JPS62188380A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS62188380A
JPS62188380A JP3118986A JP3118986A JPS62188380A JP S62188380 A JPS62188380 A JP S62188380A JP 3118986 A JP3118986 A JP 3118986A JP 3118986 A JP3118986 A JP 3118986A JP S62188380 A JPS62188380 A JP S62188380A
Authority
JP
Japan
Prior art keywords
source
semiconductor layer
gate electrode
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118986A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3118986A priority Critical patent/JPS62188380A/en
Publication of JPS62188380A publication Critical patent/JPS62188380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To realize a high-performance transistor with its source/drain gap reduced, source resistance greatly lowered, and mutual conductance high by a method wherein source/drain electrodes are located lower than the surface of a gate-carrying upper semiconductor layer constituting a heterojunction and extend into under the gate electrode. CONSTITUTION:A heterojunction is built of a high-purity or P-type first semiconductor layer 4 and a second semiconductor layer 2 with its electron affinity weaker than that of the first semiconductor layer 4. A gate electrode 1 is provided for controlling the number of carriers in an electron channel formed in the hetero interface and source/drain electrodes 6 are formed on both sides of the gate electrode 1, respectively. In such a field effect transistor the source/drain electrodes 6 are located under the surface of the second semiconductor layer 2 and extend into under the gate electrode 1. For example, on a semi-insulating GaAs substrate 5, a P<->-GaAs layer 4 is grown and, as a second semiconductor layer 2, a wafer is formed of an N-Al0.3Ga0.7As layer, N-AlxGa1-xAs layer, and N-GaAs layer, formed in that order. On the wafer, an Al- made gate electrode 1 is built. Ti, Au, Ge, and Ni are attached to the opening wherein source/drain regions are embedded, to be subjected to heat treatment for conversion into an alloy for the construction of source/drain electrodes 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は寄生抵抗が小さく、微細寸法の高性能電界効果
トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to high performance field effect transistors with low parasitic resistance and small dimensions.

〔従来の技術〕[Conventional technology]

従来の電界効果トランジスタの構造として、師とM風s
のヘテロ界面の2次元電子ガスを用いた半導体装置の場
合を説明する。
As the structure of the conventional field effect transistor, the master and M wind s
A case of a semiconductor device using a two-dimensional electron gas at a hetero-interface will be described.

この電界効果トランジスタの構造は、第3図(α)に示
すように、高抵抗のGaAs基板5上に、第1の半導体
層4として高純度のGaAs層を、第2の半導体層2と
してn型にドープされたAI!0.3Gα0,7Aa層
を用いている。この構造では第1の半導体4のGaAs
と、第2の半導体2の)JGaAsとの電子親和力差に
より、GaAs側に2次元電子ガスが形成される。そし
て、ソース及びドレイン電極はAuGe/Niを成分と
する金網を第2の半導体表面がら被着し、アロイを行い
深さ方向に第2の半導体層2及びドナー不純物密度の小
さい第1の半導体層4まで直接合金化して、2次元電子
層まで達するように形成される。
The structure of this field effect transistor is as shown in FIG. AI doped into the mold! A 0.3Gα0,7Aa layer is used. In this structure, the first semiconductor 4 is made of GaAs.
Due to the difference in electron affinity between the second semiconductor 2 and JGaAs, a two-dimensional electron gas is formed on the GaAs side. Then, for the source and drain electrodes, a wire mesh containing AuGe/Ni is deposited on the surface of the second semiconductor, and alloying is performed to form the second semiconductor layer 2 and the first semiconductor layer with a low donor impurity density in the depth direction. 4 is directly alloyed to reach the two-dimensional electronic layer.

図中1はゲート電極、3は2次元電子ガス、6はオーミ
ック電極である。
In the figure, 1 is a gate electrode, 3 is a two-dimensional electron gas, and 6 is an ohmic electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような構造の電界効果トランジスタにおいて、高
性能な特性を得るための重要な要素として、ソース抵抗
を小さくすること、ゲート長を短〈することがあげられ
る。その1つとして、ソース・ゲート間、ゲート・ドレ
イン間を短くすることがあるが、従来の構造では、ソー
ス・ゲート間隔0.5μmが限界であり、これ以上近づ
けようとすると、プロセス上ソース・ドレイン金属とゲ
ート全編が反応して接触してしまう、また、第34.(
b)のようK、イオン注入によってゲート横にn+領域
8を形成したものが報告されているが(アイ・イー・イ
ー・イー・エレクトロンデバイスEEL−5。
In a field effect transistor having the above structure, important factors for obtaining high performance characteristics include reducing the source resistance and shortening the gate length. One way to do this is to shorten the distance between the source and gate, and between the gate and drain. However, in the conventional structure, the limit is 0.5 μm between the source and gate, and if you try to make the distance closer than that, it is difficult to 34. The drain metal and the entire gate react and come into contact. (
As shown in b), a device in which an n+ region 8 is formed next to the gate by K ion implantation has been reported (IEE Electron Device EEL-5).

