JPS5922020A - Optical distributor - Google Patents

Optical distributor

Info

Publication number
JPS5922020A
JPS5922020A JP13022482A JP13022482A JPS5922020A JP S5922020 A JPS5922020 A JP S5922020A JP 13022482 A JP13022482 A JP 13022482A JP 13022482 A JP13022482 A JP 13022482A JP S5922020 A JPS5922020 A JP S5922020A
Authority
JP
Japan
Prior art keywords
optical
output
light
input
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13022482A
Other languages
Japanese (ja)
Inventor
Takeshi Koseki
健 小関
Toshifumi Tamura
敏文 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13022482A priority Critical patent/JPS5922020A/en
Priority to US06/439,547 priority patent/US4511208A/en
Priority to DE8282306134T priority patent/DE3280300D1/en
Priority to EP19820306134 priority patent/EP0080829B1/en
Publication of JPS5922020A publication Critical patent/JPS5922020A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Abstract

PURPOSE:To inhibit the output of a light signal to the output terminal of a port supplied with the light signal by reflecting the light signal projected from an input fiber end part of a port group through a reflector consisting of a rod lens and a diffraction grating. CONSTITUTION:Optical fibers 31-35 have input light fiber end parts M1, M2, and T1, and optical fibers 34 and 36 have output fiber end parts M'1, M'2, and R1. The rod lens connected thereto has a refractive index distribution with nearly squarelaw characteristics in the radial direction and is a quarter as long as zigzag pitch of light beam. A diffraction grating 41 with a period l1 and a diffraction grating l2 with a period a half said period are formed on the end surface of the lens on both sides of an x axis; and the half of each grating period is formed of a dielectric film with thickness lambda/4 and no diffracted light of degree 0 is present. Light from the input fiber end parts M1, M2, and T1 is made incident to the diffraction gratings 41 and 42 and primary diffracted light is inputted to the end part of an output fiber other than its projection port and never returns to its projection station.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光ファイバからの光信号を分配する光分配器
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the structure of an optical distributor that distributes optical signals from optical fibers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、光信号を受動光回路素子により多数の端子に分
配するこ七は、信頼性の高い経済的光ネットワーク等の
実現にとって特に重要であ勺。
In general, the distribution of optical signals to a large number of terminals using passive optical circuit elements is particularly important for realizing reliable and economical optical networks.

従来、このような受動回路素子としては1つの入力端子
に入力された光信号を全ての出力端子に出力するスター
カプラが知られており、この種のカプラを中心にしたス
ター状ネットワークが知られている。しかし、このよう
なシステムでは全ての局からスターカプラまで光ケーブ
ルを配線する必要があり、局数を増やすと必要な光クー
プルの全体の長くなりコスト高となる問題があった。又
1個のスターカプラに多くの光ケーブルが接続されるこ
とになる為、ケーブルが輻軽し必ずしも使い易いもので
はなかった。
Conventionally, as such a passive circuit element, a star coupler is known, which outputs an optical signal input to one input terminal to all output terminals, and a star-shaped network centered on this type of coupler is known. ing. However, in such a system, it is necessary to wire optical cables from all stations to the star coupler, and there is a problem in that increasing the number of stations increases the length of the entire required optical couple and increases costs. Furthermore, since many optical cables are connected to one star coupler, the cables become congested and are not necessarily easy to use.

上記スターカプラを複数個用い、これらをカスケードに
接続すれば、全局数が多くても各スターカプラに接続さ
れる局の数は少なく、上述のような問題点は除去される
と考えられる。しかしながら、従来のスターカプラでは
、光信号が入力されるボートの出力端子にも光信号の一
部が分配されるので、閉ループが形成され発振してしま
い、正常な光伝送が不可能であった。
If a plurality of the above star couplers are used and they are connected in cascade, the number of stations connected to each star coupler will be small even if the total number of stations is large, and the above-mentioned problems can be considered to be eliminated. However, with conventional star couplers, a portion of the optical signal is also distributed to the output terminal of the boat where the optical signal is input, resulting in the formation of a closed loop and oscillation, making normal optical transmission impossible. .

