持できるならばダミーの光フアイバはなくても
よい。又、第6図において端部M1,M2,T1,T2
から先が手前の方向に発射し、端部M1′,M2′,
R1,R2では光がフアイバに入射することを示
す。
FIG. 5 shows the structure of an embodiment of the present invention having the above characteristics. In Figure 5, 31-3
4 connects its ends to input optical fiber ends M 1 , M 2 ,
These are optical fibers T 1 , T 2 , and 41 to 44 are output optical fiber ends M 1 ′, M 2 ′, R 1 ,
It is an optical fiber with R 2 . FIG. 6 shows the positional relationship between the ends of each input and output optical fiber. In the figure, a circular portion indicated by a dotted line indicates that an optical fiber having the same size and shape as each optical fiber is provided as a dummy. If accurate positional relationships can be maintained only with the input/output optical fibers 31 to 34 and 41 to 44, the dummy optical fibers may be omitted. Also, in FIG. 6, the ends M 1 , M 2 , T 1 , T 2
The tip fires toward you, and the ends M 1 ′, M 2 ′,
R 1 and R 2 indicate that light enters the fiber.

第5図に示すように、これらの入出力光フアイ
バ31〜34,41〜44の端部の面には、これ
らの端面が全て含まれる大きさの直径を有し、1/
4ピツチ長で円柱状のロツドレンズ35が、その
一方の端面を当接するように設けられる。このロ
ツドレンズ35の他方の端面には、光信号を反射
させる反射面と光信号を透過させる透過面を有す
る反射板を複数個所定の傾きに保持して積層され
た反射板群45が設けられている。
As shown in FIG. 5, the end faces of these input/output optical fibers 31 to 34 and 41 to 44 have diameters that are large enough to include all of these end faces, and 1/
A cylindrical rod lens 35 with a length of 4 pitches is provided so as to abut one end surface thereof. The other end face of the rod lens 35 is provided with a group of reflective plates 45 in which a plurality of reflective plates having a reflective surface that reflects an optical signal and a transmitting surface that transmits an optical signal are stacked and held at a predetermined inclination. There is.

ロツドレンズ35は、その中心軸から外側に屈
折率が漸次低くなるように作られており、この屈
折率の状態によつて光の曲がりの1サイクルの長
さは変化する。この1サイクルの長さを1ピツチ
として、ここではロツドレンズ35は1/4ピツチ
の長さに選ばれる。このロツドレンズとして例え
ば直径2mm、長さ5mmのものを用いた。
The rod lens 35 is made so that its refractive index gradually decreases outward from its central axis, and the length of one cycle of light bending changes depending on the state of this refractive index. Assuming that the length of one cycle is one pitch, the rod lens 35 is selected to have a length of 1/4 pitch. For example, a rod lens with a diameter of 2 mm and a length of 5 mm was used.

反射板群45は4枚の光反射板50〜53から
成る。光反射板53は、第7図に示すように表裏
面がy方向に2θの角度をなし、裏面(ロツドレ
ンズ側の面)には図示する形状の反射面60を有
する。ここでθはフアイバアレイ端面で、1本の
光フアイバの外径に相当する偏位を生ずる角度で
ある。上記反射面60はロツドレンズの軸に垂直
になつている。したがつてこの反射面により、第
11図に示すように第1ポート対21の入力光フ
アイバ端部M1から発射した光信号は、第2ポー
ト対22の出力光フアイバ端部M2′に入射し、第
2ポート対22の入力光フアイバ端部M2から発
射した光信号は第1ポート対21の出力光フアイ
バ端部M1′に入射する。
The reflector group 45 consists of four light reflectors 50 to 53. As shown in FIG. 7, the light reflecting plate 53 has front and back surfaces forming an angle of 2θ in the y direction, and has a reflecting surface 60 having the shape shown in the figure on the back surface (the surface on the rod lens side). Here, θ is an angle that causes a deviation corresponding to the outer diameter of one optical fiber at the end face of the fiber array. The reflective surface 60 is perpendicular to the axis of the rod lens. Therefore, due to this reflective surface, the optical signal emitted from the input optical fiber end M 1 of the first port pair 21 is directed to the output optical fiber end M 2 ' of the second port pair 22 as shown in FIG. The optical signal incident and emitted from the input optical fiber end M 2 of the second port pair 22 enters the output optical fiber end M 1 ' of the first port pair 21.

