JPS6218883B2 - - Google Patents

Info

Publication number
JPS6218883B2
JPS6218883B2 JP58170825A JP17082583A JPS6218883B2 JP S6218883 B2 JPS6218883 B2 JP S6218883B2 JP 58170825 A JP58170825 A JP 58170825A JP 17082583 A JP17082583 A JP 17082583A JP S6218883 B2 JPS6218883 B2 JP S6218883B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
core
axis
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58170825A
Other languages
Japanese (ja)
Other versions
JPS6061703A (en
Inventor
Osamu Kawada
Koichi Hoshino
Hiroshi Ishihara
Ko Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17082583A priority Critical patent/JPS6061703A/en
Publication of JPS6061703A publication Critical patent/JPS6061703A/en
Publication of JPS6218883B2 publication Critical patent/JPS6218883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明は、被接続フアイバの突き合せ部、もし
くは既接続フアイバの接続部でフアイバを観察し
た時の観察信号からフアイバのコア軸ずれを検出
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting a core axis deviation of a fiber from an observation signal obtained when the fiber is observed at the abutting portion of fibers to be connected or at the connecting portion of already connected fibers.

フアイバを低損失で接続するためには、被接続
フアイバ間の軸ずれを極力なくすように軸調心を
行うが、従来は第1図に示すように被接続フアイ
バの一方のもの1に光源5による光を入射し、そ
の光を他方のフアイバ2に結合した受光器6でモ
ニタし、その光量が最も大きくなるようにフアイ
バの固定台3,4の何れか一方、もしくは両方を
移動させるパワーモニタ法が用いられている。こ
のようなパワーモニタ法は、本質的に被接続フア
イバ内にモニタ光を入射でき、かつ受光するため
にフアイバ内からモニタ光をとりだすことのでき
る場合に限られている。しかし、中継器を含むよ
うな伝送路での接続のようにそれが不可能な場合
は、それ以外の方法で軸を合わせることが必要で
ある。
In order to connect fibers with low loss, alignment is performed to minimize the misalignment between the fibers to be connected. Conventionally, as shown in Fig. 1, a light source 5 is attached to one of the fibers to be connected. A power monitor that receives light from the other fiber 2, monitors the light with a light receiver 6 coupled to the other fiber 2, and moves either or both of the fiber fixing bases 3 and 4 so that the amount of light is maximized. law is used. Such a power monitoring method is essentially limited to the case where the monitor light can be input into the fiber to be connected and the monitor light can be taken out from within the fiber for reception. However, if this is not possible, such as when connecting via a transmission line that includes a repeater, it is necessary to align the axes using another method.

そのため、第2図に示すように接続点近傍のフ
アイバ1,2のコアを顕微鏡11やビデオモニタ
12などにより視覚的に観察することができれ
ば、被接続フアイバ間のコアの軸ずれをなくすよ
うに調心することができる。しかし、フアイバの
コアを目視で観察しながら調心するのでは、作業
者の慣れやくせ、さらに作業環境の優劣が軸合せ
の特性や作業時間にあらわれ、必ずしもすぐれた
特性を維持できるとは限らない。そのため、コア
を含むフアイバの画像からコアの軸ずれを検出
し、その情報を軸調心機構にフイードバツクする
ことにより自動的に軸ずれをなくすようにするこ
とが望まれる。また、接続後のコア形状から接続
損失を評価する上でも接続点近傍の軸ずれや角度
ずれを定量的に求める技術が必要である。
Therefore, if the cores of the fibers 1 and 2 near the connection point can be visually observed using a microscope 11 or a video monitor 12, as shown in FIG. You can align yourself. However, if the core of the fiber is aligned while visually observing it, the operator's familiarity and habits, as well as the quality of the working environment, will be reflected in the alignment characteristics and working time, and it is not always possible to maintain excellent characteristics. do not have. Therefore, it is desirable to detect the axis misalignment of the core from an image of the fiber including the core, and feed that information back to the axis alignment mechanism to automatically eliminate the axis misalignment. Furthermore, in order to evaluate splicing loss from the shape of the core after splicing, a technique for quantitatively determining axial and angular misalignments in the vicinity of the splicing point is required.