即ち、第1図に示すように、第1.第2のスターカプラ
(la)、(lb)が、各11ζ−トの入力端子に供給
される光信号を全てのボートの出力端子に出力する特性
を有すると、第1のスターカプラ(1a)から出力され
る光信号は、第1の受信器(2a) 、第1の送信器(
3a) 、第2のスターカプラ(1b)を通り、更に第
2の受信器(2b)、第2の送信器(3b)を通って第
1のスターカプラ(1a)に入力され・、再びその一部
が第1の受信器(2a)に送り出される。このように閉
ループが形成され発振を生じてしまう。
That is, as shown in FIG. When the second star couplers (la) and (lb) have the characteristic of outputting the optical signal supplied to the input terminal of each 11ζ-t to the output terminals of all boats, the first star coupler (1a) The optical signal output from the first receiver (2a) and the first transmitter (
3a), passes through the second star coupler (1b), further passes through the second receiver (2b) and the second transmitter (3b), and is input to the first star coupler (1a), and is inputted again to the first star coupler (1a). A portion is sent to the first receiver (2a). In this way, a closed loop is formed and oscillation occurs.

尚、第1図において(4)は光送信器(4a)と光受信
器(4b)とから成る局である。
In FIG. 1, (4) is a station consisting of an optical transmitter (4a) and an optical receiver (4b).

本発明者等は先に上記のようなシステムに適し、発振等
を生じない光分配器を提案した(#願昭57−5671
)。即ち、光信号の供給されたボートの出力端子には光
信号が出力されない光分配器である。第2図にこの種の
光分配器の一例を示す。
The inventors of the present invention previously proposed an optical splitter that is suitable for the above-mentioned system and does not cause oscillations (#Application No. 57-5671
). That is, it is an optical splitter in which no optical signal is output to the output terminal of the boat to which the optical signal is supplied. FIG. 2 shows an example of this type of optical splitter.

この光分配器は3つのボートを有する光分配器の例であ
り、第1のボートは入力端子(lla)と出力端子(l
lb)とから成り、同様に第2のボートは入力端子(1
2a)出力端子(12b)とから、第3ボートは入力端
子(13a)、出力端子(13b)とからそれぞれ成る
。光ファイバにより入力端子(1]、a)、(12a)
This optical splitter is an example of an optical splitter having three boats, where the first boat is an input terminal (lla) and an output terminal (l
Similarly, the second port has an input terminal (1
2a) From the output terminal (12b), the third port consists of an input terminal (13a) and an output terminal (13b), respectively. Input terminals (1], a), (12a) by optical fiber
.

(13a)に各々入力された光信号は、いわゆるカマボ
コ状レンズ体を3個垂直に並設して成る凸レンズ141
により垂直方向に所定の移相量変化ぬ与えられ、更に凸
レンズ119により水平方向に移相量変化を与えられた
後、図示のような放射側で6つの異なる平面を有する偏
向マトリクス板06)に入射する。
The optical signals input to (13a) are transmitted to the convex lens 141, which is made up of three so-called semicylindrical lens bodies vertically arranged in parallel.
After being given a predetermined phase shift amount in the vertical direction by the convex lens 119 and then being given a phase shift amount change in the horizontal direction by the convex lens 119, the polarization matrix plate 06) having six different planes on the radiation side as shown in the figure is formed. incident.

このマトリクス板116)の出射側に配置された偏向マ
トリクス板(17)は、+16)と全く逆の光学的作用
を有するものである。偏向マトリクス板116)の上段
に入射した光信号は前半、後半に2分割され偏向マトリ
クス板(171の下段と中段の部分に入射する。同様に
偏向マトリクス板(16)の中段、下段に入射した光信
号は、偏向マトリクス板11″6の上段、下段及び中段
The deflection matrix plate (17) disposed on the output side of the matrix plate 116) has an optical function completely opposite to that of +16). The optical signal incident on the upper stage of the deflection matrix plate (116) is divided into two parts, the first half and the second half, and enters the lower and middle parts of the deflection matrix plate (171).Similarly, the optical signal enters the middle and lower stages of the deflection matrix plate (16) The optical signals are transmitted to the upper, lower and middle stages of the deflection matrix plate 11''6.

