JPS62188776A - Opposed target type sputtering device - Google Patents

Opposed target type sputtering device

Info

Publication number
JPS62188776A
JPS62188776A JP608786A JP608786A JPS62188776A JP S62188776 A JPS62188776 A JP S62188776A JP 608786 A JP608786 A JP 608786A JP 608786 A JP608786 A JP 608786A JP S62188776 A JPS62188776 A JP S62188776A
Authority
JP
Japan
Prior art keywords
targets
thin film
target
facing
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP608786A
Other languages
Japanese (ja)
Inventor
Satoru Takano
悟 高野
Masahiko Naoe
直江 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP608786A priority Critical patent/JPS62188776A/en
Publication of JPS62188776A publication Critical patent/JPS62188776A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/355Introduction of auxiliary energy into the plasma using electrons, e.g. triode sputtering

Abstract

PURPOSE:To stabilize the plasma to be formed between opposed targets and to make the characteristics of a thin film uniform by providing means for radiating electrons alongside the spacing between the targets. CONSTITUTION:A substrate 13 is disposed alongside the spacing between the opposed targets 1 and 2 and the plasma generated between the targets 1 and 2 sputter the targets 1, 2 to form the thin film on the substrate 13. A hot cathode 15 and an anode 16 facing said cathode are provided alongside the spacing between such targets 1 and 2. The electrons radiated from the hot cathode 15 are radiated into the spacing between targets 1 and 2 so that the electrons are intruded into the plasma. The thin film is formed at a high speed under a high vacuum by such method. The environmental characteristics of the film are improved in the case of forming the thin film consisting of a rare earth-fiber metallic material having a magnetooptic effect.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数のターゲットが対向配置され、該ター
ゲット間にプラズマを発生させてスパッタを行ない、タ
ーゲット間の空間の側方に配置された基板上に薄膜を形
成する対向ターゲット式スパッタ装置の構造の改良に関
する。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method in which a plurality of targets are arranged facing each other, plasma is generated between the targets to perform sputtering, and sputtering is performed by generating a plasma between the targets. The present invention relates to an improvement in the structure of a facing target sputtering apparatus for forming a thin film on a substrate.

[従来の技術] 対向ターゲット式スパッタは、対向配置されたターゲッ
ト間においてターゲット面に垂直な方向に磁界を印加し
、かつターゲットに高電圧を印加してスパッタを行ない
、ターゲット間の空間の側方に配置した基板上に薄膜を
形成する方法である。
[Prior art] Opposed target sputtering involves applying a magnetic field in a direction perpendicular to the target surface between opposing targets and applying a high voltage to the targets to perform sputtering. This method forms a thin film on a substrate placed on a substrate.

この種の対向ターゲット式スパッタ装置の一例は、「応
用物理」第48呑、第6号、558〜559頁に記載さ
れている°。
An example of this type of facing target type sputtering apparatus is described in "Oyoi Physics" No. 48, No. 6, pp. 558-559.

対向ターゲット式スパッタ装置は、ターグツl−間にお
いてターゲット面に垂直な方向にla界を印加する手段
を備えるので、該磁界印加手段により発生される磁束の
影響により、スパッタ・ガスのイオン化効率を高めるこ
とができる。よって、高真空下でのスパッタが可能であ
り、高速で1lJflUを形成することを可能とする。
The facing target type sputtering apparatus is equipped with a means for applying an LA field in a direction perpendicular to the target surface between two targets, so that the ionization efficiency of the sputtering gas is increased by the influence of the magnetic flux generated by the magnetic field application means. be able to. Therefore, sputtering under high vacuum is possible, and 11JflU can be formed at high speed.