129 (1984))、この場合、第2の半導体Jg
II2であるn−AlGaAs層の厚さが数百入と薄い
ため、このような浅い所への高ドーズイオン注入は難し
く、小さなシート抵抗すなわち低いソース抵抗を得るた
め深くまで注入すれば、ドレインコンダクタンスが増大
する。またゲート逆方向耐圧も小さくさらに高温でのア
ニール処理を要するため、ヘテロ界面の結晶劣化、しき
い値電圧の変化を引き起こす欠点がある。
129 (1984)), in this case the second semiconductor Jg
Because the thickness of the n-AlGaAs layer, which is II2, is as thin as several hundred ions, it is difficult to implant high-dose ions into such a shallow area.If implanted deeply to obtain a small sheet resistance, that is, a low source resistance, the drain conductance can be reduced. increases. In addition, the gate reverse breakdown voltage is low, and annealing treatment at a high temperature is required, which has the drawback of causing crystal deterioration at the hetero interface and changes in the threshold voltage.

本発明は、以上のような従来技術における素子構造及び
性能の限界を打破する微細がつ高性能な(際、 トランジスタを提供するものである。
The present invention provides a microscopic, high-performance transistor that overcomes the limitations in element structure and performance of the prior art as described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高純度あるいはP型の第1の半導体層と、それ
より電子親和力の小さい第2の半導体層とのヘテロ接合
を備え、ペテロ界面に形成される電子チャネルのキャリ
ア数を制御するゲート電極と、該ゲート電極をはさんで
ソース電極とドレイン電極が設けられた電界効果トラン
ジスタにおいて、前記第2の半導体層の表面より下側で
かつゲート側に入り込んでソース・ドレイン電極を有す
ることを特徴とする電界効果トランジスタである。
The present invention includes a heterojunction between a high-purity or P-type first semiconductor layer and a second semiconductor layer having a lower electron affinity, and a gate electrode that controls the number of carriers in an electron channel formed at the Peter interface. and a field effect transistor in which a source electrode and a drain electrode are provided across the gate electrode, characterized in that the field effect transistor has a source/drain electrode below the surface of the second semiconductor layer and extending into the gate side. This is a field-effect transistor.

〔作用〕[Effect]

以下第1図の断面構造を参照しつつ、本発明の構成及び
効果について記述する。
The structure and effects of the present invention will be described below with reference to the cross-sectional structure shown in FIG.

第1図(α)に示すように局抵抗基板上5に第1の半導
体層4、第2の半導体層2を連続積層したウェハー上に
、ゲート長d1のゲート電極lが形成されており、ソー
ス・ドレイン電極は、第2の半導体層2の表面より下側
に、ゲート方向に厚さd鵞だけ横に入り込んで形成され
ている。今、第2の半″\ ・) 導体層2の長さをd、とすると、実効的なソース・ドレ
イン間隔Hd、−2d、と第3図の従来構造のソース・
ドレイン間隔d3より短くなる。したがって、ソース抵
抗が大幅に低減され、しかもキャリアの走行時間も短縮
される。また、第1の半導体層4としてGaAs 、第
2の半導体層2としてMλMを用いた場合、GaAs中
の電子の平均自由行程はw、1表のようになり、本発明
の構造によれば第2の半導体層2の長さd、とオーミッ
ク電極6の領域の横方向の入り込み厚さd、との関係よ
り、ソース・ドレイン間隔が0.1μm程度まで容易に
近づけることが可能であり、その結果ソース・ドレイン
の電極間隔が電子の平均自由行程より十分短くなり、電
子は散乱されることなく電極間を通過するバリステック
伝導効果が顕著に現れ、超高速動作が期待第1表   
   na 〔実施例〕 以下本発明の実施例について詳細に説明する。
As shown in FIG. 1 (α), a gate electrode l having a gate length d1 is formed on a wafer in which a first semiconductor layer 4 and a second semiconductor layer 2 are successively laminated on a local resistance substrate 5. The source/drain electrodes are formed laterally below the surface of the second semiconductor layer 2 by a thickness d in the gate direction. Now, if the length of the second half conductor layer 2 is d, then the effective source-drain spacing Hd, -2d, and the source-drain distance of the conventional structure shown in FIG.
It becomes shorter than the drain interval d3. Therefore, the source resistance is significantly reduced and the carrier transit time is also shortened. Further, when GaAs is used as the first semiconductor layer 4 and MλM is used as the second semiconductor layer 2, the mean free path of electrons in GaAs is w as shown in Table 1, and according to the structure of the present invention, From the relationship between the length d of the semiconductor layer 2 in No. 2 and the lateral depth d of the ohmic electrode 6 region, it is possible to easily approach the source-drain distance to about 0.1 μm. As a result, the spacing between the source and drain electrodes is sufficiently shorter than the mean free path of electrons, and the ballistic conduction effect, in which electrons pass between the electrodes without being scattered, becomes noticeable, and ultra-high-speed operation is expected.Table 1
na [Examples] Examples of the present invention will be described in detail below.