上段の部分に入射する。偏向マトリクス板(+71を通
過した光信号は凸レンズ1151 、1141と同じ構
造を有する凸レンズ1181. !、1鎌を通過し、各
ボートの出力端子(Jlb)、(12b)、(13b)
に出力される。
Inject into the upper part. The optical signal that has passed through the deflection matrix plate (+71) passes through convex lenses 1151, 1181.!, 1 sickle, which has the same structure as 1141, and is output to the output terminals (Jlb), (12b), (13b) of each boat.
is output to.

結局この光分配器では、第1ボートの入力端子(]、1
a)に入った光信号は第2.第3ボートの出力端子(1
2b)、(13b)に出力されるが卯、1ボートの出力
罐(子(Ilh)には出力されない。したが・て上記の
ような特性を有する光分配器である。しかしこt/′)
光分配器は構成が複雑で調整が困雑であり、光の低損失
化等において問題がある。
After all, in this optical splitter, the input terminal of the first port (], 1
The optical signal entering a) is the second one. The output terminal of the third boat (1
2b) and (13b), but not to the output can (child (Ilh)) of one port. Therefore, it is an optical distributor with the above characteristics. However, this t/' )
The optical distributor has a complicated structure and is difficult to adjust, and there are problems in reducing optical loss.

〔発明の目的〕[Purpose of the invention]

本発明は、多くの局捷有する光伝送システムに滴した光
分配器、即ち光信号の供給されたボートの出力端子には
光信号が出力されない特性を有する改良された光分配器
を提供することを目的とする。
An object of the present invention is to provide an optical distributor installed in an optical transmission system having many stations, that is, an improved optical distributor having a characteristic that no optical signal is output to the output terminal of a boat to which the optical signal is supplied. With the goal.

〔発明の概、要〕[Outline and summary of the invention]

本発明は、各々光信号を入力及び出力する入力ファイバ
端子及び出力ファイバ端部から成るボートを複数個所定
位置に並設して成るボート群と、これらのボートの各入
力ファイバ端部から発射された光信号を反射し、と光信
号を発射した入力774761M部のボート以外のボー
トの出力ファイバ端部に入射させる反射体と、この反射
体と前記ボート群の間に介在し光信号の伝送を行うロッ
ドレンズ又はこれと等価な光学系とから構成される光分
配器である。そして上記反射体が回折格子構造となって
いる点が本発明の特徴である。
The present invention relates to a boat group consisting of a plurality of boats arranged in parallel at predetermined positions each consisting of an input fiber terminal and an output fiber end, each of which inputs and outputs an optical signal, and a boat that is emitted from each input fiber end of these boats. a reflector that reflects the optical signal and makes it incident on the output fiber end of a boat other than the boat in the input section 774761M from which the optical signal was emitted; This is a light distributor consisting of a rod lens or an optical system equivalent to the rod lens. A feature of the present invention is that the reflector has a diffraction grating structure.

〔発明の効果〕〔Effect of the invention〕

本発明では、回折格子構造の反射体を用いており、構造
が簡単でしかも多くの局を有する光伝送システムに適し
た光分配器が得られる。
In the present invention, a reflector having a diffraction grating structure is used, and an optical splitter having a simple structure and suitable for an optical transmission system having many stations can be obtained.