又、上記光反射板53上に設けられる光反射板
52は第8図に示したように―y方向に角度θの
表裏面を有し、この裏面及び表面に図示形状の反
射面61,62を設けられている。反射面61は
膜状であり、反射率は1%程度と小さく、他の反
射面と異なる。光反射板53の裏面はロツドレン
ズ35の端面に対して2θをなし、第12図に示
すように、第3、第4ポート対23,24の入力
光フアイバ端部T1,T2から発射した光は第4、
第3ポート対24,23の出力光フアイバ端部
R2,R1に入射する。又、表面側の頂角45゜の
反射面62はロツドレンズ35の端面に対してy
方向に2θ−θ=θなる角度をなす。したがつて
第13図に示すように反射面62及び反射面60
により、第1、第2ポート対21,22の入力光
フアイバ端部M1,M2から発射た光信号は第2、
第1ポート22,21の出力光フアイバ端部
R2,R1に入力する。又、これらの反射面によつ
て第14図に示すように入力光フアイバ端部
T1,T2から発射した光信号はは出力光フアイバ
端部M2′,M1′に入射する。
Further, as shown in FIG. 8, the light reflecting plate 52 provided on the light reflecting plate 53 has front and back surfaces with an angle θ in the -y direction, and reflective surfaces 61 and 62 having the shapes shown in the figure are provided on the back and front surfaces. is provided. The reflective surface 61 is film-like and has a low reflectance of about 1%, which is different from other reflective surfaces. The back surface of the light reflecting plate 53 forms an angle of 2θ with respect to the end surface of the rod lens 35, and as shown in FIG . Light is the fourth
Output optical fiber end of third port pair 24, 23
Inject into R 2 and R 1 . In addition, the reflective surface 62 with an apex angle of 45° on the front side is y with respect to the end surface of the rod lens 35.
It forms an angle of 2θ-θ=θ in the direction. Therefore, as shown in FIG.
Accordingly, the optical signals emitted from the input optical fiber ends M 1 and M 2 of the first and second port pair 21 and 22 are transmitted to the second port pair 21 and 22.
Output optical fiber end of first port 22, 21
Input to R 2 and R 1 . In addition, these reflective surfaces allow the end of the input optical fiber to be reflected as shown in FIG.
The optical signals emitted from T 1 and T 2 enter the output optical fiber ends M 2 ′ and M 1 ′.

光反射板52の上に積層される反射板51は、
第9図に示すように表裏面が―x方向に表面に反
射面63を有する。第15図に示すようにこの反
射面63及び反射面60によつて、入力光フアイ
バ端部M2,T2から発射した光信号は出力光フア
イバ端部R2,M2′に入射する。
The reflecting plate 51 laminated on the light reflecting plate 52 is
As shown in FIG. 9, both the front and back surfaces have a reflective surface 63 in the -x direction. As shown in FIG. 15, the reflective surfaces 63 and 60 allow the optical signals emitted from the input optical fiber ends M 2 and T 2 to enter the output optical fiber ends R 2 and M 2 '.

光反射板51上に積層される反射板50は、第
10図に示すようにx方向に角度2θなる表裏面
を有し、この表面に反射面64を有する。第16
図に示すようにこの反射面64及び反射面60に
よつて、入力光フアイバ端部M1,T1から発射し
た光信号は出力光フアイバ端部R1,M1′に入射す
る。
The reflecting plate 50 stacked on the light reflecting plate 51 has front and back surfaces having an angle of 2θ in the x direction, as shown in FIG. 10, and has a reflecting surface 64 on this surface. 16th
As shown in the figure, the reflective surfaces 64 and 60 allow the optical signals emitted from the input optical fiber ends M 1 and T 1 to enter the output optical fiber ends R 1 and M 1 '.

したがつて、これらの光反射板50〜53が積
層されると、例えば第2ポート対22の入力光フ
アイバ端部M2から発射された光信号は第11
図、第13図、第15図に示すように第2ポート
対以外の出力光フアイバ端部M1′,R1,R2に入射
する。このように第4図に示した特性が得られ
る。
Therefore, when these light reflecting plates 50 to 53 are stacked, the optical signal emitted from the input optical fiber end M2 of the second port pair 22, for example,
13 and 15, the light enters the output optical fiber ends M 1 ', R 1 and R 2 other than the second port pair. In this way, the characteristics shown in FIG. 4 are obtained.