第2図(α)に示すように、半絶縁性GIZA s基板
5上にMBE法にて第1の半導体層4としてキャリア密
#1x1014d3、厚さ0.8μmのP−G一層全成
長t、、更に第2の半導体層2としてドナー密度2X1
0”c+ff”、厚さ100人のn−M6.3−07人
8層、厚さ200人でMとAs(1) モル比が0.3
〜0へと変化しているn−MxGcL、、As層及び厚
さ200人のn=GaAs層を順次成長したウェハー上
にMのゲート1を形成する。ソース・ドレイン電極は、
ソース・ドレイン領域を700人エツチングして第2の
半導体層2まで堀り込んだ後、Ti :20人、AuG
e : 500A。
As shown in FIG. 2 (α), a single layer of P-G with a carrier density of #1x1014d3 and a thickness of 0.8 μm is grown as a first semiconductor layer 4 by MBE method on a semi-insulating GIZA s substrate 5, , and further has a donor density of 2×1 as the second semiconductor layer 2.
0"c+ff", 100 people n-M6.3-07 8 layers, 200 people thickness, M and As(1) molar ratio is 0.3
A gate 1 of M is formed on a wafer on which an n=MxGcL, . The source and drain electrodes are
After etching the source/drain region by 700 layers and digging down to the second semiconductor layer 2, Ti: 20 layers, AuG
e: 500A.

Ni:150Aをソース・ドレイン電極開口部にだけ被
着する。その後、熱処理によってオーミック金縞を合金
化しソース・ドレイン電極を形成する。この時、熱処理
の際にO11μm程度侮が横方向、すなわちゲート方向
に拡散するためオーミック電極6となる合金層は、第1
の半導体層40表面より下側に0.1μm程度横に入り
込んで形成される。したがってソース・ドレイン間は第
1の半導体層4の゛ン2、 長さより0.2μ汎程度狭くなっている。その結果、ソ
ース抵抗が大幅に低減でき、相互コンダクタンスが大き
く向上した。ここで20人のTi層はストッパー7とし
てAuGeの深さ方向の拡散を防ぎ、この結果、ゲート
長が短くなっても短チヤネル効果が小さく、微細寸法の
高性能な電界効果トランジスタが実現できる。
Ni: 150A is deposited only on the source/drain electrode openings. Thereafter, the ohmic gold stripes are alloyed by heat treatment to form source and drain electrodes. At this time, during the heat treatment, about 11 μm of O diffuses in the lateral direction, that is, in the gate direction, so the alloy layer that will become the ohmic electrode 6 is
It is formed laterally by about 0.1 μm below the surface of the semiconductor layer 40 . Therefore, the distance between the source and drain is approximately 0.2 μ narrower than the length of the first semiconductor layer 4. As a result, source resistance was significantly reduced and mutual conductance was greatly improved. Here, the 20-layer Ti layer acts as a stopper 7 to prevent the diffusion of AuGe in the depth direction, and as a result, even if the gate length is shortened, the short channel effect is small, and a high-performance field effect transistor with fine dimensions can be realized.