第3図に本発明の光分配器を適用した光伝送システムの
全体構成を示す。(、シυは後で詳しく説明する。例え
ば3ポートを有する本発明による光分配器である。各光
分配器(:廟は第1乃至第3の3つのボー) c41)
 、・シ2) 、 +23)を有する。各光分配器(2
1Mの第1゜第2のボード2υ1122は隣接する光分
配器(2i1に接続されており、第3ボート(ト)には
局(゛シ9が接続されている。各局(2っは、光信号を
送信する光送信器r2Qと、光信号を受信する光受信器
(2ηとから成る。
FIG. 3 shows the overall configuration of an optical transmission system to which the optical splitter of the present invention is applied. (, υ will be explained in detail later. For example, it is an optical distributor according to the present invention having 3 ports. Each optical distributor (: 1st to 3rd ports) c41)
, · 2) , +23). Each optical distributor (2
The 1M 1st second board 2υ1122 is connected to the adjacent optical distributor (2i1), and the third boat (G) is connected to the station (9).Each station (2 is the optical It consists of an optical transmitter r2Q that transmits a signal and an optical receiver (2η) that receives an optical signal.

各光分配器(21は、第4図の模式図に示すような特性
を有する。各ボートは、光信号を入力する入力光ファイ
バ端部と、光信号を出力する出力光ファイバ端部から成
る。第1ボー) +′、!1)は入力光ファイバ端部(
Ml)と出力光ファイバ端部(Ml’)から成り、第2
ポート(2邊は入力光ファイバ端部(Ml)と出力光フ
ァイバ端部(Ml)と出力光ファイバ(M2′)とから
成る。又、第3ボート12濠は入力光ファイバ端部(T
1)と出力光ファイバ端部(R+)とから成る3、そし
て、各人力光フアイバ端部に入った光信号はこの光分配
器を通ってそのボート以外の全ての出力光ファイバ端部
に入る。例えば、第1ボートL!+1の入力光ファイバ
端部(Ml)に入った光信号は、このボートの出力光フ
ァイバ端部(Ml)以外の第2.第3ボート+23 、
1.噌の出力光ファイバ端部(Mz ) 、 (R+ 
)に分配される。以下同様に光信号が分配される特性を
この光分配器は有する。
Each optical splitter (21) has characteristics as shown in the schematic diagram in Figure 4. Each boat consists of an input optical fiber end for inputting an optical signal and an output optical fiber end for outputting an optical signal. .1st bow) +′,! 1) is the input optical fiber end (
Ml) and the output optical fiber end (Ml'), the second
The port (the second side consists of the input optical fiber end (Ml), the output optical fiber end (Ml), and the output optical fiber (M2'). Also, the third boat 12 moat consists of the input optical fiber end (T).
1) and an output optical fiber end (R+) 3, and the optical signal entering each powered optical fiber end passes through this optical splitter and enters all output optical fiber ends except that boat. . For example, the first boat L! The optical signal entering the input optical fiber end (Ml) of +1 is transmitted to the second. 3rd boat +23,
1. Output optical fiber end (Mz), (R+
). This optical distributor has the characteristic that optical signals are distributed in the same manner.

上記の特性を有する本発明の一実施例の構成を第5図に
示す。同図において、パ31)〜(,3漕はその端部を
入力光7フイバ端部(Ml) 、 (Ml ) 、 (
T1)とする光ファイバであり、1.E〜婿)はその端
部を出力光ファイバ端部(M4 ) 、 (Ml ) 
、 (R+ )とする光ファイバである。
FIG. 5 shows the structure of an embodiment of the present invention having the above characteristics. In the same figure, fibers 31) to (, 3 have their ends connected to input light 7 fiber ends (Ml), (Ml), (
T1) is an optical fiber having 1. E ~ son-in-law) connects its end to the output optical fiber end (M4), (Ml)
, (R+).

+4Uはロッドレンズであり、半径方向にほぼ2乗特性
の屈折率分布を有しており、その長さは光線蛇行ピッチ
の1/4とされている。このロッドレン、((40〕一
方の端面には、上述の元ファイバ:11)〜(;佑)の
端部面が当接されており、他方の端面にはX軸を境とし
て2釉類の回折格子(411、T42が設けられている
+4U is a rod lens, which has a refractive index distribution of approximately square-law characteristics in the radial direction, and its length is set to 1/4 of the meandering pitch of the light beam. This rod lens ((40)) One end face is in contact with the end faces of the above-mentioned original fibers: 11) to (;you), and the other end face is made of two glazes with the X axis as the border. A diffraction grating (411, T42) is provided.