上記実施例では単一波長の光信号を設計された
散乱マトリクスに従つて光束を波面分割している
が、多波長の場合にも反射膜の波長依存性と波面
分割を併用した光回路素子が容易に構成できる。
In the above embodiment, a single-wavelength optical signal is wavefront-split into a light beam according to a designed scattering matrix, but even in the case of multiple wavelengths, an optical circuit element that combines the wavelength dependence of a reflective film and wavefront splitting is used. Easy to configure.

本発明の上記実施例によれば、波面分割を光反
射板の反射面の形状により自由に設定し、結合に
必要な偏位は積層する平面の法線の設定により与
えることで2つの役割を分割できる。このため構
成の自由度が増大し複雑な散乱行列をもつ光回路
素子の実現が、単一のロツドレンズで可能とな
る。
According to the above-described embodiment of the present invention, the wavefront splitting can be freely set by the shape of the reflecting surface of the light reflecting plate, and the deflection necessary for coupling is given by setting the normal line of the laminated plane, thereby fulfilling two roles. Can be divided. Therefore, the degree of freedom in configuration increases, and it becomes possible to realize an optical circuit element with a complicated scattering matrix using a single rod lens.

単一のロツドレンズで構成できることにより、
小型化が可能であり、しかもロツドレンズの収
差、フアイバアレイ位置誤差などによる不完全損
失の低減が、複数のロツドレンズを用いる場合に
比して、容易に可能となる。
By being able to consist of a single rod lens,
It is possible to reduce the size, and moreover, it is easier to reduce imperfection loss due to rod lens aberrations, fiber array position errors, etc., compared to the case where a plurality of rod lenses are used.

尚、本発明の光分配器は上記実施例のように4
つのポートを有するものだけでなく、3つあるい
は5以上のポートを有する光分配器にも適用でき
ることは明らかである。
Incidentally, the optical distributor of the present invention has four parts as in the above embodiment.
It is clear that the invention is applicable not only to those with one port, but also to optical splitters with three or more than five ports.

又、上記実施例は1/4ピツチ長のロツドレンズ
を用いているが、本発明はこれに限らず、光を平
行光に変え(コリメート)、又平行光を絞る特性
を有する等価な光学系を用いてもよい。
Further, although the above embodiment uses a rod lens with a length of 1/4 pitch, the present invention is not limited to this, but an equivalent optical system having the characteristics of collimating light and narrowing the parallel light can also be used. May be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスターカプラを用いた光伝送シ
ステムの構成図、第2図は先に出願した提案の光
分配器の構造図、第3図は本発明の光分配器を用
いた光伝送システムの構成図、第4図は本発明の
光分配器の特性を示す模式図、第5図は本発明一
実施例の斜視図、第6図は第5図の実施例の入出
力光フアイバ端部の配置関係を示す図、第7図乃
至第10図は第5図の実施例に用いる光反射板の
斜視図、第11図乃至第16図は第5図の実施例
における光信号の入出力関係を示す図である。 20…光分配器、21…第1ポート対、22…
第2ポート対、23…第3ポート対、24…第4
ポート対、25…局、26…光送信器、7…光受
信器、M1,M2,T1,T2…入力光フアイバ端部、
M1′,M2′,R1,R2…出力光光フアイバ端部、3
5…ロツドレンズ、45…反射板群、50〜53
…光反射板。
Fig. 1 is a block diagram of an optical transmission system using a conventional star coupler, Fig. 2 is a structural diagram of an optical splitter proposed earlier, and Fig. 3 is an optical transmission system using the optical splitter of the present invention. A system configuration diagram, FIG. 4 is a schematic diagram showing the characteristics of the optical distributor of the present invention, FIG. 5 is a perspective view of an embodiment of the present invention, and FIG. 6 is an input/output optical fiber of the embodiment of the present invention. 7 to 10 are perspective views of the light reflecting plate used in the embodiment of FIG. 5, and FIGS. 11 to 16 are diagrams showing the arrangement of the optical signals in the embodiment of FIG. FIG. 3 is a diagram showing an input/output relationship. 20... Optical distributor, 21... First port pair, 22...
2nd port pair, 23...3rd port pair, 24...4th port pair
port pair, 25...station, 26...optical transmitter, 7...optical receiver, M1 , M2 , T1 , T2 ...input optical fiber end,
M 1 ′, M 2 ′, R 1 , R 2 ... Output light optical fiber end, 3
5...Rod lens, 45...Reflector group, 50-53
...Light reflector.