本発明は上記の事情に鑑み、上記のような自動
コア軸調心や接続後のコア軸形状検査に適用でき
るフアイバのコア軸ずれの検出方法を提供するも
ので、フアイバの観察信号からコアの軸の位置、
またはコアの軸ずれを検出するようにしたもので
ある。
In view of the above circumstances, the present invention provides a method for detecting fiber core axis misalignment that can be applied to the above-mentioned automatic core axis alignment and core axis shape inspection after connection. axis position,
Alternatively, the core axis misalignment can be detected.

フアイバを観察した時のコアの見え方は、観察
方法や観察系の光学的特性などによつて若干異な
るもとなるが、何れにしてもあるフアイバの軸と
直角方法に走査した画像信号としては、第3図a
に示すようなフアイバ外径とコア境界を特徴づけ
るような明暗(輝度)信号、または色情報で識別
する場合は色信号が得られる。この図の場合、コ
ア境界は21,22の輝度信号の落ち込みとなつ
て識別される。したがつて、輝度信号上のこのよ
うな暗部をさがすことによつてコアの境界点を求
め、その中間点からコアの中心軸の位置を求める
ことができる。しかし、通常、得られる画像の場
合、図aからも明らかなように、コア部の輝度変
化はフアイバ外周部のそれに比べ極めて小さい。
さらに、TVからの画像信号には白色雑音成分が
重畳している。そのため、実際に得られるコア近
傍の信号波形は、第3図bに示すように、真のコ
ア境界である輝度の低下部21,22以外にも、
いくつかの輝度低下部分23,24などが低下
し、特定化することは極めて困難である。また、
もし画一的にプログラム化された計算ルーチンに
乗つとつてこのコア境界部を求めようとすると、
真の値である21や22でなく、23,24のよ
うな誤つた点を求めてしまう危険性があり、最終
的に求めたコアの中心軸26も真の中心軸25と
異なつてしまい、正しいコア位置を求められない
ことが多くなる。
The appearance of the core when observing a fiber differs slightly depending on the observation method and optical characteristics of the observation system, but in any case, as an image signal scanned in a direction perpendicular to the axis of a certain fiber, , Figure 3a
A light/dark (brightness) signal that characterizes the fiber outer diameter and core boundary as shown in Figure 1, or a color signal when identifying by color information is obtained. In this figure, the core boundaries are identified as dips in the luminance signals at 21 and 22. Therefore, by searching for such dark areas on the luminance signal, the boundary points of the core can be determined, and the position of the central axis of the core can be determined from the intermediate points. However, in the case of normally obtained images, as is clear from Figure a, the change in brightness at the core is extremely small compared to that at the outer periphery of the fiber.
Furthermore, a white noise component is superimposed on the image signal from the TV. Therefore, as shown in FIG. 3b, the actually obtained signal waveform near the core includes, in addition to the lowered brightness parts 21 and 22, which are the true core boundaries.
Some parts 23, 24 and the like have reduced brightness, and it is extremely difficult to specify them. Also,
If you try to find this core boundary using a uniformly programmed calculation routine,
There is a risk of finding incorrect points such as 23 and 24 instead of the true values 21 and 22, and the central axis 26 of the core finally found will also be different from the true central axis 25. The correct core position is often not found.

本発明は、このような実際上雑音などが重畳
し、コントラストの小さい信号からでもコアの位
置情報を正確に抽出し、被接続フアイバや既接続
フアイバ間の軸ずれを検出するようにしたことを
特徴としている。
The present invention is capable of accurately extracting core position information even from signals with small contrast and superimposed noise, and detecting axis misalignment between connected fibers and connected fibers. It is a feature.

