JPS6218848B2 - - Google Patents

Info

Publication number
JPS6218848B2
JPS6218848B2 JP56164061A JP16406181A JPS6218848B2 JP S6218848 B2 JPS6218848 B2 JP S6218848B2 JP 56164061 A JP56164061 A JP 56164061A JP 16406181 A JP16406181 A JP 16406181A JP S6218848 B2 JPS6218848 B2 JP S6218848B2
Authority
JP
Japan
Prior art keywords
mirror
light
optical
optical axis
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164061A
Other languages
Japanese (ja)
Other versions
JPS5866027A (en
Inventor
Hidetoshi Nagarekawa
Takao Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINOO KK
Original Assignee
CHINOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINOO KK filed Critical CHINOO KK
Priority to JP56164061A priority Critical patent/JPS5866027A/en
Publication of JPS5866027A publication Critical patent/JPS5866027A/en
Publication of JPS6218848B2 publication Critical patent/JPS6218848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0879Optical elements not provided otherwise, e.g. optical manifolds, holograms, cubic beamsplitters, non-dispersive prisms or particular coatings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明はカセグレン式光学的測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Cassegrain optical measuring device.

放射温度計等の光学的測定装置は、被測定体か
ら発散される赤外光等の放射エネルギーを、光量
−電気信号変換素子上に集光させることにより非
接触で測定を行うものである。従つて、被測定体
の測定箇所を定めるために測定位置確認用のフア
インダを設けるか、測定荷所にスポツトライトを
投光する投光器を設ける必要があり、従来のこの
種の光学的測定装置においては、フアインダある
いは投光器が測定光を導く光路上の障害物となつ
ているという問題点があつた。また、フアインダ
あるいは投光器を測定光を導く光路の外に設ける
ことも考えられるが、この場合は視差が生ずるこ
とになり、この視差を解消するためには非常に複
雑な装置を付加する必要があるという問題があ
る。
Optical measuring devices such as radiation thermometers perform non-contact measurements by condensing radiant energy such as infrared light emitted from an object to be measured onto a light amount-to-electrical signal conversion element. Therefore, in order to determine the measurement point on the object to be measured, it is necessary to provide a viewfinder for confirming the measurement position or to provide a light projector that emits a spotlight onto the measurement area. However, there was a problem in that the viewfinder or the light projector was an obstacle on the optical path guiding the measurement light. It is also possible to install a viewfinder or a floodlight outside the optical path that guides the measurement light, but in this case parallax will occur, and in order to eliminate this parallax, it will be necessary to add a very complicated device. There is a problem.

本発明は以上のような点に鑑み、且つカセグレ
ン式光学的測定装置は、凹面鏡より成る主鏡の光
軸近辺の光路が、主鏡の前方に設けられる凸面鏡
の存在により生かされていないということに着目
して成されたものであり、測定光を妨げることな
く、且つ視差を生じさせるおそれのない光学的測
定装置を提供することを目的とするものである。
The present invention has been developed in view of the above-mentioned points, and the Cassegrain type optical measuring device is characterized in that the optical path near the optical axis of the primary mirror made of a concave mirror is not utilized due to the presence of the convex mirror provided in front of the primary mirror. The object of the invention is to provide an optical measuring device that does not obstruct measurement light and that does not cause parallax.

すなわち本発明は、凹面鏡が用いられ、中央部
に小孔が形成されている主鏡2と、この主鏡2の
前方に取り付けられ、主鏡2の前方から取り入れ
られて主鏡により反射された測定光をさらに反射
して上記小孔を通して主鏡2の背部に焦点を結ば
せる凸面鏡4と、を有する光学的測定装置におい
て、上記凸面鏡4は主鏡2の光軸上に設けられ、
さらに、この光軸上における、凸面鏡4の上記主
鏡2と対面する側と反対の側に上記凸面鏡4と一
体形状として、光軸の近辺を通る光を該光軸と交
差する方向に導く反射鏡5,50が設けられてお
り、上記主鏡2の背部側における上記光軸上と、
上記反射鏡5,50により反射された光の光路上
との少なくともいずれか一方には光量−電気信号
変換素子6,60が設けられていることを特徴と
している。
That is, in the present invention, a concave mirror is used, and a small hole is formed in the center of the primary mirror 2. In an optical measuring device comprising a convex mirror 4 that further reflects the measurement light and focuses it on the back of the primary mirror 2 through the small hole, the convex mirror 4 is provided on the optical axis of the primary mirror 2,
Further, on the optical axis, a reflection unit is formed integrally with the convex mirror 4 on the side opposite to the side facing the primary mirror 2 of the convex mirror 4 to guide light passing near the optical axis in a direction intersecting the optical axis. Mirrors 5 and 50 are provided, on the optical axis on the back side of the primary mirror 2,
It is characterized in that a light amount-to-electrical signal conversion element 6, 60 is provided on at least one of the optical paths of the light reflected by the reflecting mirrors 5, 50.