また、ターゲットと基板とがほぼ直交するように配置さ
れているので、スパッタガスの反跳イオン等の高エネル
ギ粒子により基板およびN膜が損傷することもあまりな
く、かつ基板の温度上昇をも低減し得るという利点を有
する。
In addition, since the target and the substrate are arranged almost perpendicularly, the substrate and N film are less likely to be damaged by high-energy particles such as recoil ions of the sputtering gas, and the temperature rise of the substrate is also reduced. It has the advantage of being able to

磁力線による電子の運動を利用して同様の効果を得る方
法としては、マグネトロンスパッタが知られている。し
かしながら、単なるマグネトロン・スパッタ装置では、
ターゲットとして強磁性材料からなるものを用い厚みを
厚くした場合には、上述のような効果を得ることはでき
ない。これは、ターゲットの裏面に固定的に設けられた
磁界発生手段による磁束がターゲット内にほぼ閉じ込め
られてしまうからである。よって、上述した対向ターゲ
ット式スパッタ装置は、このような強磁性材料からなる
ターゲットを用いた場合すなわち強磁性薄膜を形成する
のに有効なものである。
Magnetron sputtering is known as a method of obtaining a similar effect using the movement of electrons due to magnetic lines of force. However, with a simple magnetron sputtering device,
If the target is made of a ferromagnetic material and the thickness is increased, the above-mentioned effects cannot be obtained. This is because the magnetic flux generated by the magnetic field generating means fixedly provided on the back surface of the target is almost confined within the target. Therefore, the above-mentioned facing target sputtering apparatus is effective when using a target made of such a ferromagnetic material, that is, when forming a ferromagnetic thin film.

[発明が解決しようとする問題点1 近年、記録媒体の高密度化が進んでおり、特に記録再生
にレーザ光を利用する光磁気ディスクは、従来の記録媒
体に比べて著しく高い記録密度を実現し得るので注目を
集めている。ところで、このようなへ密度記録媒体では
、膜のミクロな均一性が、その記録再生特性および再現
性のみならず、保管寿命すなわち記録の保管寿命にも大
きな影響を及ぼす。よって、従来にも増して、均一であ
り、したがって信頼性に優れた記録膜が求められている
。現在の対向ターゲット式スパッタMflFでは、この
ような要請に十分応えることはできない。
[Problem to be solved by the invention 1 In recent years, the density of recording media has been increasing, and in particular, magneto-optical disks that use laser light for recording and reproduction have achieved significantly higher recording densities than conventional recording media. It is attracting attention because it can be done. By the way, in such a low density recording medium, the micro-uniformity of the film has a great influence not only on its recording and reproducing characteristics and reproducibility, but also on its storage life, that is, the storage life of recording. Therefore, there is a need for a recording film that is more uniform and therefore more reliable than ever before. The current facing target type sputtering MflF cannot sufficiently meet such demands.

よって、この発明の目的は、より均一な薄膜を形成する
ことが可能な新規な対向ターゲット式スパッタ装置を提
供することにある。
Therefore, an object of the present invention is to provide a new facing target sputtering apparatus that can form a more uniform thin film.

[問題点を解決するための手段] この発明の対向ターゲット式スパッタ装置は、対向配置
されたターゲット間で該ターゲット面に垂直方向に磁界
を印加するための磁界印加手段と、ターゲットに高電圧
を印加する電圧印加手段とを備え、対向ターゲット間に
プラズマを発生させてスパッタを行ない、ターゲット間
の空間の側方に配置した基板上に薄膜を形成する対向タ
ーゲット式スパッタ装置の改良を提供するものであり、
下記の特徴的構成を有する。
[Means for Solving the Problems] The facing target type sputtering apparatus of the present invention includes a magnetic field applying means for applying a magnetic field in a direction perpendicular to the target surface between the targets arranged facing each other, and a high voltage applied to the targets. An improved facing target type sputtering apparatus is provided with a voltage applying means for applying a voltage, and performs sputtering by generating plasma between facing targets to form a thin film on a substrate placed on the side of a space between the targets. and
It has the following characteristic configuration.

すなわち、ターゲット間の空間の側方に配置されており
、かつターゲット間の空間に電子を放射するための電子
放射手段をざらに備えることを特徴とするものである。
That is, it is characterized in that it is arranged on the side of the space between the targets and includes an electron emitting means for emitting electrons into the space between the targets.