以下、本発明を実施例基づいて詳細に説明す
る。第4図a〜dは本発明の実施例を示す説明図
であり、例えば第4図aのように、被接続フアイ
バA,Bを軸方向に観察した時のa―a′,b―
b′……,n―n′の各点でフアイバ軸と直角方向に
走査した画像信号Va,Vb,……Voを求める。
このような信号波形は、第5図に示すようにフア
イバA,Bの軸に対し直角をなす軸線上に光源4
1を置き、フアイバの反対側の位置に対物レンズ
42、接眼レンズ43から成る顕微鏡11を置く
ことによつて得られるフアイバ像をビデオカメラ
45によつて画像信号化した後、フアイバ軸の直
角方向に走査することによつて容易に得ることが
できる。なお、この信号は、画像端等の基準点か
らの時間信号である。
Hereinafter, the present invention will be explained in detail based on examples. FIGS. 4a to 4d are explanatory diagrams showing embodiments of the present invention. For example, as shown in FIG. 4a, a-a', b-
Image signals V a , V b , . . . V o are obtained by scanning in a direction perpendicular to the fiber axis at each point b' . . . , n−n′.
Such a signal waveform is generated when the light source 4 is placed on the axis perpendicular to the axes of the fibers A and B, as shown in FIG.
1, and a microscope 11 consisting of an objective lens 42 and an eyepiece 43 is placed on the opposite side of the fiber.The fiber image obtained by placing the microscope 11 on the opposite side of the fiber is converted into an image signal by a video camera 45. can be easily obtained by scanning. Note that this signal is a time signal from a reference point such as an image edge.

通常の観測信号では、各波形においてコアの位
置情報を与える信号成分は、フアイバの外径等、
他の情報を与える信号成分に比して小さく、また
観察系の雑音等も含まれている。そのため、コア
付近の情報のみに着目するよう第4図bのように
フアイバの中心位置xcを特定の観測信号波形、
例えばVaについて求め、その両端の適当な間隔
Δx部分の信号のみを抽出する。Δxは通常フア
イバ外径の1/5〜1/7が適当である。
In a normal observation signal, the signal components that give core position information in each waveform include the outer diameter of the fiber, etc.
It is small compared to signal components that provide other information, and also includes noise from the observation system. Therefore, in order to focus only on information near the core, the fiber center position
For example, V a is determined, and only the signal at an appropriate interval Δx at both ends thereof is extracted. Δx is normally 1/5 to 1/7 of the outer diameter of the fiber.

そして、この波形を参照信号とし、他の位置で
観察された画像信号Vb……Voのフアイバ中心付
近で相互相関関数R(τ)を次式から求める。
Then, using this waveform as a reference signal, the cross-correlation function R(τ) near the fiber center of the image signals V b . . . V o observed at other positions is determined from the following equation.

R(τ)=1/2Δx∫xc+ xc−a(t)・Vi(t−τ)dt……(1) ただしi=b…nである。 R(τ)=1/2Δx∫ xc+x xc−x V a (t)·V i (t−τ) dt...(1) where i=b...n.

こうして求めた相互相関関数は、第4図Cのよ
うに最も両者の波形が似てくる位置で最大値を与
える。この最大値を与える時のτが波形Va
コア位置に対する波形Viのコア位置のずれ量を
与える。
The cross-correlation function thus obtained gives a maximum value at the position where the two waveforms are most similar, as shown in FIG. 4C. τ 0 when giving this maximum value gives the amount of deviation of the core position of the waveform V i from the core position of the waveform V a .

このように、相互相関関数から求める場合は、
コアの位置が特定の波形、この例ではVaからの
ずれとして与えられる。この方法の利点は、既に
第3図bで説明したような雑音成分による影響を
ほとんど受けないことである。
In this way, when calculating from the cross-correlation function,
The position of the core is given as a deviation from a particular waveform, in this example Va . The advantage of this method is that it is almost unaffected by noise components as already explained in FIG. 3b.