回折格子(41)は周期11の格子構造を有りロッドレ
ンズ(4(1を介して1次の回折光が0次回折光が存在
すれば結合する筈の元ファイバのX方向両隣りに結合す
るように上記a1が選定されている。回折格子11L5
の格子周期12は11/2に等しく選ばれ、1次回折光
はO次回折光が存在すれば結合する筈の光ファイバから
X方向のファイバ配列の2周期分だけ、離れた位置の光
ファイバに結合する。
The diffraction grating (41) has a grating structure with a period of 11, so that the first-order diffracted light is coupled to both sides of the original fiber in the The above a1 is selected in the diffraction grating 11L5.
The grating period 12 of is selected to be equal to 11/2, and the first-order diffracted light is coupled to an optical fiber located two cycles of the fiber arrangement in the X direction from the optical fiber to which it would be coupled if the O-order diffracted light exists. do.

この結合関係について以下に詳述する。上記回折格子f
、lll 、 +47!Jは第6図に示すような断面構
造を有する。即ち、格子周期l<l+又は12)の半分
はλ/4なる光路長(λは使用波長)を厚みとする誘1
匡体N膜(4浅から成る。本実施例では、  5i02
  薄膜をロッドレンズLllの端部に一様に形成し、
フォトリソグラフィ法により周期lで幅e/2の回折格
子を作成した。その後、金薄膜)44)を全面に蒸着し
、回折格子構造の反射体(4つを形成した。
This connection relationship will be explained in detail below. The above diffraction grating f
,llll, +47! J has a cross-sectional structure as shown in FIG. That is, half of the grating period (l<l+ or 12) is a dielectric layer whose thickness is the optical path length of λ/4 (λ is the wavelength used).
Encased N membrane (consisting of 4 shallow layers. In this example, 5i02
uniformly forming a thin film on the end of the rod lens Lll;
A diffraction grating with a period l and a width e/2 was created by photolithography. Thereafter, a thin gold film (44) was deposited on the entire surface to form four reflectors having a diffraction grating structure.

この種の反射体(45)においてはO次回折光は零とな
る。即ち、第6図において角腿θで反射体(451に入
射する平行光束(’+1 、62がミラー反射の方向、
即ち0次回折光方向に回折する2次光波+531 、 
(54]の位相関係は、光束6υがλ/4厚の8102
薄膜を往復して反射されるため、光束(1)湯に比して
λ/2だけ位相遅れを生ずる。したがって、遠方では干
渉により4″Jち消し合うため、この位相格子では0次
回折光は存在しなくなる。
In this type of reflector (45), the O-order diffracted light becomes zero. That is, in Fig. 6, the parallel light beam ('+1, 62 is the direction of mirror reflection,
That is, the second-order light wave +531 diffracted in the direction of the 0th-order diffracted light,
The phase relationship of (54) is that the luminous flux 6υ is 8102 with a thickness of λ/4
Since the light travels back and forth through the thin film and is reflected, a phase delay of λ/2 occurs compared to the light flux (1). Therefore, at a distance, the 0th-order diffracted light no longer exists in this phase grating because they cancel each other by 4"J due to interference.