[作用] この発明では、その作用機構は必ずしも明らかではない
が、電子放射手段によりターゲット間の空間に電子が供
給される。よって、ターゲット間の放電状態が安定化さ
れ、それによって従来の対向ターゲット式スパッタ装置
に比べて、より高真空下でかつ高速で薄膜を形成するこ
とが可能とされており、その結果耐環境特性に優れた均
一な薄膜が形成される。
[Operation] In this invention, although the mechanism of operation is not necessarily clear, electrons are supplied to the space between the targets by the electron emitting means. Therefore, the discharge state between the targets is stabilized, making it possible to form thin films under higher vacuum and at higher speeds than with conventional facing target sputtering equipment, resulting in improved environmental resistance. A uniform thin film with excellent properties is formed.

[実施例の説明〕 第1図を参照して、この発明の一実施例を説明する。従
来の対向ターゲット式スパッタ装置と同様に、ターゲッ
ト1.2が所定距離を隔てて対向配置されている。各タ
ーゲット1.2の裏面側には、ターゲット1.2間にお
いてターゲット面に垂直方向に磁界を印加するための磁
界印加手段3゜4、ならびに冷却手段としての水冷装置
5.6が設けられている。また、ターゲット1.2の外
周を囲繞し、ターゲット1.2を保持するためにシール
ドリング7.8が設けられている。さらに、スパッタガ
ス導入口9および排気口10が槽11に設けられている
[Description of Embodiment] An embodiment of the present invention will be described with reference to FIG. Similar to the conventional facing target type sputtering apparatus, targets 1.2 are arranged facing each other at a predetermined distance. On the back side of each target 1.2, a magnetic field applying means 3.4 for applying a magnetic field in a direction perpendicular to the target surface between the targets 1.2 and a water cooling device 5.6 as a cooling means are provided. There is. Further, a shield ring 7.8 is provided to surround the outer periphery of the target 1.2 and to hold the target 1.2. Furthermore, a sputtering gas inlet 9 and an exhaust port 10 are provided in the tank 11 .

なお、ターゲット1.2は必ずしも平行に対向されずと
もよく、たとえば30°程度の角度をなすように対向さ
れていてもよい。
Note that the targets 1.2 do not necessarily have to be opposed in parallel, and may be opposed, for example, at an angle of about 30°.

上記構成は従来の対向ターゲット式スパッタ装置と変わ
るものではなく、基板13(破線で示す)は、ターゲッ
ト1.2間の空間の側方に配置される。ここでは、ター
ゲット1.2間の空間で発生されたプラズマがターゲッ
ト1.2をスパッタし、それによって基板13上に薄膜
が形成される。
The above configuration is no different from a conventional facing target type sputtering apparatus, and the substrate 13 (indicated by a broken line) is placed on the side of the space between the targets 1.2. Here, the plasma generated in the space between the targets 1.2 sputters the targets 1.2, thereby forming a thin film on the substrate 13.

ところで、この実施例では、ターゲット1.2間の空間
の側方に電子放射手段としての熱陰極15が配置されて
いる。熱陰極15がターゲット1゜2間の空間の側方に
、すなわらターゲット1.2間からずれて配置されるの
は、該空間で発生するプラズマから十分に離すためであ
る。このように側方に位置さ往ることにより、熱陰極1
5の損傷あるいは熱陰極15上への被膜の形成を防止す
ることができる。
Incidentally, in this embodiment, a hot cathode 15 as an electron emitting means is arranged on the side of the space between the targets 1.2. The reason why the hot cathode 15 is arranged on the side of the space between the targets 1.2, that is, shifted from the space between the targets 1.2, is to keep it sufficiently away from the plasma generated in the space. By moving to the side in this way, the hot cathode 1
5 or the formation of a film on the hot cathode 15 can be prevented.