すなわち、波形VaとViの雑音成分をそれぞれ
Na,Niとするとき、NaとNiのみによる相互相関
関数をとると、 1/2Δx∫xc+ xc−Na(t)・Ni(t−
τ)dt で与えられるが、Na(t)とNi(t)が時間的
に全く独立した波形であれば、上式は常に0とな
る。一般に、画像信号に重畳する雑音は、白色雑
音であることから、その性質を満たすものであ
る。
In other words, the noise components of waveforms V a and V i are respectively
When Na and Ni are taken, if we take the cross-correlation function using only Na and Ni, we get 1/2Δx∫ xc+x xc-x Na(t)・Ni(t-
τ)dt, but if Na(t) and Ni(t) have completely independent waveforms in time, the above equation will always be 0. In general, the noise superimposed on the image signal is white noise, so it satisfies this property.

したがつて、雑音の重畳した信号間の相互相関
関数と雑音の全くない理想的な信号間でとつた相
互相関関数とは理論上は、全く同一のものとな
り、雑音の有無が求められるコア位置の情報への
誤差とならず、非常に正確にコアの位置を求める
ことが可能となる。
Therefore, in theory, the cross-correlation function between signals with superimposed noise and the cross-correlation function taken between ideal signals with no noise are exactly the same, and the core position where the presence or absence of noise is determined This makes it possible to determine the core position very accurately without causing any errors in the information.

以上が、ある特定のサンプリングライン(i=
b…nのいずれかについて、コアの位置を求める
原理について説明したものであるが、これをa以
外の他の点について全て行つた結果が第4図dで
あり、aを基準とした時のずれ量τi(i=b…
n)が全ての点について求まる。
The above is based on a certain sampling line (i=
This is an explanation of the principle of determining the core position for any of b...n, and the result of doing this for all points other than a is shown in Figure 4 d, and when a is taken as the standard, Displacement amount τi (i=b...
n) is found for all points.

接続点近傍での軸ずれ量は、最低各フアイバ
A,Bで2点、計4点の位置ずれが明確になれ
ば、接続中心点におけるそれらの延長線間のずれ
量で求めることができる。また、各点の位置ずれ
の検出値に誤差が含まれるような場合には、さら
に測定点を多くして、それらの位置ずれ量τiに
ついて、各フアイバA,B毎に最小2乗法を適用
してコア軸を求めることにより、コア軸の検出誤
差を低減できる。
The amount of axial deviation near the connection point can be determined by the amount of deviation between the extension lines at the connection center point, if the positional deviation of at least two points for each fiber A and fiber B, a total of four points, is clear. In addition, if the detected value of positional deviation at each point contains an error, increase the number of measurement points and apply the least squares method to each fiber A and B for the amount of positional deviation τi. By determining the core axis by

また、これらの情報から軸ずれだけでなく、軸
の傾きや曲がりも判定できることから、接続前の
軸調心だけでなく、接続後の接続損失に推定にも
適用することが可能である。
Furthermore, since it is possible to determine not only axis misalignment but also axis inclination and bending from this information, it can be applied not only to axis alignment before connection, but also to estimation of connection loss after connection.

また、フアイバ表面にきずがあつたり、気泡が
入いつていたりする場合は、正常の波形とかなり
異なる波形が得られるため、このような時には相
関係数が正常の場合に比べ著しく低下する。した
がつて、相関係数に適当なレベルを設けておけ
ば、それを満たすか満たさないかでサンプリング
位置におけるフアイバの異常も判定することが可
能である。
Furthermore, if the fiber surface is scratched or has air bubbles, a waveform that is considerably different from the normal waveform will be obtained, and in such cases the correlation coefficient will be significantly lower than when it is normal. Therefore, by setting an appropriate level for the correlation coefficient, it is possible to determine whether the fiber is abnormal at the sampling position depending on whether the correlation coefficient is satisfied or not.