次に、本発明に係る装置の第1の実施例を第1
図及び第2図について説明する。
Next, a first embodiment of the device according to the present invention will be described.
The figure and FIG. 2 will be explained.

この第1の実施例は本発明に係る装置を放射温
度計に用いたものであり、第1図は放射温度計の
断面図、第2図は同光学系を示す斜視図である。
In this first embodiment, the apparatus according to the present invention is used in a radiation thermometer, and FIG. 1 is a sectional view of the radiation thermometer, and FIG. 2 is a perspective view showing the optical system.

図中1は放射温度計の本体である筒体であり、
この筒体1の一方は開放されて測定光導入口1a
とされている。上記筒体1内には凹面鏡による主
鏡2がその鏡面2aを上記測定光導入口1a側に
向けて取り付けられており、鏡面2aは放射面ま
たは双曲面とされ、中央には小孔2bが穿設され
ている。さらに、上記主鏡2の前方における該主
鏡2の光軸L上には第2鏡体3が取り付けられて
おり、この第2鏡体3の主鏡2側には凸面鏡4が
形成され、測定光導入口1a側には反射鏡5が形
成されている。上記凸面鏡4は双曲面とされてお
り、反射鏡5は平面鏡とされ、光軸Lに対して45
度の傾斜角を有している。すなわち反射鏡5は、
光軸Lの近辺を通る光を光軸Lと交差する方向に
導く光路変換用鏡として用いられている。また、
上記主鏡2の背部側における光軸L上には、サー
ミスタ・ボロメータ等による光量−電気信号変換
素子6が設けられており、その光軸L上の位置
は、主鏡2に反射され、さらに凸面鏡4で反射さ
れた光の焦点を結ぶ位置に設定されている。一
方、前記筒体1の側面の一部には上記反射鏡5に
よる反射光が導入される反射光導入部7が形成さ
れており、この導入部7の外方側には筒体1内と
連通状に小径筒体8が設けられ、該小径筒体8は
前記光路Lと平行に取り付けられている。この小
径筒体8の前端には、上記反射鏡5からの反射光
をさらに小径筒体8内に導くミラー9が取り付け
られており、小径筒体8の後端には接眼レンズ1
0が取り付けられている。さらに上記ミラー9と
接眼レンズ10との間には凸レンズ11が取り付
けられており、この凸レンズ11と該凸レンズ1
1の結像点Pとの間にはハーフミラー12が取り
付けられ、このハーフミラー12により反射され
た光の結像点P′には白熱ランプ等による光源13
が取り付けられている。
1 in the figure is a cylinder which is the main body of the radiation thermometer,
One side of this cylindrical body 1 is opened and the measuring light inlet 1a is opened.
It is said that A primary mirror 2, which is a concave mirror, is installed inside the cylinder 1 with its mirror surface 2a facing the measurement light introduction port 1a.The mirror surface 2a is a radiation surface or a hyperboloid, and a small hole 2b is provided in the center. It is perforated. Furthermore, a second mirror body 3 is attached on the optical axis L of the primary mirror 2 in front of the primary mirror 2, and a convex mirror 4 is formed on the primary mirror 2 side of the second mirror body 3, A reflecting mirror 5 is formed on the measurement light introduction port 1a side. The convex mirror 4 is a hyperboloid, and the reflecting mirror 5 is a plane mirror, with an angle of 45 mm with respect to the optical axis L.
It has an inclination angle of degrees. That is, the reflecting mirror 5 is
It is used as an optical path changing mirror that guides light passing near the optical axis L in a direction intersecting the optical axis L. Also,
On the optical axis L on the back side of the primary mirror 2, a light quantity-to-electrical signal conversion element 6 such as a thermistor or bolometer is provided, and its position on the optical axis L is reflected by the primary mirror 2, and further It is set at a position where the light reflected by the convex mirror 4 is focused. On the other hand, a reflected light introduction part 7 into which the light reflected by the reflecting mirror 5 is introduced is formed in a part of the side surface of the cylinder 1, and on the outside of this introduction part 7 there is a part inside the cylinder 1. A small-diameter cylinder 8 is provided in communication, and the small-diameter cylinder 8 is attached parallel to the optical path L. A mirror 9 is attached to the front end of the small-diameter cylinder 8 to guide the reflected light from the reflecting mirror 5 into the small-diameter cylinder 8, and an eyepiece 1 is attached to the rear end of the small-diameter cylinder 8.
0 is attached. Furthermore, a convex lens 11 is attached between the mirror 9 and the eyepiece 10, and this convex lens 11 and the convex lens 1
A half mirror 12 is installed between the image forming point P' of the light reflected by the half mirror 12, and a light source 13 such as an incandescent lamp is provided at the image forming point P' of the light reflected by the half mirror 12.
is installed.