光ファイバ+31)〜13filをロッドレンズ(仰の
方向に児だ位置関係を第7図に示した。この図により元
信号の入出力関係を説明する。同図において、入力光フ
ァイバ(,3υの端部(Ml)からロッドレンズ(40
に入っだ光信号は、反射され通常はこのレンズイ4Cの
軸(X軸、y軸の変点)と点対称な位置にある出力光フ
ァイバに3aに入る。しかしながら、上述のようにロッ
ドレンズ(4(違の回折格子t、11) 、 +4Zに
よる光反射においては0次回折光がないので、出力光フ
ァイバ134)の端部(Ml)に入る光信号は11とん
ど存在しない。一方、入力光ファイバ(3υの端部(M
l)からロッドレンズ(41に入射した光信号のうち、
回折格子(41)による1次回折光は、出力光ファイバ
(、四の端部(Ml)とダミーの光ファイバL3ηの端
部の位置にスポットを生ずる。又回折格子+421によ
る1次回折光は出力光ファイバ(、鋤の端部(R1)及
びダミーの光ファイバ;燭の端部にスポットを生ずる。
Figure 7 shows the positional relationship between the optical fibers +31) and 13fil in the rod lens (upward direction).The input/output relationship of the original signal will be explained using this figure. From the end (Ml) to the rod lens (40
The optical signal that has entered is reflected and enters the output optical fiber 3a, which is normally located at a point symmetrical to the axes of this lens 4C (the inflection points of the X and y axes). However, as mentioned above, in the light reflection by the rod lens (4 (different diffraction grating t, 11), +4Z, there is no 0th order diffracted light, so the optical signal entering the end (Ml) of the output optical fiber 134) is 11 It almost doesn't exist. On the other hand, the input optical fiber (3υ end (M
Of the optical signals incident on the rod lens (41) from l),
The first-order diffracted light by the diffraction grating (41) produces a spot at the end of the output optical fiber (4) (Ml) and the end of the dummy optical fiber L3η. Fiber (, plow end (R1) and dummy optical fiber; produce a spot at the end of the candle).

光ファイバ’m+(,1秒の端部に入った光は他に洩れ
ないように吸収される。したがって端部(Ml)からロ
ッドレンズ(1〔に入射した光信号は回折格子・41+
 、 +42)に反射され端部(Ml) 、 (R1)
に入ることになる。
The light that enters the end of the optical fiber 'm+ (, 1 second) is absorbed so that it does not leak to others.Therefore, the optical signal that enters the rod lens (1) from the end (Ml) is transmitted through the diffraction grating
, +42) and reflected at the end (Ml) , (R1)
will enter.

同様に、入力光ファイバ(32の端部(Ml)からロッ
ドレンズ(旧に入射した光信号は、回折格子+411 
Similarly, the optical signal that entered the rod lens (formerly from the end (Ml) of the input optical fiber (32) to the diffraction grating +411
.

(4カにより反則され端部(Ml) 、 (R4)を通
って出方光ファイバい4)、 tJIilに入射する。
(It is deflected by four forces and passes through the ends (Ml) and (R4) to the output optical fiber 4) and enters tJIil.

父、人力光ファイバ();9の端部(T1)からロッド
レンズtliに入射した光信号&ヨ、回折格子Il+ 
、 1421により反射され端部(M+’)。
Father, the optical signal incident on the rod lens tli from the end (T1) of the human-powered optical fiber ();9, &yo, the diffraction grating Il+
, 1421 at the end (M+').

(NId)を通って出力光ファイバ+:+0. t、i
■に入射する。
(NId) to the output optical fiber +: +0. t,i
■Inject into.

結局、第5図に示した光分配器によって第4図に示す特
性の光分配器が得らJしたことになる。
In the end, the optical distributor shown in FIG. 5 has the characteristics shown in FIG. 4.

本発明では、自局からの送信信号が自局に戻らない光分
配器41回折格子構造を有する反射体により実現してい
る。上記実施例の光分配器はファイバ配列とロッドレン
ズとりフグラフィによる反射型位相格子だけで構成され
、極めて簡単な構造で生産性がよい。この発明によって
、光分配器を単なる中継器で複数個接続することが可能
となり、大規模システムを構成できる。このとき従来の
スターシステムで経済性が問題であったファイバ総長が
大きいという欠点が克服され、また光ケーブルのスター
カプラでの輻奏が解消される。勿論、中継器を介さずに
複数の光分配器を接続することも可能となる。
In the present invention, the optical splitter 41 is realized by a reflector having a diffraction grating structure so that the transmitted signal from the own station does not return to the own station. The optical distributor of the above embodiment is composed only of a fiber array and a reflective phase grating based on a rod lens profile, and has an extremely simple structure and high productivity. According to the present invention, it is possible to connect a plurality of optical distributors using a simple repeater, and a large-scale system can be constructed. At this time, the drawback of the large length of the fiber, which was an economic problem in the conventional star system, can be overcome, and the vibration in the star coupler of the optical cable can be eliminated. Of course, it is also possible to connect a plurality of optical distributors without using a repeater.