通常、フアイバの観察波形ではフアイバの違い
や焦点のずれ、光学系の違いによりコアの見え方
が異なることが多い。しかし、本方法では、実際
の観察波形の一つを参照波形として使用するた
め、非常に高精度に軸ずれを判定できる利点もあ
る。
Normally, in the observed waveforms of fibers, the appearance of the core often differs due to differences in fibers, focal shifts, and optical systems. However, since this method uses one of the actually observed waveforms as a reference waveform, it also has the advantage of being able to determine axis deviation with extremely high accuracy.

第6図a〜cは本発明の他の実施例を示す説明
図である。第6図aに示すようにフアイバの各点
における画像信号Va,Vb……Voを求めるのは
第4図の場合と同じであるが、参照波形には予め
用意した特定の波形V0を用いる所が異なる。こ
の時の参照波形としては、できるだけ観察される
コア付近の波形の近いものが望ましく、第6図b
のようにコア中心部に相当する位置を0とし、フ
アイバ外径部の情報が入いらない程度の範囲±Δ
xで定義されるものとする。このような波形を参
照波形を用いてフアイバ各点で求めた画像信号V
a,Vb…Voに対して式(1)と同様に次式で相互相
関をとる。
FIGS. 6a to 6c are explanatory diagrams showing other embodiments of the present invention. As shown in FIG. 6a, the image signals V a , V b . . . V o at each point of the fiber are determined in the same way as in FIG. The difference is that 0 is used. The reference waveform at this time is preferably one that is as close as possible to the observed waveform near the core, as shown in Figure 6b.
The position corresponding to the center of the core is set to 0, and the range ±Δ is such that information about the outer diameter of the fiber is not included.
It shall be defined by x. The image signal V obtained from each point of the fiber using such a waveform as a reference waveform
Similar to equation (1), cross-correlation is calculated for a , V b . . . V o using the following equation.

R(τ)=1/2Δx∫〓 V0(t)Vi(t−
τ)dt… (2) ただし、i=a、b……nである。
R(τ)=1/2Δx∫〓 x x V 0 (t)V i (t−
τ) dt... (2) However, i=a, b...n.

求められた相互相関関数R(τ)は、第4図C
と同様最大値を持つ関数形となる。この最大値を
与えるτが各画像信号波形の中でコアの中心を
与える点である。
The obtained cross-correlation function R(τ) is shown in Figure 4C.
Similarly, it has a functional form with the maximum value. τ 0 giving this maximum value is the point giving the center of the core in each image signal waveform.

したがつて、第4図と同様、第6図Cに示すよ
うにフアイバA,Bの各点でこれらのコア中心位
置を求めることにより、やはりコアの軸ずれや角
度ずれなどを検出することが可能である。また、
相関係数の値からフアイバの異常などを判定でき
ることも第4図の場合と同様である。
Therefore, similarly to Fig. 4, by finding the center positions of these cores at each point of fibers A and B as shown in Fig. 6C, it is possible to detect core axis deviations, angular deviations, etc. It is possible. Also,
Similarly to the case of FIG. 4, it is also possible to determine whether there is an abnormality in the fiber from the value of the correlation coefficient.

本方法の特長は求められる量がコアの中心位置
に相当する絶対的な値であり、第4図の方法のよ
うにある参照波形に対するずれ量という相対的な
値ではない。したがつてコア中心と外径測定から
別に求められるフアイバ中心とのずれ、すなわち
コアの偏心量も求めることができる利点がある。
The feature of this method is that the amount determined is an absolute value corresponding to the center position of the core, and is not a relative value of the amount of deviation from a certain reference waveform as in the method shown in FIG. Therefore, there is an advantage that the deviation between the core center and the fiber center, which is separately determined from the outer diameter measurement, or the eccentricity of the core, can also be determined.