さらに、この実施例では、ターゲット1.2の空間の側
方において、熱陰極15と対向するように陽極16が設
けられている。陽極16は、熱陰極15との間で放電を
起こさせるために、特にターゲット1.2間の空間に電
子を確実に侵入させるために設けられているものである
。もつとも、陽極16は必須の構成ではなく、槽11の
側壁にて代えることもできる。しかしながら、熱陰極1
5から放射された電子を確実にプラズマに侵入させる!
こめには、陽極16を設けることが好ましく、この場合
陽極16には、槽11の側壁に対して正の電圧をか(ブ
ることか必要である。したがって、陽極16は、ターゲ
ット1,2に休しても同様に正の電位を右するようにさ
れている。
Furthermore, in this embodiment, an anode 16 is provided on the side of the space of the target 1.2 so as to face the hot cathode 15. The anode 16 is provided to cause discharge to occur between the anode 16 and the hot cathode 15, and in particular to ensure that electrons enter the space between the targets 1.2. However, the anode 16 is not an essential component, and may be replaced by the side wall of the tank 11. However, hot cathode 1
Ensure that the electrons emitted from 5 enter the plasma!
In this case, it is preferable to provide an anode 16. In this case, it is necessary to apply a positive voltage to the side wall of the tank 11 to the anode 16. It is also possible to apply a positive potential even when the battery is at rest.

上述のように、この実施例では、熱陰極15から放射さ
れた電子が、ターゲット1.2間の空間に放射される。
As mentioned above, in this embodiment, the electrons emitted from the hot cathode 15 are emitted into the space between the targets 1.2.

よって、その作用機構は必ずしも明確ではないが、後述
の実験例から明らかなように、より耐環境性に優れた薄
膜を形成することができる。したがって、従来の対向タ
ーゲット式スパッタ装置に比べてより高真空下で高速で
W1膜を形成することができる。
Therefore, although its mechanism of action is not necessarily clear, it is possible to form a thin film with better environmental resistance, as is clear from the experimental examples described later. Therefore, the W1 film can be formed at a higher speed under a higher vacuum than in the conventional facing target sputtering apparatus.

なお、上記実施例では、電子放射手段として熱陰極15
を用いたが、電子銃などの他の電子放射手段を用いるこ
とができる。
In the above embodiment, the hot cathode 15 is used as the electron emitting means.
was used, but other electron emitting means such as an electron gun can be used.

次に、具体的な実験例につき説明する。Next, a specific experimental example will be explained.

友11 ガラス基板上にTt)aoFe7o#よびTbtOCO
70膜を、この発明の対向ターゲット式スパッタ装置を
用いて形成した。ターゲットとしては、それぞれ、Fe
またはCO根板上Tbのチップを適宜配置した複合ター
ゲットを用いた。電子放射手段としてはW型熱陰極を用
い、2枚のターゲット間の空間の対面に外径5mn+の
銅管コイルを配置して陽極とした。′スパッタ条件は下
記のとおりである。
Friend 11 Tt) aoFe7o# and TbtOCO on the glass substrate
70 films were formed using the facing target sputtering apparatus of the present invention. As a target, Fe
Alternatively, a composite target in which Tb chips were appropriately arranged on a CO root plate was used. A W-type hot cathode was used as the electron emitting means, and a copper tube coil with an outer diameter of 5 mm+ was placed opposite the space between the two targets to serve as an anode. 'The sputtering conditions are as follows.

(イ) ターゲット径:100mm (ロ) ターゲット間隔:80n+n+(ハ) 熱陰極
15上〇または−1000V(ニ) 陽極電圧: +2
00V (ホ) 到達真空度: 5X 10− ’ torr(
へ) スパッタガス:アルゴン (ト) バイアス電圧ニー50V (チ) 入力パワー:DC300W (す) 基板冷却方法:間接水冷 上1本の条件でスパッタを行ない薄膜を形成したところ
、熱陰極に電圧を印加しない場合には、安定にスパッタ
の行ない得る最小ガス圧は7×10− ’ torrで
あったのに対し、熱陰極に−1000Vの電圧を印加し
た場合には2X 10− ’ torrまで入力パワー
DC300Wで安定に放電した。よって、このガス圧で
スパッタを行なった。製膜速度はいずれも約400A/
分であった。それぞれ厚み2000Aの膜を形成し、H
e−Neレーザにより反射率を調べた。また、温度60
℃、相対湿度95%の雰囲気中に10日間保持し、その
後反射率を調べ、耐環境特性を評価した。このようにし
て得られた反射率の変化を第1表に示す。
(a) Target diameter: 100mm (b) Target spacing: 80n+n+ (c) Hot cathode 15 top 〇 or -1000V (d) Anode voltage: +2
00V (e) Ultimate vacuum: 5X 10-' torr (
f) Sputtering gas: Argon (T) Bias voltage knee 50V (H) Input power: DC 300W (S) Substrate cooling method: Indirect water cooling After sputtering was performed under one condition to form a thin film, a voltage was applied to the hot cathode. When not used, the minimum gas pressure for stable sputtering was 7 x 10-' torr, whereas when a voltage of -1000 V was applied to the hot cathode, the input power was 300 W DC up to 2 x 10-' torr. It discharged stably. Therefore, sputtering was performed at this gas pressure. The film forming speed is approximately 400A/
It was a minute. A film with a thickness of 2000A was formed for each, and H
The reflectance was examined using an e-Ne laser. Also, the temperature is 60
℃ and 95% relative humidity for 10 days, and then the reflectance was examined to evaluate the environmental resistance characteristics. Table 1 shows the changes in reflectance thus obtained.