更に制御局を有しない衝突検出方式のネノトワーり(C
arrier 5ense Multiple Acc
ess withCollision Detecti
on方式)において、ディジタル元送信器で、容易に衝
突を検出できる。即ち、自局が送信中に自局に信号が受
信されればこの信号は他局の信号であることが自明であ
り衝突が発生していることが判る。
Furthermore, there is a collision detection system called Nenotower (C) which does not have a control station.
arrier 5ense Multiple Acc
ess with Collision Detection
on system), collisions can be easily detected by the digital source transmitter. That is, if a signal is received by the own station while the own station is transmitting, it is obvious that this signal is a signal from another station, and it is known that a collision has occurred.

尚、上記実施例では2つの周期の異なる回折格子を有す
る構造の反射体を用いて3ボートの光分配器を構成しだ
が、一般にNボートの光分配器を作る(N−1)ボート
の回折格子を有する構造の反射体を用いればよく、上記
実施例に限られない。
In the above embodiment, a three-boat optical splitter is constructed using a reflector having a structure having two diffraction gratings with different periods, but in general, a (N-1) boat diffraction method is used to construct an N-boat optical splitter. A reflector having a structure having a grating may be used, and the present invention is not limited to the above embodiment.

まだ透過形に構成できることもλ/2位相格子を用いれ
ば可能である。
It is also possible to configure it in a transmission type by using a λ/2 phase grating.

又、上記実施例は1/4ピツチ長のロッドレンズを用い
ているが本発明はこれに限られず、光を平行光に変え(
コリメート)、又平行光を絞る特性を有する等価な光学
系を用いてもよい。
Further, although the above embodiment uses a rod lens with a length of 1/4 pitch, the present invention is not limited to this, and the light may be changed into parallel light (
collimating) or an equivalent optical system having the property of focusing parallel light may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスターカプラを用いた光伝送システムの
構成図、第2図は先に出願した提案の光分配器の構造図
、第3図は本発明の光分配器を用いた光伝送システムの
構成図、第4図は本発明の光分配器の%性を示す模式図
、第5図は本発明一実施例の釧視図、第6図はQp s
図の実施例の反射体において光信号の反射の様子を示す
図、第7図は第5図の実施例におりる入出力光ファイバ
の位置関係を示す図である。 20・・・光分配器、21・・・第1ボート、22 ・
・・ a8.2 ボ − ト 、   23 ・・・ 
第 3 ボ − ト 、31.32.33・・・人力光
ファイバ、34.35.36・・・出力光ファイバ、4
0・・・ロッドレンズ、41.42・・・回折格子、4
5・・・反射体s MIIM21T1・・入力ファイバ
端部、Ml。M2 r RI・・・出力ファイバ端部。 91 第  1 図 第  2 図 第  3 図 第  4 図 第  5 図 第  6 図 第7図
Fig. 1 is a block diagram of an optical transmission system using a conventional star coupler, Fig. 2 is a structural diagram of an optical splitter proposed earlier, and Fig. 3 is an optical transmission system using the optical splitter of the present invention. System configuration diagram, Figure 4 is a schematic diagram showing the efficiency of the optical distributor of the present invention, Figure 5 is a perspective view of one embodiment of the present invention, Figure 6 is Qp s.
FIG. 7 is a diagram showing how optical signals are reflected in the reflector of the embodiment shown in the figure, and FIG. 7 is a diagram showing the positional relationship of the input and output optical fibers in the embodiment of FIG. 20... Optical distributor, 21... First boat, 22 ・
・・ a8.2 boat, 23 ・・
3rd boat, 31.32.33...Manpower optical fiber, 34.35.36...Output optical fiber, 4
0...Rod lens, 41.42...Diffraction grating, 4
5... Reflector s MIIM21T1... Input fiber end, Ml. M2 r RI... Output fiber end. 91 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 各々光信号を入力及び出力する入力ファイバ端部及び出
力ファイバ端部から成るボートを複数個所定位置に並設
して成るボート群と、 これらのボートの谷入力ファイバ端部から発射された光
信号を反射し、この光信号を発射した入力ファイバ端部
のボード以外のボートの出力ファイバ端部に入射させる
反射体と、 この反射体と前記ボート群の間に介在し光信号の伝送を
行うロッドレンズ又はこれと等価な光学系とを備え、 前記反射体は回折格子棋造を有する反射体であることを
特徴とする光分配器。
[Claims] A boat group consisting of a plurality of boats arranged in parallel at predetermined positions, each consisting of an input fiber end and an output fiber end, each of which inputs and outputs an optical signal, and the trough input fiber ends of these boats. A reflector that reflects an optical signal emitted from the board and directs the optical signal to the output fiber end of a boat other than the board at the end of the input fiber that emitted it; An optical distributor comprising a rod lens or an optical system equivalent thereto for transmitting signals, wherein the reflector is a reflector having a diffraction grating structure.
JP13022482A 1981-11-26 1982-07-28 Optical distributor Pending JPS5922020A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13022482A JPS5922020A (en) 1982-07-28 1982-07-28 Optical distributor
US06/439,547 US4511208A (en) 1981-11-26 1982-11-05 Optical communication system
DE8282306134T DE3280300D1 (en) 1981-11-26 1982-11-18 OPTICAL DATA TRANSFER SYSTEM.
EP19820306134 EP0080829B1 (en) 1981-11-26 1982-11-18 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13022482A JPS5922020A (en) 1982-07-28 1982-07-28 Optical distributor