次に、上述した構成による放射温度計の作用を
説明する。
Next, the operation of the radiation thermometer configured as described above will be explained.

測定光導入口1aから入射された光は、主鏡2
により反射されると共に集光されて第2鏡体3に
至る。さらにこの第2鏡体3の凸面鏡4により反
射されると共に集光され、主鏡2の小孔2bを通
つて変換素子6に至り、ここで焦点を結ぶ。従つ
て、上記測定光導入口1aを被測定体に向けれ
ば、その被測定体が発する赤外光が変換素子6に
至り、被測定体の温度を知ることができる。ま
た、光軸Lの近辺を通過する光は、第2鏡体3が
あるため主鏡2には到達しないが、第2鏡体3の
反射鏡5により測定光導入部7に導かれる。この
反射鏡導入部7からの光は、ミラー9で反射さ
れ、凸レンズ11とハーフミラー12を介して接
眼レンズ10に至り、観察される。
The light incident from the measurement light inlet 1a passes through the primary mirror 2.
The light is reflected and condensed and reaches the second mirror body 3. The light is further reflected and condensed by the convex mirror 4 of the second mirror body 3, passes through the small hole 2b of the primary mirror 2, reaches the conversion element 6, and is focused there. Therefore, when the measurement light inlet 1a is directed toward the object to be measured, the infrared light emitted by the object to be measured reaches the conversion element 6, and the temperature of the object to be measured can be determined. Further, the light passing near the optical axis L does not reach the primary mirror 2 due to the presence of the second mirror body 3, but is guided to the measurement light introducing section 7 by the reflecting mirror 5 of the second mirror body 3. The light from this reflecting mirror introducing section 7 is reflected by the mirror 9, reaches the eyepiece lens 10 via the convex lens 11 and the half mirror 12, and is observed.

このように、温度測定に寄与しない光軸L近辺
の光が、現在測定している物体を視認するための
光として有効に利用されることになり、計測光と
視認光の光軸が一致しているので測定箇所を正確
に定めることができる。
In this way, the light near the optical axis L that does not contribute to temperature measurement is effectively used as light to visually recognize the object currently being measured, and the optical axes of the measurement light and the visible light coincide. This makes it possible to accurately determine the measurement location.

また、光源13を点灯すれば、この光源13に
よる光は、ハーフミラー12→凸レンズ11→ミ
ラー9を介して反射鏡5に至る。しかして反射鏡
5から光軸Lに沿つて可視光が投影され、測定箇
所にスポツトライトが当てられることになる。従
つて暗所あるいは平坦で目印のない箇所における
測定においても容易に測定箇所を定めることがで
きる。
Further, when the light source 13 is turned on, the light from the light source 13 reaches the reflecting mirror 5 via the half mirror 12 → the convex lens 11 → the mirror 9. Visible light is thus projected from the reflecting mirror 5 along the optical axis L, and a spotlight is applied to the measurement location. Therefore, the measurement point can be easily determined even when measuring in a dark place or a flat place without a mark.