また、コアの見え方は観察系の種類によつて異
なる。すなわち、これまで実施例で述べてきた第
5図に示すような透過光を通常の顕微鏡で観察す
るのではなく、例えば干渉顕微鏡で見る方法では
観察波形は第7図に示すようにコア境界で急激に
落ちこむようなものとなるし、紫外光をフアイバ
に照射することによつてコアを蛍光発光させて顕
微鏡観察した場合の波形は第8図に示すようにコ
ア部分が逆に輝度が上がるような波形が得られ
る。しかし、本発明の相関法を用いる場合は、そ
れらに共通した波形を参照波形にしたり、観察系
毎に最適な参照波形を選定し、その機器に固有の
ものとして演算用のROMに記憶させておいた
り、また、フアイバの見え方を幾つかに分類し、
それらに対して幾つかの参照波形を用意してやは
りROMに記憶させておき、最も相関係数が高く
なるような波形を処理系に判断させるような手法
をとることにより、精度を落とすことなくコア中
心位置の決定が可能になる。
Furthermore, the way the core is seen differs depending on the type of observation system. In other words, instead of observing the transmitted light with a normal microscope as shown in FIG. 5, which has been described in the Examples, for example, in a method of observing with an interference microscope, the observed waveform is at the core boundary as shown in FIG. When the fiber is irradiated with ultraviolet light to cause the core to emit fluorescence and observed under a microscope, the waveform is as shown in Figure 8, where the brightness of the core increases. A waveform with a unique shape can be obtained. However, when using the correlation method of the present invention, a common waveform is used as a reference waveform, or an optimal reference waveform is selected for each observation system and stored in a ROM for calculation as unique to that equipment. In addition, we categorize the appearance of fibers into several types.
By preparing several reference waveforms for these and storing them in ROM, and having the processing system determine the waveform with the highest correlation coefficient, the accuracy can be maintained. It becomes possible to determine the core center position.

以上説明したように、本発明によれば、フアイ
バを観察した画像信号から中心部近傍の信号成分
について、観察波形の何れか一つ、または予め用
意した波形を参照波形として各点の波形を相関を
とることにより、コアの位置ずれ、またはコア中
心位置を求めるようにしたから、雑音の影響をほ
とんど受けることなく、また、多少、観察系の焦
点の位置がずれており、観察波形がやや異なる場
合にもこれらコアの位置ずれ、コアの中心位置を
正確に求めることができ、これらの情報から、被
接続フアイバの間の軸ずれや接続後の接続点近傍
の軸ずれ、角度ずれ、曲がりなどを評価すること
ができる。これらの処理は、全てコンピユータ等
の演算装置で実施できることから、この技術をフ
アイバ接続装置に応用すれば、接続前段階では高
精度の軸調心を、また接続後の段階では接続損失
の高精度な推定を全て自動的に行え得る利点を有
している。
As explained above, according to the present invention, for signal components near the center of an image signal obtained by observing a fiber, the waveforms at each point are correlated using one of the observed waveforms or a waveform prepared in advance as a reference waveform. Since the core position deviation or the core center position is determined by taking , it is almost unaffected by noise, and the observed waveform is slightly different because the focal point of the observation system is slightly shifted. Even in cases where these cores are misaligned, it is possible to accurately determine the center position of the core, and from this information, it is possible to determine the misalignment between the fibers to be connected, the misalignment of the axes near the connection point after connection, angular misalignment, bending, etc. can be evaluated. All of these processes can be performed by a computing device such as a computer, so if this technology is applied to fiber splicing equipment, it will be possible to achieve high-accuracy axis alignment in the pre-connection stage, and high-accuracy splice loss control in the post-connection stage. This has the advantage that all estimations can be made automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフアイバ軸調心方法の説明図、
第2図はフアイバを観察して軸調心する方法の説
明図、第3図a,bはフアイバを光学的に観察し
た場合の観察波形の一例を示す波形図、第4図a
〜dは本発明の一実施例を示す説明図、第5図は
本発明においてフアイバの透過像を観測する場合
の観測装置の配置図、第6図a〜cは本発明の他
の実施例を示す説明図、第7図、第8図はフアイ
バを光学的に観察した場合の観察波形を示す図で
あつて、第7図は干渉顕微鏡を用いた観察によつ
て得られる観察波形の波形図、第8図はコアを蛍
光発光させた場合に得られる観察波形の波形図で
ある。 1,2,A,B……フアイバ、11……顕微
鏡、12……ビデオモニタ、41……光源、42
……対物レンズ、43……接眼レンズ、45……
ビデオカメラ。
Figure 1 is an explanatory diagram of the conventional fiber shaft alignment method;
Figure 2 is an explanatory diagram of a method for axial alignment by observing the fiber, Figures 3a and b are waveform diagrams showing examples of observed waveforms when optically observing the fiber, Figure 4a
- d are explanatory diagrams showing one embodiment of the present invention, Fig. 5 is a layout diagram of an observation device for observing a transmitted image of a fiber in the present invention, and Figs. 6 a - c are other embodiments of the present invention. FIGS. 7 and 8 are diagrams showing observed waveforms when the fiber is observed optically, and FIG. 7 is a waveform of the observed waveform obtained by observation using an interference microscope. 8 are waveform diagrams of observed waveforms obtained when the core emits fluorescence. 1, 2, A, B...Fiber, 11...Microscope, 12...Video monitor, 41...Light source, 42
...Objective lens, 43...Eyepiece lens, 45...
Video camera.