Publications (1)

Publication Number Publication Date
JPS5922020A true JPS5922020A (en) 1984-02-04

Family

ID=15029053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13022482A Pending JPS5922020A (en) 1981-11-26 1982-07-28 Optical distributor

Country Status (1)

Country Link
JP (1) JPS5922020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751496A1 (en) * 1996-07-19 1998-01-23 Nec Corp Optical network having simple structure and distribution of signal wavelengths
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751496A1 (en) * 1996-07-19 1998-01-23 Nec Corp Optical network having simple structure and distribution of signal wavelengths
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures

Similar Documents

Publication Publication Date Title
US4482994A (en) Optical multiplexer/demultiplexer using interference filters
US6636658B2 (en) Wavelength division multiplexing/demultiplexing systems
US4708424A (en) Transmissive single-mode fiber optics star network
EP0315351A2 (en) A passive star coupler
US4511208A (en) Optical communication system
US4735478A (en) Optical coupling device for optical waveguides
JPH11223745A (en) Device equipped with virtual image phase array combined with wavelength demultiplexer for demultiplexing wavelength multiplexed light
JPS5922020A (en) Optical distributor
JP2538099B2 (en) Waveguide type optical star coupler
US5808765A (en) Multiplexer-demultiplexer for optical wavelengths
JP2733116B2 (en) Optical multiplexer / demultiplexer
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
JPH05203830A (en) Optical multiplexer demultiplexer
JP3133833B2 (en) Light star coupler
JP4283048B2 (en) Light control module
JPS6218890B2 (en)
JP2683161B2 (en) Optical multiplexer / demultiplexer
JPS6123523B2 (en)
JPH049823A (en) Optical crossbar switch
JPH01113708A (en) Optical multiplexing/demultiplexing module
JPH07248509A (en) Light frequency selection switch
JPH0749430A (en) Optical circuit part
JPS5910903A (en) Optical distributor
KR100655534B1 (en) Interleaver for optical communication system
JP2798308B2 (en) Crossed star coupler