第1表の結果から、熱陰極に電圧を印加しなかった場合
に比べて−1000Vの電圧を印加した場合には、反射
率の低下が、TbFe膜において一53%→−21%と
大きく改善され、同様にTbC0膜においても一19%
→−11%と大きく改善されることがわかる。
From the results in Table 1, when a voltage of -1000V is applied compared to when no voltage is applied to the hot cathode, the decrease in reflectance is significantly improved from -53% to -21% in the TbFe film. Similarly, in the TbC0 film, -19%
→ It can be seen that there is a significant improvement of -11%.

[発明の効果] 以上のように、この発明では、対向ターゲット間の空間
の側方に電子放射手段が設けられており、該電子放射手
段により夕・−ゲット間の空間に電子が放射される。よ
って、ターゲット間に形成されるプラズマが安定化し、
その結果耐環境特性に優れた膜を形成することが可能と
なる。特に、本願発明者の実験によれば、希土類−繊維
金属系の磁気光学効果を有する材料からなる薄膜を形成
する場合に耐環境特性が大きく改善され得ることが確か
められている。
[Effects of the Invention] As described above, in this invention, the electron emitting means is provided on the side of the space between the opposing targets, and the electron emitting means radiates electrons into the space between the target and the target. . Therefore, the plasma formed between the targets is stabilized,
As a result, it becomes possible to form a film with excellent environmental resistance. In particular, according to experiments conducted by the present inventors, it has been confirmed that the environmental resistance characteristics can be greatly improved when a thin film made of a rare earth-fiber metal material having a magneto-optic effect is formed.

なお、対向ターゲット式スパッタでは、元来マグネトロ
ンスパッタに比べて、薄膜中のスパッタガスの含有率が
低く、多くの場合分析できないほどであるが、この発明
のスパッタ装置においてもこの効果が維持されることを
指摘しておく。スパッタの際のガス圧の低下に伴い薄膜
中に含有されるガスmが増加することが多いマグネトロ
ンスパッタとは、この点で大きく異なっている。
In addition, in facing target sputtering, the content of sputtering gas in the thin film is originally lower than that in magnetron sputtering, and in many cases it cannot be analyzed, but this effect is maintained in the sputtering apparatus of the present invention. I would like to point this out. In this respect, it is significantly different from magnetron sputtering, in which the gas m contained in the thin film often increases as the gas pressure decreases during sputtering.

この現象は、上述した耐環境特性改善効果と関連してい
るものと推測される。もらろん、この発明のスパッタ装
置においても、負のバイアス電圧を印加すれば、膜中の
雰囲気ガス含有量は増加する傾向を示すが、膜の耐環境
特性自体は維持される。
This phenomenon is presumed to be related to the above-mentioned effect of improving environmental resistance properties. Of course, even in the sputtering apparatus of the present invention, if a negative bias voltage is applied, the atmospheric gas content in the film tends to increase, but the environmental resistance of the film itself is maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の対向ターゲット式スパッタ装置の
一実施例の概略を説明するための図である。 図において、1.2はターゲット、3.4は磁界印加手
段、13は基板、15は電子放射手段としての熱陰極を
示す。
FIG. 1 is a diagram for explaining an outline of an embodiment of a facing target type sputtering apparatus of the present invention. In the figure, 1.2 is a target, 3.4 is a magnetic field applying means, 13 is a substrate, and 15 is a hot cathode as an electron emitting means.