さらにゲート長を0.3μmにして第2図(b)のよう
に第1の半導体層4の長さをゲート長と同じにすれば、
ソース・ドレイン間は0.1μms度となり、ハリスチ
ック伝導効果も期待される。
Furthermore, if the gate length is set to 0.3 μm and the length of the first semiconductor layer 4 is made the same as the gate length as shown in FIG. 2(b),
The distance between the source and drain is 0.1 μms, and a halitic conduction effect is also expected.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によればソース・ドレイン
間隔が短く、ソース抵抗が大幅に低減でき高い相互コン
ダクタンスをもつ高性能な電界効果トランジスタが実現
可能となる。さらに、本発明によりバリステック伝導現
象も実現できる効果を有する。
As described in detail above, according to the present invention, it is possible to realize a high-performance field effect transistor having a short source-drain interval, a significantly reduced source resistance, and high mutual conductance. Furthermore, the present invention has the effect of realizing a ballistic conduction phenomenon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる電界効果トランジスタの断面図
、第2図(α)、 (b)はそれぞれ本発明の実施例を
示す断面図、第3図(α)は短電極間構造の断面図、第
3図(b)はイオン注入によるn+−セルファライン構
造を示す断面図である。 1・・・ゲート電極    2・・・第2の半導体層3
・・・2次元電子ガス  4・・・第1の半導体層5・
・・高抵抗基板    6・・・オーミック電極7・・
・ストッパー 特許出願人  日本電気株式会社 第1閑 (の (b) 第2圓
FIG. 1 is a cross-sectional view of a field effect transistor according to the present invention, FIGS. 2 (α) and (b) are cross-sectional views showing embodiments of the present invention, and FIG. 3 (α) is a cross-sectional view of a short interelectrode structure. FIG. 3(b) is a sectional view showing an n+-cella line structure formed by ion implantation. 1... Gate electrode 2... Second semiconductor layer 3
...Two-dimensional electron gas 4...First semiconductor layer 5.
...High resistance substrate 6...Ohmic electrode 7...
・Stopper patent applicant: NEC Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)高純度あるいはP型の第1の半導体層と、それよ
り電子親和力の小さい第2の半導体層とのヘテロ接合を
備え、ヘテロ界面に形成される電子チャネルのキャリア
数を制御するゲート電極と、該ゲート電極をはさんでソ
ース電極とドレイン電極とが設けられた電界効果トラン
ジスタにおいて、前記第2の半導体層の表面より下側で
、かつゲート側に入り込んでソース・ドレイン電極を有
することを特徴とする電界効果トランジスタ。
(1) A gate electrode that has a heterojunction between a high-purity or P-type first semiconductor layer and a second semiconductor layer that has a lower electron affinity, and controls the number of carriers in the electron channel formed at the heterointerface. and a field effect transistor in which a source electrode and a drain electrode are provided across the gate electrode, the source and drain electrodes being below the surface of the second semiconductor layer and extending into the gate side. A field effect transistor featuring:
JP3118986A 1986-02-14 1986-02-14 Field effect transistor Pending JPS62188380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118986A JPS62188380A (en) 1986-02-14 1986-02-14 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118986A JPS62188380A (en) 1986-02-14 1986-02-14 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS62188380A true JPS62188380A (en) 1987-08-17

Family

ID=12324485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118986A Pending JPS62188380A (en) 1986-02-14 1986-02-14 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS62188380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744774A2 (en) * 1995-05-25 1996-11-27 Murata Manufacturing Co., Ltd. Field effect transistor and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744774A2 (en) * 1995-05-25 1996-11-27 Murata Manufacturing Co., Ltd. Field effect transistor and method for producing same
EP0744774A3 (en) * 1995-05-25 1998-01-28 Murata Manufacturing Co., Ltd. Field effect transistor and method for producing same

Similar Documents

Publication Publication Date Title
US4471366A (en) Field effect transistor with high cut-off frequency and process for forming same
JP3229012B2 (en) Method for manufacturing semiconductor device
US4916498A (en) High electron mobility power transistor
US10516023B2 (en) High electron mobility transistor with deep charge carrier gas contact structure
JPH0330310B2 (en)
US4805003A (en) GaAs MESFET
KR920003799B1 (en) Semiconductor device
JPH07123164B2 (en) Semiconductor device
US5780878A (en) Lateral gate, vertical drift region transistor
JPH0324782B2 (en)
JPS62274783A (en) Semiconductor device
US5923051A (en) Field controlled semiconductor device of SiC and a method for production thereof
EP0115668A1 (en) Heterojunction semiconductor device
JP3601649B2 (en) Field effect transistor
JPH07142706A (en) Heterojunction semiconductor device and its manufacture
JPS62188380A (en) Field effect transistor
KR910006698B1 (en) Semiconductor device
JPH01257372A (en) Insulated gate field effect transistor
CN105977294A (en) Novel normally-closed III-V heterojunction field effect transistor
JPH11354789A (en) Field effect transistor
JP3113689B2 (en) Semiconductor device
JPS60136380A (en) Semiconductor device
JPS6365678A (en) Field effect transistor
JPS62159468A (en) Semiconductor device
JPS63229761A (en) Field effect semiconductor device