Claims (1)

【特許請求の範囲】 1 直線状に突き合わせた2本の被接続フアイバ
の突き合せ部近傍、もしくは既に接続したフアイ
バの接続点近傍で、フアイバの軸に対して直交す
る方向からフアイバを観察してコア位置を検出す
る方法において、フアイバの複数点で軸と直交す
る方向に対してとつたフアイバの観察明暗信号の
フアイバ中心近傍の信号成分に対し、何れかの信
号を参照信号とし、他の信号との相互相関関数を
計算し、その関数値が最大になる信号間のずれか
ら各点のコアのずれを検出し、該被接続フアイバ
間、もしくは既接続フアイバ間の軸ずれを検出す
ることを特徴とするフアイバのコア軸ずれ検出方
法。 2 直線状に突き合わせた2本の被接続フアイバ
の突き合せ部近傍、もしくは既に接続したフアイ
バの接続点近傍で、フアイバの軸に対して直交す
る方向からフアイバを観察してコア位置を検出す
る方法において、フアイバの複数点で軸と直交す
る方向に対してとつたフアイバの観察明暗信号の
フアイバ中心近傍の信号成分と予め決めた特定の
参照信号との相互相関関数を計算し、その関数値
が最大となるコア中心位置を各点で求め、該被接
続フアイバ間、もしくは既接続フアイバ間の軸ず
れを検出することを特徴とするフアイバのコア軸
ずれ検出方法。
[Claims] 1. Observing the fibers from a direction perpendicular to the axis of the fibers near the abutting portion of two fibers to be connected that are butted against each other in a straight line, or near the connection point of already connected fibers. In the method of detecting the core position, one of the signal components near the fiber center of the observed brightness signals of the fiber taken in the direction orthogonal to the axis at multiple points on the fiber is used as a reference signal, and the other signals are Calculate the cross-correlation function between the fibers and detect the core deviation at each point from the deviation between the signals that maximizes the function value, and detect the axis deviation between the connected fibers or between the already connected fibers. Characteristic method for detecting fiber core axis misalignment. 2. A method of detecting the core position by observing the fiber from a direction perpendicular to the axis of the fiber near the abutting part of two fibers to be connected that are butted against each other in a straight line, or near the connection point of already connected fibers. In this process, the cross-correlation function between the signal component near the fiber center of the observed brightness signal of the fiber taken in the direction perpendicular to the axis at multiple points on the fiber and a predetermined specific reference signal is calculated, and the function value is calculated. 1. A method for detecting core axis deviation of fibers, characterized in that the maximum core center position is determined at each point and the axis deviation between the connected fibers or between the connected fibers is detected.
JP17082583A 1983-09-16 1983-09-16 Method for detecting core shaft shift of fiber Granted JPS6061703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17082583A JPS6061703A (en) 1983-09-16 1983-09-16 Method for detecting core shaft shift of fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17082583A JPS6061703A (en) 1983-09-16 1983-09-16 Method for detecting core shaft shift of fiber