Claims (1)

【特許請求の範囲】 1 各々光信号を入力及び出力する入力光フアイ
バ端部及び出力光フアイバ端部から成るポート対
を複数個所定位置に並設して成るポート対群と、 これらのポート対の各入力フアイバ端部から発
射された光信号をこの光信号を発射した入力フア
イバのポート対の出力フアイバ以外の他のポート
の出力フアイバ端部に入射させる如く、光信号を
透過させる透過面と光信号を反射させる反射面を
有する反射板を複数個所定の傾きに保持して積層
された反射板群と、 この反射板群と前記ポート群の間に介在し光信
号の伝送を行うロツドレンズ又はこれと等価な光
学系とを備えて成ることを特徴とする光分配器。
[Scope of Claims] 1. A port pair group consisting of a plurality of port pairs each consisting of an input optical fiber end and an output optical fiber end, each of which inputs and outputs an optical signal, and which are arranged in parallel at a predetermined position; a transmitting surface that transmits the optical signal such that the optical signal emitted from the end of each input fiber of the input fiber is incident on the output fiber end of the port other than the output fiber of the port pair of the input fiber from which the optical signal was emitted; A group of reflectors stacked with a plurality of reflectors each having a reflective surface that reflects an optical signal held at a predetermined inclination, and a rod lens interposed between the group of reflectors and the port group for transmitting the optical signal. An optical distributor characterized by comprising an optical system equivalent to this.
JP12500282A 1981-11-26 1982-07-20 Optical distributor Granted JPS5915915A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12500282A JPS5915915A (en) 1982-07-20 1982-07-20 Optical distributor
US06/439,547 US4511208A (en) 1981-11-26 1982-11-05 Optical communication system
DE8282306134T DE3280300D1 (en) 1981-11-26 1982-11-18 OPTICAL DATA TRANSFER SYSTEM.
EP19820306134 EP0080829B1 (en) 1981-11-26 1982-11-18 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12500282A JPS5915915A (en) 1982-07-20 1982-07-20 Optical distributor

Publications (2)

Publication Number Publication Date
JPS5915915A JPS5915915A (en) 1984-01-27
JPS6218890B2 true JPS6218890B2 (en) 1987-04-24

Family

ID=14899443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12500282A Granted JPS5915915A (en) 1981-11-26 1982-07-20 Optical distributor

Country Status (1)

Country Link
JP (1) JPS5915915A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138207A (en) * 1984-12-10 1986-06-25 Matsushita Electric Ind Co Ltd Optical tri-branching and coupling device
JP3055603B2 (en) * 1996-07-19 2000-06-26 日本電気株式会社 Optical network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102806A (en) * 1980-01-21 1981-08-17 Nec Corp Light distributing circuit for optical fiber communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102806A (en) * 1980-01-21 1981-08-17 Nec Corp Light distributing circuit for optical fiber communication

Also Published As

Publication number Publication date
JPS5915915A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US4482994A (en) Optical multiplexer/demultiplexer using interference filters
US4787693A (en) Passive star coupler
US4511208A (en) Optical communication system
US4708424A (en) Transmissive single-mode fiber optics star network
CN100419499C (en) High efficiency beam distribution with independent wavefront correction
JP2000028966A5 (en)
US6289152B1 (en) Multiple port, fiber optic coupling device
US4600267A (en) Optical distributor
JPH11326688A (en) Multiport optical device
EP0004980B2 (en) Reversible light beam coupler
CN108897102B (en) Dual-wavelength selective switch
EP0080829B1 (en) Optical communication system
JPS6218890B2 (en)
CN201118092Y (en) Multipath combined beam optical fiber laser
CN101414053A (en) Multiplex beam combination optical fiber laser
CN208314250U (en) A kind of miniature optical circulator
JPS6123523B2 (en)
JPS5922020A (en) Optical distributor
US10048444B2 (en) Optical System for Optical Communications
JPS6335962B2 (en)
CN219179635U (en) Adjustable filter
JPS6239402B2 (en)
JP3133833B2 (en) Light star coupler
US20020075576A1 (en) Structure for reducing optical beam spacing
CN101202417A (en) High penetrate group beam optical fibre laser