次に、本発明に係る装置の第2、第3の実施例
を第3図、第4図について説明する。尚、上述し
た第1の実施例と同様の箇所には同等の符号を付
し、その説明は省略する。
Next, second and third embodiments of the apparatus according to the present invention will be described with reference to FIGS. 3 and 4. Note that the same parts as in the first embodiment described above are given the same reference numerals, and the explanation thereof will be omitted.

この第2、第3の実施例は本発明に係る装置
を、互いに異なる二つの波長帯における熱放射の
比率を計測する、所謂二色形放射温度計に用いた
ものであり、第3図に示す放射温度計は、反射光
導入部7に反射鏡5からの光を直接受ける凸レン
ズ110を設け、この凸レンズ110の結像点に
第2変換素子60が取り付けられている。この第
2の変換素子60は前記変換素子6と異なる波長
帯に感応するようにフイルタ等が組み込まれてい
る。
In the second and third embodiments, the device according to the present invention is used in a so-called dichroic radiation thermometer that measures the ratio of thermal radiation in two different wavelength bands. In the radiation thermometer shown, a convex lens 110 that directly receives the light from the reflecting mirror 5 is provided in the reflected light introducing section 7, and a second conversion element 60 is attached to the imaging point of this convex lens 110. This second conversion element 60 has a built-in filter or the like so as to be sensitive to a wavelength band different from that of the conversion element 6.

一方、第4図に示す第3の実施例は、上記第2
の実施例に用いられている凸レンズ110の機能
を第2鏡体3に持たせた例を示しており、即ち、
反射鏡50として凹面鏡を用いて直接変換素子6
0に集光させたものである。
On the other hand, the third embodiment shown in FIG.
This shows an example in which the second mirror body 3 has the function of the convex lens 110 used in the embodiment, that is,
Direct conversion element 6 using a concave mirror as reflecting mirror 50
The light is focused to 0.

以上説明したように、本発明によれば、カセグ
レン式光学的測定装置において、凸面鏡4の背面
(主鏡2と対面する側の反対の側)に、上記凸面
鏡4と一体形状として、光軸Lの近辺を通る光を
該光軸Lと交差する方向に導く反射鏡5,50を
設けたので、従来はデツドスペースとなつており
有効に生かされていなかつた凸面鏡4の背面にお
ける光軸近辺の光を、反射鏡5,50により反射
させて取り出すことにより、該反射された光の光
路を有効に利用することが出来、且つそのための
光学系は上記の一体形状により極めて簡略化され
てスペース効率が良く、また組み立て時における
光軸合せ等の作業も容易となる効果がある。
As explained above, according to the present invention, in the Cassegrain type optical measuring device, the optical axis L is formed integrally with the convex mirror 4 on the back surface of the convex mirror 4 (the side opposite to the side facing the primary mirror 2). Since reflecting mirrors 5 and 50 are provided to guide light passing near the optical axis L in a direction intersecting the optical axis L, the light near the optical axis on the back surface of the convex mirror 4, which conventionally was a dead space and was not utilized effectively, is removed. By reflecting the light with the reflecting mirrors 5 and 50 and taking it out, the optical path of the reflected light can be effectively utilized, and the optical system for this purpose is extremely simplified due to the above-mentioned integral shape, resulting in space efficiency. This also has the effect of facilitating operations such as optical axis alignment during assembly.

従つて、上記反射された光の光路を、測定箇所
を定めるフアインダあるいは投光器の光路として
用いることが出来、且つこの反射光路は、測定光
を導く光路には何ら影響を与えるおそれがなく、
然も視差を生ずるおそれもない。
Therefore, the optical path of the reflected light can be used as the optical path of a viewfinder or a projector that determines the measurement location, and this reflected optical path has no effect on the optical path that guides the measurement light.
Naturally, there is no risk of causing parallax.