Publications (2)

Publication Number Publication Date
JPS6061703A JPS6061703A (en) 1985-04-09
JPS6218883B2 true JPS6218883B2 (en) 1987-04-24

Family

ID=15912025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17082583A Granted JPS6061703A (en) 1983-09-16 1983-09-16 Method for detecting core shaft shift of fiber

Country Status (1)

Country Link
JP (1) JPS6061703A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197740A (en) * 1986-02-25 1987-09-01 Sumitomo Electric Ind Ltd Optical fiber property measuring apparatus
JPS62208008A (en) * 1986-03-10 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Deciding method for optical fusion splicing condition
JP2529604B2 (en) * 1989-10-13 1996-08-28 株式会社フジクラ Optical fiber fusion splicer
JP3176574B2 (en) 1997-10-15 2001-06-18 住友電気工業株式会社 Optical fiber observation device and optical fiber fusion splicer
JP2002203715A (en) * 2000-12-28 2002-07-19 Yoshino Corporation:Kk Magnet unit and fluid activating device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber

Also Published As

Publication number Publication date
JPS6061703A (en) 1985-04-09

Similar Documents

Publication Publication Date Title
JP2977863B2 (en) Method and apparatus for aligning two fiber ends
US4722587A (en) Fiber bundle technique for aligning light emitters within connectorized emitter packages
JPH06230245A (en) Rotating and aligning apparatus for assembling system in order to achieve low connecting loss of optical connector for wiring optical fiber
US20200064557A1 (en) Non-contact insertion loss measurement systems for optical fiber cable assemblies
EP0488633B1 (en) A method for inspection of an optical connector
JPH09126725A (en) Balanced focal-point system and method for focusing optimal focal point in different region of simultaneously imaged object
JPH09126719A (en) Eccentricity measurement system and method to calculate offset of feature at central part of object correctly
JPS6218883B2 (en)
JPH0921624A (en) Method for determining discontinuous band matching between two surfaces using interferometer
US5177557A (en) Method for inspecting axis dislocation of multifiber connector
JPS59219707A (en) Method for aligning core of single mode optical fiber
JPH09120006A (en) Automatic aurofocus system and method for arranging interference fringe on target of picture
JPS6049307A (en) Fiber connecting device
US11543289B1 (en) Optical fiber center and field of view detection
JPH0797064B2 (en) Optical fiber structure measurement method
JPH0850220A (en) Device for assembling connector and method for assembling optical connector
JP3665781B2 (en) Method and apparatus for measuring refractive index distribution of transparent body
JPH0915088A (en) Method and equipment for detecting defective assembly of multicore optical connector
JPH08184420A (en) Method for measuring positional shift of core of mt connector
JP3642849B2 (en) Fusion splicing method of optical fiber
JPH1047939A (en) Detection of axis displacement quantity of optical fiber with different diameter
JPH08338710A (en) System and method for automatic inspection for noncontact measurement of discontinuity between two planes
WO1992000539A1 (en) Method of discriminating combination of covered multiple-fiber optical cable with ferrule for multiple-fiber connector
JPH06229716A (en) Method for estimating positional shift between optical connectors and method for inspecting characteristics of guide pinhole of optical connector
JPH0360087B2 (en)