Claims (2)

【特許請求の範囲】[Claims] (1)対向配置されたターゲット間で該ターゲット面に
垂直方向に磁界を印加するための磁界印加手段と、 ターゲットに高電圧を印加する電圧印加手段とを備え、
対向ターゲット間にプラズマを発生させてスパッタを行
ない、ターゲット間の空間の側部に配置した基板上に薄
膜を形成する対向ターゲット式スパッタ装置において、 前記ターゲット間の空間の側方に配置されており、かつ
前記ターゲット間の空間に電子を放射するための電子放
射手段をさらに備えることを特徴とする、対向ターゲッ
ト式スパッタ装置。
(1) Comprising a magnetic field applying means for applying a magnetic field in a direction perpendicular to the target surface between targets arranged facing each other, and a voltage applying means for applying a high voltage to the targets,
In a facing target type sputtering apparatus that performs sputtering by generating plasma between facing targets to form a thin film on a substrate placed on the side of the space between the targets, the sputtering apparatus is placed on the side of the space between the targets. A facing target sputtering apparatus, further comprising an electron emitting means for emitting electrons into a space between the targets.
(2)前記電子放射手段は、電子を基板の薄膜の形成さ
れる面に平行な方向に放射する、特許請求の範囲第1項
記載の対向ターゲット式スパッタ装置。
(2) The facing target sputtering apparatus according to claim 1, wherein the electron emitting means emits electrons in a direction parallel to the surface of the substrate on which the thin film is formed.
JP608786A 1986-01-14 1986-01-14 Opposed target type sputtering device Pending JPS62188776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP608786A JPS62188776A (en) 1986-01-14 1986-01-14 Opposed target type sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP608786A JPS62188776A (en) 1986-01-14 1986-01-14 Opposed target type sputtering device

Publications (1)

Publication Number Publication Date
JPS62188776A true JPS62188776A (en) 1987-08-18

Family

ID=11628753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP608786A Pending JPS62188776A (en) 1986-01-14 1986-01-14 Opposed target type sputtering device

Country Status (1)

Country Link
JP (1) JPS62188776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079585A1 (en) * 2000-04-12 2001-10-25 Unaxis Balzers Aktiengesellschaft Dlc layer system and method for producing said layer system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079585A1 (en) * 2000-04-12 2001-10-25 Unaxis Balzers Aktiengesellschaft Dlc layer system and method for producing said layer system
US7160616B2 (en) 2000-04-12 2007-01-09 Oc Oerlikon Balzers Ltd. DLC layer system and method for producing said layer system

Similar Documents

Publication Publication Date Title
Waits Planar magnetron sputtering
Cuomo et al. Hollow‐cathode‐enhanced magnetron sputtering
JPH02217467A (en) Opposite target type sputtering device
KR100503609B1 (en) Ionization film-forming method and apparatus
US4399013A (en) Method of producing a magnetic recording medium
US6812164B2 (en) Method and apparatus for ionization film formation
Spencer et al. The design and performance of planar magnetron sputtering cathodes
JPS62188776A (en) Opposed target type sputtering device
JPS6037527B2 (en) Method for manufacturing magnetic recording media
JP2000268357A (en) Method and system for producing magnetic recording medium
Matsuoka et al. rf and dc discharge characteristics for opposed‐targets sputtering
JP2005330556A (en) Carbon-based sliding material
JPS58199862A (en) Magnetron type sputtering device
JPH031810B2 (en)
JPS58141387A (en) Sputtering device
JPS6367328B2 (en)
JPS63223173A (en) Method and apparatus for forming sputtered film
JPH0480357A (en) Sputtering system and its target electrode
Hoshi et al. High‐rate, low‐temperature sputtering method of facing‐targets type and its application for deposition of magnetic films
JPH059849B2 (en)
JPH07111791B2 (en) Method for manufacturing magneto-optical recording medium
JPH0610347B2 (en) Tripolar spatling source
KR890001947B1 (en) Magnetic record carrier
JPS61261475A (en) Tripolar sputtering source
JPH05140741A (en) Sputtering device