また、本発明において、反射鏡として凹面鏡を
用いれば、反射鏡による光路上においてレンズを
用いることなく直接集光させることができる効果
がある。
Further, in the present invention, if a concave mirror is used as the reflecting mirror, there is an effect that light can be directly focused on the optical path of the reflecting mirror without using a lens.

さらに、本発明において、光量−電気信号変換
素子を主鏡の背部側における光軸上と、反射鏡に
よる光路上との双方に設け、その各素子として互
いに異なる波長帯に感応する素子を用いれば、測
定物体の放射率の影響を軽減できる所謂二色形状
放射温度計を構成でき、この場合も各光路は同軸
で導かれるため相互間の視差はなく、高精度の計
測を行うことができる効果がある。
Furthermore, in the present invention, it is possible to provide a light amount-to-electrical signal conversion element both on the optical axis on the back side of the primary mirror and on the optical path of the reflecting mirror, and to use elements sensitive to different wavelength bands as each element. , it is possible to construct a so-called two-color radiation thermometer that can reduce the influence of the emissivity of the measurement object, and in this case, each optical path is guided coaxially, so there is no parallax between them, and high-precision measurement can be performed. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の第1の実施例を放
射温度計に用いた例を示す断面図、第2図は同光
学系を示す斜視図、第3図及び第4図は本発明に
係る装置の第2、第3の実施例を示す断面図であ
る。 2……主鏡、4……凸面鏡、5,50……反射
鏡、6,60……光量−電気信号変換素子。
FIG. 1 is a sectional view showing an example in which a first embodiment of the device according to the present invention is used in a radiation thermometer, FIG. 2 is a perspective view showing the same optical system, and FIGS. 3 and 4 are in accordance with the present invention. FIG. 3 is a cross-sectional view showing second and third embodiments of the device. 2...Primary mirror, 4...Convex mirror, 5, 50...Reflecting mirror, 6,60...Light amount-electrical signal conversion element.

Claims (1)

【特許請求の範囲】 1 凹面鏡が用いられ、中央部に小孔が形成され
ている主鏡2と、この主鏡2の前方に取り付けら
れ、主鏡2の前方から取り入れられて主鏡により
反射された測定光をさらに反射して上記小孔を通
して主鏡2の背部に焦点を結ばせる凸面鏡4と、
を有する光学的測定装置において、前記凸面鏡4
は主鏡2の光軸上に設けられ、さらに、この光軸
上における、凸面鏡4の上記主鏡2と対面する側
と反対の側に上記凸面鏡4と一体形状として、光
軸の近辺を通る光を該光軸と交差する方向に導く
反射鏡5,50が設けられており、上記主鏡2の
背部側における上記光軸上と、上記反射鏡5,5
0により反射された光の光路上との少なくともい
ずれか一方には光量−電気信号変換素子6,60
が設けられていることを特徴とする光学的測定装
置。 2 前記反射鏡として平面鏡が用いられている特
許請求の範囲第1項記載による光学的測定装置。 3 前記反射鏡として凹面鏡が用いられている特
許請求の範囲第1項記載による光学的測定装置。 4 前記光量−電気信号変換素子6は、前記主鏡
2の背部側における光軸上に設けられ、前記反射
鏡5により反射された光の光路側には光源13が
設けられ、該光源13からの照射光は反射鏡5に
より反射されて前方に照射される特許請求の範囲
第1項、第2項又は第3項記載による光学的測定
装置。 5 前記反射鏡5により反射された光の光路には
フアインダが設けられた特許請求の範囲第1項、
第2項、第3項又は第4項記載による光学的測定
装置。 6 前記光量−電気信号変換素子6,60は、前
記主鏡2の背部側における光軸上と、前記反射鏡
5,50により反射された光の光路上との双方に
設けられ、各光量−電気信号変換素子として互い
に異なる波長帯に感応する素子が用いられている
特許請求の範囲第1項、第2項又は第3項記載に
よる光学的測定装置。
[Claims] 1. A primary mirror 2 that uses a concave mirror and has a small hole formed in the center, and is attached in front of this primary mirror 2, and is taken in from the front of the primary mirror 2 and reflected by the primary mirror. a convex mirror 4 that further reflects the measured measurement light and focuses it on the back of the primary mirror 2 through the small hole;
In the optical measuring device having the convex mirror 4
is provided on the optical axis of the primary mirror 2, and furthermore, on the optical axis, on the side opposite to the side of the convex mirror 4 facing the primary mirror 2, it is integrally formed with the convex mirror 4 and passes near the optical axis. Reflecting mirrors 5 and 50 that guide light in a direction intersecting the optical axis are provided.
A light amount-to-electrical signal conversion element 6, 60 is provided on at least one of the optical paths of the light reflected by the
An optical measuring device characterized by being provided with. 2. The optical measuring device according to claim 1, wherein a plane mirror is used as the reflecting mirror. 3. The optical measuring device according to claim 1, wherein a concave mirror is used as the reflecting mirror. 4. The light amount-electrical signal conversion element 6 is provided on the optical axis on the back side of the primary mirror 2, and a light source 13 is provided on the optical path side of the light reflected by the reflecting mirror 5, and the light source 13 is The optical measuring device according to claim 1, 2 or 3, wherein the irradiated light is reflected by a reflecting mirror 5 and irradiated forward. 5. Claim 1, wherein a viewfinder is provided in the optical path of the light reflected by the reflecting mirror 5.
An optical measuring device according to item 2, 3, or 4. 6. The light amount-electrical signal conversion elements 6, 60 are provided both on the optical axis on the back side of the primary mirror 2 and on the optical path of the light reflected by the reflecting mirrors 5, 50, and each light amount - An optical measuring device according to claim 1, 2, or 3, wherein elements sensitive to different wavelength bands are used as electrical signal conversion elements.
JP56164061A 1981-10-16 1981-10-16 Optical measuring device Granted JPS5866027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164061A JPS5866027A (en) 1981-10-16 1981-10-16 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164061A JPS5866027A (en) 1981-10-16 1981-10-16 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS5866027A JPS5866027A (en) 1983-04-20
JPS6218848B2 true JPS6218848B2 (en) 1987-04-24

Family

ID=15786032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164061A Granted JPS5866027A (en) 1981-10-16 1981-10-16 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS5866027A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127171B (en) * 1982-09-08 1985-12-24 Servo Corp Of America Optical by aiming detectors
JPS6027825A (en) * 1983-07-26 1985-02-12 Minolta Camera Co Ltd Optical system for radiation thermometer
JPH0796974B2 (en) * 1988-11-09 1995-10-18 三菱電機株式会社 Multi-stage regenerative refrigerator and cooling device incorporating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939469A (en) * 1972-08-12 1974-04-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939469A (en) * 1972-08-12 1974-04-12

Also Published As

Publication number Publication date
JPS5866027A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
CN102265125B (en) There is the contactless clinical thermometer of stray radiation shielding
JPH081460Y2 (en) Radiation thermometer
GB2107897A (en) Optical automatic critical focusing device
US4664515A (en) Optical system of a radiation thermometer
KR100521616B1 (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
US4801212A (en) Optical system for radiation thermometer
JPS60263912A (en) Focus detecting device of camera
JPS6218848B2 (en)
JPH0714835Y2 (en) Radiation thermometer
US3441348A (en) Energy concentrating and sighting device for radiometric apparatus
RU2622239C1 (en) Device for non-contact measurement of the object temperature
JP2605168Y2 (en) Endoscope
KR101760031B1 (en) Optical gas sensor with the improvement of sensitivity and reliability
JPH11142241A (en) Measuring apparatus for spectral transmittance
CN212300604U (en) Miniaturized high-precision infrared area array temperature measurement thermal imager
JPH0361825A (en) Measurement position indicator of radiation thermometer
JP2766735B2 (en) Optical system using reflective objective lens
JP2012177560A (en) Radiation thermometer
JPS5852573B2 (en) slit lighting device
JP2531197B2 (en) Compound optical system device
JPH04244925A (en) Radiation thermometer
JPS63138222A (en) Radiation thermometer
JPS6025559Y2 (en) Aiming structure of radiation thermometer
JPH0142229Y2 (en)
JP3222212B2 (en) Camera with built-in light receiver for remote control